
228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Assembling 2-D Blocks into 3-D Chips
Johann Knechtel, Student Member, IEEE, Igor L. Markov, Senior Member, IEEE, and

Jens Lienig, Senior Member, IEEE

Abstract—Despite numerous advantages of 3-D integrated
circuits (ICs), their commercial success remains limited. In part,
this is due to the wide availability of trustworthy intellectual
property (IP) blocks developed for 2-D ICs and proven through
repeated use. Block-based design reuse is imperative for heteroge-
neous 3-D ICs where memory, logic, analog, and microelectrome-
chanical systems dies are manufactured at different technology
nodes and circuit modules cannot be partitioned among several
dies. In this paper, we show how to integrate 2-D IP blocks into
3-D chips without altering their layout. Experiments indicate
that the overhead of proposed integration is small, which can
help accelerate industry adoption of 3-D integration.

Index Terms—3-D IC design styles, 3-D integrated circuits
(ICs), floorplan optimization, intellectual property (IP) blocks,
through-silicon via (TSV) planning, TSV islands.

I. Introduction

3 -D INTEGRATION is a promising design option to keep
pace with steadily increasing demands on functionality and

performance of electronic circuits. It is motivated by applica-
tions combining heterogeneous manufacturing processes, sep-
arate die testing for increased yield, shorter and lower-power
interconnects, as well as a smaller form factor. Originating
with vertical stacked dies in a system-in-package (SiP), wire
bonding is used to interconnect separate dies, as illustrated by
the Apple A4 package that places two DRAM dies on a ARM
logic die. However, wire-bonding interconnect can become
a bottleneck in such an SiP, and the next logical step is to
provision for direct die-to-die interconnect without package-
level detours, resulting in 3-D integrated circuits (ICs) (Fig. 1).
Such interconnects are implemented using through-silicon vias
(TSVs)—vertical plugs that connect two silicon dies. The
use of TSVs enables chip-level integration, which promises
shorter global interconnect while retaining the benefits of
package-level integration. Recently, S. Borkar [1] presented
an energy-efficient, high-performance 80-core system with
stacked SRAM.

Manuscript received June 13, 2011; revised August 14, 2011; accepted
October 21, 2011. Date of current version January 20, 2012. The work of J.
Knechtel was supported by the German Research Foundation, under Project
1401/1. This paper was recommended by Associate Editor C.-K. Koh.

J. Knechtel and J. Lienig are with the Institute of Electromechanical
and Electronic Design, Dresden University of Technology, Dresden 01062,
Germany (e-mail: knechtel@ieee.org; jens@ieee.org).

I. L. Markov is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: imarkov@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2174640

The 2009 edition of the International Technology Roadmap
for Semiconductors prominently features 3-D IC integration
in the section on interconnect and the section on assembly
and packaging [2]. Industry analysts are forecasting that the
global 3-D IC market will reach $5.2B by 2015 [3]. However,
the progress in commercial applications of 3-D ICs is cur-
rently limited, despite these forecasts and apparent benefits.
Academic research in this field is pursuing 3-D floorplanning
[4]–[9], thermal management [5], [6], [8]–[11], TSV planning
[12]–[17], and cost-effective design-space exploration [18].
Recent studies also address TSV-induced-stress analysis and
accurate TSV alignment [19]–[21], the impact of intradie
variation [22], and signal-integrity analysis for 3-D ICs [23].

Existing publications often neglect important obstacles to
3-D IC integration. One is given by design constraints and
overhead associated with TSVs. At the 45 nm technology node,
the area footprint of a 10μm×10μm TSV is comparable to
that of about 50 gates [24]. Furthermore, manufacturability
demands landing pads and keep-out zones [21] which fur-
ther increase TSV area footprint. Previous work in physical
design often neglects this area overhead [5], [7]–[9]. Some
studies explicitly consider thermal TSV insertion but not signal
TSVs [11], [25]. Tsai et al. [14] observed that previous work
also neglects the impact of TSV locations on wirelength
estimates for floorplanning.

While the usage of TSVs is generally expected to reduce
wirelength, Kim et al. [24] reported that wirelength reduction
varies depending on the number of TSVs and their character-
istics. Their case studies show that this tradeoff is controlled
by the granularity of interdie partitioning. The wirelength
typically decreases for moderate (blocks with 20–100 mod-
ules) and coarse (block-level partitioning) granularities, but
increases for fine (gate-level partitioning) granularities.

Depending on the technology choices, TSVs block some
subset of layout resources. Via-first TSVs are manufactured
before metallization, thus occupy the device layer and result
in placement obstacles. Via-last TSVs are manufactured after
metallization and pass through the chip. Thus, they occupy
both the device and metal layers, resulting in placement and
routing obstacles [24].

A further impediment to 3-D IC integration is more subtle.
It is related to feasible design styles and principles for 3-D
integration. To achieve higher overall yield and reduce costs,
separate testing of independent dies is essential [26], as
also emphasized in a recent Intel study [1]. However, tight
integration between adjacent active layers in 3-D ICs entails a
significant amount of interconnect between different sections

0278-0070/$26.00 c© 2011 IEEE

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 229

of the same circuit module that were partitioned to different
dies. Aside from the massive overhead introduced by required
TSVs, sections of such a module, e.g., a multiplier, demand
for new testing approaches [26], [27]. Additionally, recent
work [22] points out that intradie variation becomes a first-
order effect for 3-D IC integration, while being only a second-
order effect for 2-D chips.1 The authors estimated that a 3-D
layout will yield more poorly than the same circuit laid out in
2-D, contrary to the original promise of 3-D IC integration.

These wide-ranging considerations suggest that a successful
and effective approach to 3-D IC integration must rely on
proven and effective design methodologies. To this end, we
make the following contributions.

1) We describe and compare several design styles, in partic-
ular the legacy 2-D (L2D) style which integrates existing
2-D intellectual property (IP) blocks not designed for
3-D IC integration (Section II).

2) Next, we extend the L2D style to L2D style with
TSV islands (L2Di), where TSVs are clustered into
TSV islands rather than placed in a spread-out manner
(Section III). This technique can limit the overhead of
TSVs, but does not necessarily exclude single TSVs.

3) To support the L2Di style, we propose a methodology
and novel algorithms for net clustering, TSV-island
insertion, and related tasks (Section V). The overall
approach promises faster industry acceptance of 3-D IC
integration.

4) We empirically validate our methodology, demonstrating
3-D IC integration of L2D IP blocks (Section VI).

The remainder of this paper is structured as follows. In
Section II, we describe and compare several 3-D design styles.
In Section III, we discuss options to connect blocks placed on
separate dies. Additionally, we evaluate common wirelength-
estimation techniques. The problem formulation for our L2Di
style is given in Section IV. Our methodology is presented in
Section V. In addition to proposing new techniques for 3-D
integration, we also point out related results from graph theory.
In Section VI, we present experimental results, validating our
methodology. Our conclusions are given in Section VII.

II. 3-D IC Design Styles

3-D integration originated with package-level integration,
which connects multiple 2-D chips through bonding pads,
as illustrated by the quad-core variant of the Intel Core 2
processor. Finer granularity of 3-D integration is enabled by
connecting dies with TSVs, which results in 3-D ICs [28].
In this paper, we consider signal TSVs. Simultaneously plan-
ning signal, power/ground and thermal TSVs requires further
considerations [17]. Also, we consider face-to-back (F2B)
stacking for 3-D IC integration. Next, we contrast gate-
level and block-level integration styles for 3-D ICs (Fig. 2).
Gate-level integration faces multiple challenges and currently
appears less practical than block-level integration.

1When a die experiences process variation, all transistors become faster (or
slower), perhaps at a different rate; the variations in transistor performance are
therefore a second-order effect. However, several stacked dies may experience
systematic variations in opposite directions—a first-order effect.

Fig. 1. 3-D IC containing three active layers, stacked using F2B technology.
TSVs must not obstruct IP blocks and are therefore placed between them.
Layer bonding can be realized with microbumps or direct bonding. Please
note that routing interlayer nets through TSVs still requires vias in the metal
layers. Also, connecting signals through bumps to the package requires a
redistribution layer.

Fig. 2. Integration levels for 3-D ICs. TSVs are illustrated as solid, red
boxes, and related landing pads as dashed, red boxes. (a) Gate-level integra-
tion, enlarged for illustration. This style is based on placing separate gates on
multiple dies, likely resulting in a huge number of required TSVs. (b) Block-
level integration relies on (2-D) blocks, which are partitioned between multiple
dies and connected through global routes, thus limiting required TSVs.

A. Gate-Level Integration

One approach to 3-D integration is to partition standard
cells between multiple dies in a 3-D assembly and use TSVs
in routes that connect cells spread among active layers. This
integration style promises significant wirelength reduction and
great flexibility [6].

Its adverse effects include the massive number of neces-
sary TSVs for random logic (Section I). The study by Kim
et al. [24] revealed that partitioning gates between multi-
ple dies may undermine wirelength reduction unless circuit
modules of certain minimal size are preserved. A recent
study [29] pointed out that layout effects can largely influence
performance for highly regular blocks such as SRAM registers;
a mismatch between TSV and cell dimensions may introduce
wirelength disparities while routing regular structures to TSVs.
Also, partitioning a design block across multiple dies requires
new prebond testing approaches [26], [27].

Furthermore, gate-level 3-D integration requires to redesign
all available IP, since existing IP blocks and electronic design
automation (EDA) tools do not provision for 3-D integration.
Even when 3-D place-and-route tools appear on the market, it
will take many years for IP vendors to upgrade their extensive
IP portfolios for 3-D integration.

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 3. Block-level integration for 3-D ICs. (a) Redesigned 2-D (R2D) style
uses predefined TSV sites (small red boxes) within the block footprint.
(b) L2D style places scattered TSVs preferably between blocks, thus limits
stress for gates.

B. Block-Level Integration

Design blocks subsume most of the netlist connectivity and
are linked by a smaller number of global interconnects [30].
Therefore, block-level integration promises to reduce TSV
overhead. As pointed out in [29], TSVs may not scale at the
same rate as transistors, thus the TSV-to-cell mismatch will
likely remain for future nodes and may increase. The best
option to limit the overhead of TSVs is to reduce their count
by assigning only global interconnects to them.

Sophisticated 3-D systems combining heterogeneous dies
are projected in a recent Cadence whitepaper [31]. Such
systems require distinct manufacturing processes at different
technology nodes for fast and low-power random logic, sev-
eral memory types, analog, and radio frequency circuits, on-
chip sensors, microelectromechanical systems (MEMS), and
nanoelectromechanical systems. Thus, block-level integration
appears crucial for future 3-D integration.

From an industrial perspective, 3-D integration will re-
quire 3-D-aware tools only for partitioning and thermal anal-
ysis [32]. Separate dies will be designed using (adapted)
2-D tools and 2-D blocks [32]. This is motivated by the
broad availability of reliable IP blocks, as discussed later on.
Furthermore, modern chip design often requires last-minute
engineering changes. Restricting the impact of such changes
to single dies is essential to limit additional cost.

When assigning entire blocks to separate dies and connect-
ing them with TSVs, we distinguish two design styles (Fig. 3).

1) R2D style: 2-D blocks designed for 3-D integration
(TSVs included within the footprints).

2) L2D style: 2-D blocks not designed for 3-D integration
(TSVs preferably placed between blocks).

Depending on available blocks, mixing both styles may
be practical. These styles promise a good tradeoff between
necessary TSV usage and wirelength reduction, as discussed
in Section I. However, the R2D style may be more constrained.
For back-to-back (B2B) stacking, blocks may be required
to align according to their predefined TSV locations, which
would naturally increase placement complexity. This may
further complicate design closure, e.g., due to congestion
around densely packed obstacles. TSV-induced silicon stress
increases the overhead of TSVs inside blocks, favoring TSVs
between blocks.

Fig. 4. L2Di style for 3-D integration. TSVs are grouped into TSV islands,
which may include scan chains for test purposes and multiplex spare TSVs
for redundancy. TSV island are illustrated as brown, dashed boxes containing
TSVs (solid, red boxes). Related landing pads are illustrated as dashed, red
boxes. Islands provide a beneficial option to connect blocks between several
layers, but may also be difficult to insert into deadspace.

Several other important benefits of the R2D and L2D styles
are described next. Design-for-testability (DFT) structures are
a key component of existing (2-D) IP blocks and can therefore
be used to realize prebond and postbond testing for the L2D
style [26]. In general, test pins can be provisioned on each
die and multiplexed/shared with other pins for prebond and
postbond testing [33]. Block-level integration may be used to
efficiently reduce critical paths, thus simultaneously allows
limiting signal delay, increasing performance and reducing
power consumption [34]. In [35], the authors propose optimal
matching of slow and fast dies, based on accurate delay models
with process variations considered. This approach assumes
that dies can be delay-tested before 3-D stacking—a strong
argument for block-level 3-D integration.

Another aspect of block-level integration styles deals with
design effort (Section II-A). Modern chip design mostly relies
on predesigned and optimized IP blocks; analysts at Gartner
Dataquest point out that the IP market is still growing and will
reach $2.3B by 2014. Existing IP blocks must be redesigned
for use with the R2D style, despite their successful track record
in applications and at the marketplace. Such a redesign would
require new EDA tools for physical design and verification,
increasing risks of design failures and being late to market.
It is more convenient to use available L2D IP blocks and
to place the mandatory TSVs in the deadspace between the
blocks, as provisioned by the L2D style. An extreme form
of design IP reuse possible with the L2D style is block-level
mask reuse with changes only required for global routes at
high metal layers—TSVs placed in deadspace do not modify
silicon layers of the blocks.

III. Connecting 2-D Blocks in 3-D ICs

To connect 2-D blocks placed among multiple active layers,
required TSVs can be inserted in several ways. First, one could
use single, spread out TSVs [Fig. 3(b)]. The second option is
to place TSVs on a gridded structure. The third option groups
several TSVs into TSV islands, as required for the L2Di style.
Depending on the manufacturing process, TSV insertion might
be required to account for minimum TSV density, pitch, and
spacing.

Fig. 4 illustrates TSV islands as blocks with densely placed
TSVs. Optimizing the layout of TSV islands leads to several

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 231

benefits, as explained below. However, single TSVs can also
be instantiated when necessary.

A study by Kim et al. [16] compared placing TSVs on
a grid (regular placement) to placing scattered TSVs (irreg-
ular placement). The study revealed that irregular placement
performs better in terms of wirelength reduction and design
runtime. Since TSVs are placed near the blocks they are
connected to, there is no need for a separate TSV-assignment
process.

However, viewing TSVs as purely geometric objects would
neglect several key technology issues. These include: 1) silicon
stress in the neighborhood of TSVs, which alters transis-
tor properties and motivates keep-out zones; 2) reliability
and fault-tolerance issues in the TSVs themselves; and 3)
complexities of connecting dies manufactured at different
technology nodes, e.g., analog, digital logic, and memory
dies. Regular TSV structures can be designed to address
these concerns by optimizing spacing between TSVs, pos-
sibly sharing keep-out zones, performing electrothermal and
mechanical simulations before layout, etc. In contrast, single
TSVs would require greater care during layout. To this end,
regular placement helps manufacturing reliable TSVs [13],
[36], which favors assembling multiple TSVs into TSV
islands.

A. TSV Islands

Grouping several TSVs into TSV islands of appropriate
sizes is beneficial for several reasons, discussed below.

1) TSVs introduce stress in surrounding silicon which
affects nearby transistors [21], but TSV islands do not
need to include active gates. The layout of these islands
can be optimized in advance; regular island structures
help to limit stress below the yielding strength of cop-
per [19]. Furthermore, using TSV islands limits stress to
particular design regions [37]. Placing islands between
blocks may thus limit stress on blocks’ active gates.

2) TSV islands facilitate redundancy architectures [13],
[20], where failed TSVs are shifted within a chain
structure or dynamically rerouted to spare TSVs. Fig. 4
illustrates islands of four TSVs, including a spare.

3) Grouping TSVs can reduce area overhead. TSVs can be
packed densely within TSV islands, possibly reducing
keep-out zones without increasing stress-induced impact
on active gates [37].

4) Regular, lithography-optimized layouts of predesigned
TSV islands improve manufacturability by increasing
exposure quality during optical lithography [13].

5) Each TSV experiences significant mechanical pressure
(several hundred MPa [19]) which may affect even tung-
sten vias2 over time, especially due to slight misalign-
ments. The thinner the TSVs, the greater the pressure,
and single TSVs are riskier than TSV islands that may
balance out misalignments. For similar reasons, archi-
tectural pillars and columns usually appear in groups.

2Both copper and tungsten are used for TSV manufacturing. Currently, cop-
per is more popular, but requires thicker TSVs due to its inferior mechanical
properties (yield strength 600 MPa [19]).

Fig. 5. Wirelength estimates for 3-D ICs based on bounding-box construc-
tion. Net pins are labeled pn, projected pins as p′

n. (a) Considering only
net pins provides lowest-accuracy estimation. Wirelength is calculated as
NBB-3D-HPWL = w + h. (b) Using both net pins and the TSV location
increases estimation accuracy. Wirelength is calculated as BB-3D-HPWL =
w′ + h′. (c) Most accurate estimation is achieved by separately considering
net pins and TSVs on each die. Wirelength is calculated as BB-2D3D-HPWL
=

∑
(wl + hl) for all related, active layers l ∈ L.

6) Many designs suitable for 3-D integration, such as
networks-on-chip, connect their modules by multibit
buses. When such buses cross between adjacent dies,
they will naturally form TSV islands.

Using TSV islands has some downsides. Connecting blocks
through TSV islands can introduce wire detours, increase
interconnect delays (also by coupling between TSVs), and
increase the demand for routing resources. Large TSV islands
may complicate floorplanning and placement. To address these
challenges, we develop sophisticated algorithms for net assign-
ment and TSV-island insertion.

The relevance of TSV islands may depend on technology
details, which currently vary significantly among different
manufacturers. We allow trivial TSV islands with only one
TSV as well. This subsumes the straightforward handling
of TSVs as a special case, thus our proposal is not restric-
tive.

B. Wirelength Estimation

Tsai et al. [14] showed that using TSVs not only affects
the final wirelength but may also decrease the accuracy of
wirelength estimation during floorplanning, if not appropri-
ately addressed. As mentioned in Section I, previous work on
3-D integration mostly ignores TSV footprints and locations.

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 6. Net clustering and TSV-island insertion. (a) Interlayer nets n1, n2, and n3 need to be connected through TSVs. (b) Pins pn are mapped to a virtual
die as p′

n and corresponding net bounding boxes are constructed. Intersections of bounding boxes mark cluster regions c1, c2, and c3 (intersection corners are
pointed to). (c) Region c3 is not obstructed by blocks and provides sufficient area, thus allows TSV-island insertion providing shortest routes for all nets.

Subsequently, TSV placement is likely to be hindered due to
inappropriately distributed deadspace. The well-known metric
half-perimeter wirelength (HPWL) of net bounding boxes is
insufficient for 3-D ICs, due to possibly lacking deadspace
for TSV insertion. However, this estimation technique using
net pins provides a reference value for optimal TSV inser-
tion. We refer to it as NBB-3D-HPWL [Fig. 5(a)]. Tsai et
al. [14] proposed to extend it by considering TSV locations
during bounding-box construction. We refer to this estimation
technique as BB-3D-HPWL [Fig. 5(b)]. However, Tsai et
al. neglected that using TSVs implies connecting blocks to
TSV locations on all associated layers. To estimate resulting
wirelength more precisely, Kim et al. [16] introduced net split-
ting. They construct bounding boxes on each layer separately
and sum up resulting HPWLs. We refer to this technique as
BB-2D3D-HPWL [Fig. 5(c)].

These estimation techniques assume only one TSV placed
in each layer while connecting a net. However, for high-
degree nets, e.g., those carrying enable signals, using multiple
TSVs may be helpful for reducing wirelength and power
consumption. Recently, Zhao et al. [38] proposed clock-
tree-generation algorithms allowing multiple TSVs in each
layer. Such techniques must simultaneously consider TSV
capacitance and resistance, desired power savings, and wire-
length tradeoff. Previously discussed wirelength-estimation
techniques are unsuitable for such complex scenarios.

As mentioned in Section III-A, using TSV islands may
require interconnect detours. To estimate them, one could
compare BB-2D3D-HPWL to NBB-3D-HWPL wirelength.
However, more reasonable is to compare BB-2D3D-HPWL
wirelength for using TSV islands versus using single TSVs.

IV. Problem Formulation

For 3-D integration considering our L2Di style, the follow-
ing input is assumed.

1) Active layers, denoted as set L. Each layer l ∈ L has
dimensions (hl, wl) such that every block assigned to l

can fit in the outline without incurring overlap.
2) Rectangular IP blocks, denoted as set B. Each block

b ∈ B has dimensions (hb, wb) and pins, denoted as

set Pb. Each pin p ∈ Pb of block b is defined by
its offset (δx

p, δy
p) with respect to the block’s geometric

center (origin).
3) Netlist, denoted as set N . A net n ∈ N describes a

connection between two or more pins.
4) TSV-island types, denoted as set T . Each type t ∈ T has

dimensions (ht, wt) and capacity κt . Since predesigned
TSV-island types may incorporate spare TSVs, κt defines
the number of nets that can be routed through t.

5) 3-D floorplan, denoted as set F . Each block b is as-
signed a location (xb, yb, lb) such that no blocks overlap.
The coordinate of the block’s origin is denoted as
(xb, yb) and lb denotes the assigned layer.

As mentioned in Section I, previous work on 3-D floorplan-
ning often neglects design constraints and overhead associated
with TSVs. However, these studies promise to provide opti-
mized floorplans in terms of, e.g., minimal wirelength and
thermal distribution. Therefore, 3-D integration following the
L2Di style addresses the omission of TSV planning. It seeks
to cluster interlayer nets into TSV islands without incurring
excessive overhead. Such TSV islands, as well as single TSVs,
are then inserted into deadspace around floorplan blocks. If
TSV-island insertion is impossible due to lack of deadspace,
blocks can be shifted from their initial locations without
disturbing their ordering. Additional deadspace can be inserted
when necessary.

V. Methodology

To connect blocks on different dies following the L2Di
style, we need to know the locations of TSV islands. However,
placing TSV islands, i.e., fixing these locations, must account
for routing demand and routability, so as to avoid unnecessary
detours. In order to solve this chicken-and-egg problem, we
develop the following techniques.

1) Net clustering: groups nets to localize and estimate
global routing demand.

2) TSV-island insertion: uses these groups to appropriately
insert TSV islands.

Net clustering uses net bounding boxes, i.e., minimal rect-
angles containing net pins, which contain all shortest-path con-

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 233

nections in the absence of obstacles. The intersection of several
net boxes forms a cluster region for respective nets. Placing
TSV islands within the cluster regions facilitates shortest-path
connections for all considered nets. Assigning nets to clusters
furthermore helps to select the type and capacity of each TSV
island. To formalize the clustering process, we consider a
virtual die—the minimum rectangle containing projections of
active-layer outlines.

TSV-island insertion utilizes cluster regions to determine
where to insert TSV islands. This depends on available
island types, deadspace, and obstruction (by blocks or other
islands) of cluster regions. Also, given that net clustering
determines different groups of nets, our proposed TSV-island
insertion selects the most suitable cluster for each net to
facilitate routing of all nets. Furthermore, our techniques
can be extended to perform subsequent deadspace-related
tasks like buffer insertion. Fig. 6 illustrates net clustering and
TSV-island insertion for two dies.

In the following discussion, we refer to interlayer nets
as just nets. Details of our techniques are discussed in
Sections V-B–V-D, the overall flow is illustrated in Fig. 7.
Please note that our methodology is performed stepwise
for multiple active layers, as illustrated in Fig. 7(a). Key
parameters used in our algorithms are defined in Table I
(Section VI) along with their values.

A. Background on Intersections of Bounding Boxes

We provide the following definitions, lemmata, and theo-
rems to discuss intersections of bounding boxes in detail. The
discussion is related to a study by Imai and Asano [39] on
intersections of axis-aligned rectangles in the plane.

Definition 1: The intervals A[xA
min, x

A
max] and B[xB

min, x
B
max]

overlap if xA
min ≤ xB

min ≤ xA
max or xB

min ≤ xA
min ≤ xB

max.
Lemma 1: Given two overlapping intervals, their set-

intersection is also an interval.
Note: For an axis-aligned rectangle A[xA

min, x
A
max] ×

[yA
min, y

A
max] its projections onto the x-axis and y-axis are

intervals [xA
min, x

A
max] and [yA

min, y
A
max], respectively.

Definition 2: Two axis-aligned rectangles A[xA
min, x

A
max]

× [yA
min, y

A
max] and B[xB

min, x
B
max] × [yB

min, y
B
max] overlap

iff their x-projections overlap and their y-projections
overlap.

Lemma 2: Given two overlapping axis-aligned rectangles,
their set-intersection is also an axis-aligned rectangle. Given
n axis-aligned rectangles, if their set-intersection is nonempty,
then it is an axis-aligned rectangle.

In their study, Imai and Asano proved that n axis-aligned
rectangles (e.g., bounding boxes) have a single nonempty
n-way intersection iff each pair of these rectangles overlap.

Theorem 1: Consider n axis-aligned rectangles. They over-
lap pairwise iff their n-way set-intersection is nonempty [39].
We will say that such rectangles overlap n-way.

Thus, rather than check all subsets of overlapping bound-
ing boxes, we may search for cliques in a suitably defined
intersection graph. This graph represents bounding boxes by
vertices and connects overlapping boxes by edges.

Imai and Asano also provided an O(n log n)-time algorithm
for finding the maximum clique in intersection graphs with n

Fig. 7. Our methodology for 3-D IC integration. (a) Given a 3-D floorplan
with |L| active layers, global iterations start with the lowest layer and
perform net clustering and TSV-island insertion stepwise for all layers.
Best solutions refer to solutions where TSV islands inserted in layer li
result in smallest estimated wirelength. Clustering-grid tiles are resized in
iterations, as explained in Section V-B. Assuming successful execution of
TSV-island insertion on each layer, our techniques provide a 3-D floorplan
with suitably placed TSV islands. (b) First, net clustering localizes global
routing demand while determining cluster regions, described by intersections
of net bounding boxes. Second, TSV-island insertion into cluster regions is
iteratively attempted, based on dynamic scores, available TSV-island types,
and deadspace.

vertices, in spite of the fact that this problem is NP-hard for
general graphs [40].

Theorem 2: Consider n axis-aligned rectangles where at
least two rectangles do not overlap. A largest k-element subset
of rectangles that overlap k-way can be found in O(n log n)
time [39].

In our context, however, determining a single (maximum)
clique is insufficient. In general, such large cliques may exceed
the capacity of the largest available TSV island. Several
TSV islands can be combined to implement such a clique,
but this increases routing congestion and mechanical stress,
and aggravates signal integrity problems [21], [22]. Another

234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 8. Grid structures. (a) Uniform clustering grid G on the virtual die.
According to projected bounding boxes, we link nets to covered tiles. The
intersection of boxes must be explicitly checked during clustering. In tile
(1, 2), e.g., net bounding boxes bbn1 , bbn3 and bbn3 , bbn4 do not overlap
pairwise, but all four nets are linked to the tile. (b) In order to determine
deadspace, a nonuniform grid D (and G only for illustration purpose) is
constructed on the active layer. The per-tile ratio of deadspace is determined,
as denoted in the last row. Deadspace is then annotated on each tile of G.

problem with using large cliques is that corresponding (small)
intersections of net bounding boxes may not include any
deadspace, preventing the insertion of a TSV island. On the
other hand, a smaller clique would imply fewer bounding
boxes and a larger intersection that is more likely to admit
TSV-island insertion. Thus, we seek to partition the edges in
the intersection graph into a small set of cliques, which is the
NP-complete clique cover problem [41]. Our algorithm, based
on sophisticated analysis of bounding boxes, is presented next.

B. Net Clustering

The following algorithm is performed for subsets
{li, . . . , l|L|} of active layers, where li denotes the lower layer.
In order to identify clusters (cliques) of appropriate size, a
uniform clustering grid G is constructed on the virtual die
[Fig. 8(a)]. A clustering grid links each net n to each tile
� ∈ G covered by its net bounding box bbn, and thus results in
size-limited (appropriate) clusters. Nets connecting blocks on
li to blocks on layers li+1, . . . , l|L| have to be considered. In this
context, nets spanning three or more layers have to be adapted
for following global iterations [Fig. 7(a)], as explained for
TSV-island insertion (Section V-C). To calculate the amount
of deadspace on li, a nonuniform grid D is constructed. Grid
lines are drawn through the four edges of each block. Grid
tiles not covered by blocks define deadspace. For m blocks
overlapping with a particular tile �, deadspace detection runs
in O(m2) time [11], which is not prohibitively expensive
because typically m < 50. In the uniform grid G, tiles with
insufficient deadspace (< �d

min) are marked as obstructed.
For the uniform grid G, grid-tile size f influences per-

tile net count. For example, quartering f in Fig. 8(a) would
decrease the maximum per-tile net count from four to two.
Having fewer nets per tile reduces the cluster size, increasing
chances of TSV-island insertion. Therefore, we wrap our
methodology into an outer loop [Fig. 7(a)], which iteratively
decreases f from an upper bound fmax to a lower bound
fmin (Table I). Afterward, the valid solution providing smallest
estimated wirelength is chosen. The impact of grid-tile size on
wirelength and success rate is discussed in Section VI-A.

Our clustering algorithm is illustrated in Fig. 9 (see also
Fig. 7). In Phase 1, the virtual die and grid structures are

Fig. 9. Our net clustering algorithm. Input data are described in Section IV.

constructed. Then, each net is linked to each grid tile within
the net’s projected bounding box [Fig. 8(a)]. In Phase 2, for
each unobstructed grid tile the largest cluster is determined
in procedure DETERMINE− CLUSTER—each linked net is
considered as long as the resulting intersection of bounding
boxes is nonempty.3 Moreover, we impose a lower bound
�min on the overlap area between the intersection and tiles,
in order to assure the intersection is covering the unobstructed
tile to some minimal degree and to maintain a minimal
cluster size. An upper bound Onets of nets assigned to each
cluster c must not be exceeded. Each net n can be associated
with at most Olink clusters. We note that intersections in
general can overlap more than one tile, depending on the
bounding boxes. Therefore, we allow cluster regions to be
extended within procedure UPDATE−CLUSTER−REGION
in cases where clusters are spread across several tiles.
Next, we attempt to cluster yet-unclustered nets in proce-
dure DETERMINE−FURTHER−CLUSTER. Nets are consid-
ered for clustering independent of related tiles, thus several
combinations of nets are considered. Besides that, cluster-
ing is performed as described for procedure DETERMINE−
CLUSTER. Since this step allows one-net clusters, all nets

3 For example, consider the second row from top of the clustering grid in
Fig. 8(a). Note that tiles (0, 2) and (3, 2) are not used for cluster determination,
since they are obstructed [Fig. 8(b)]. Clustering for tile (1, 2) results in c1 with
c1.nets = {n1, n2, n4}, and for tile (2, 2) in c2 with c2.nets = {n2, n4}.

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 235

Fig. 10. Our TSV-island insertion algorithm. Input data are described in
Section IV.

are guaranteed to be clustered afterward. In Phase 3, available
deadspace is determined for each cluster region. It is summed
up over available deadspace of related grid tiles while consid-
ering the particular intersection of the cluster region and tile.

C. TSV-Island Insertion

After running our net clustering algorithm, we now select
cluster regions where TSV islands can be inserted in active
layer li. Not all clusters need to have TSV islands inserted
to allow routing all nets through TSVs—according to the
bound Olink, each net may be associated with several clusters.
Depending on the order of selecting clusters for TSV-island
insertion, some clusters may become infeasible as island sites;
deadspace accounted for a particular cluster may be shared
with another cluster. Furthermore, clusters containing nets
linked to obstructed tiles need to consider nearby deadspace.
Both may result in TSV islands blocking each other.

Our TSV-island insertion algorithm (Fig. 10, see also Fig. 7)
thus accounts for deadspace while iteratively assigning nets to
clusters and inserting TSV islands. In the following discussion,
we refer to nets assigned to a (inserted) TSV island as inserted
nets, and to nets assigned to a (associated) cluster as assigned
nets. In Phase 4, our algorithm sorts all nets by their total
deadspace of associated clusters. Nets associated with clusters
with little available deadspace are considered first, since corre-
sponding TSV islands are difficult to insert. In Phase 5, associ-
ated clusters of each unassigned net are analyzed (Fig. 11). The
highest-scored cluster with respect to a dynamic cluster score
ϒ(c) = c.deadspace÷|c.assigned nets| (deadspace of cluster
region divided by number of nets to be assigned) is chosen.
Calculation of ϒ for each cluster is performed dynamically
within procedure FIND−HIGHEST−SCORED−CLUSTER. In
order to facilitate TSV-island insertion, the cluster to be
chosen must provide a minimal amount of deadspace nd

min for
each net to be assigned to it. Then, each (unassigned) net

Fig. 11. Net assignment and cluster selection (refer to Fig. 8 for correspond-
ing grid structures). In Phase 5, nets are assigned to clusters according to a
score ϒ(c). Not that there is no feasible cluster available for n3, thus its
bounding box defines a new cluster c6. In Phase 6, TSV-island insertion is
attempted using (sorted) clusters c2, c6, and c4.

associated with the highest-scored cluster is assigned to this
cluster, since it is most suitable for TSV-island insertion. Nets
remaining unassigned after cluster analysis are assigned to
one-net clusters, where the cluster region is defined by the net’s
bounding box. In Phase 6, TSV-island insertion for a largest
cluster (in terms of ϒ(c)−1 = |c.assigned nets|÷c.deadspace)
is iteratively attempted—TSV-island insertion for clusters with
many assigned nets and little available deadspace is difficult,
thus these clusters are considered first. The procedure stops
after inserting a TSV island for one largest cluster. Within
the procedure, a local search over the cluster regions iden-
tifies contiguous regions with appropriate shapes. Therefore,
the search aims to determine regions where a TSV island
with sufficient capacity to connect all assigned nets can be
inserted. Initially, deadspace is considered only within the
cluster regions. If no contiguous regions of deadspace can
be found, a second iteration expands the cluster regions by
factors cx

ext, c
y
ext (in terms of die dimensions) to widen the

search. If no contiguous regions are found again for any
cluster, iterative block shifting can be performed to increase
deadspace (Section V-D). Therefore, the cluster providing
maximal amount of deadspace is chosen first to minimize the
total amount of shifting. After successful TSV-island insertion,
inserted nets are marked as handled, and all noninserted nets
are unassigned from remaining clusters—according to ϒ, each
noninserted net may be assigned to different clusters now.
Furthermore, inserted nets connecting blocks on layer li to
blocks on layers li+2, . . . , l|L| (spanning three or more layers)
have to be adapted. The center of each related TSV island
defines a virtual net pin, which is considered as respective net
pin for following net-clustering iterations. Iterations continue
with Phase 5 until all nets are inserted.

D. Deadspace Insertion and Redistribution

TSV-island insertion can fail because deadspace is unavail-
able where it is needed. To address these failures, we propose
techniques to insert and redistribute deadspace.

236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 12. Deadspace-channel insertion. TSV island are illustrated as brown,
dashed boxes containing TSVs (solid, red boxes). Related landing pads are
illustrated as dashed, red boxes. (a) Some floorplans exhibit only narrow
channels between blocks. This obstructs insertion of buffers, glue logic,
and TSV islands. (b) Inserting channels between blocks provides needed
deadspace at the cost of larger chip area.

Fig. 13. Block shifting. (a) A given 3-D chip layout may provide sufficient,
but inappropriately distributed deadspace. (b) Shifting blocks within the layout
outline facilitates TSV-island insertion.

1) Deadspace-channel insertion provides regions to insert
TSV islands (in case of too compact floorplans) and may
facilitate routing (Fig. 12).

2) Block shifting allows to redistribute available deadspace
to facilitate TSV-island insertion (Fig. 13).

Deadspace-channel insertion is often applied in industrial
chip designs to facilitate routing, enable placement of buffers
and glue logic, and increase flexibility of TSV-island insertion.
However, this is less appropriate for compact floorplans.

Block shifting, on the other hand, facilitates compact floor-
plans (floorplan outlines are maintained) and TSV-island inser-
tion. This approach is more complex, and success in gaining
a sufficient amount of continuous deadspace is dependent on
the actual floorplan. We develop two block-shifting techniques
that rely on similar baseline algorithms: 1) initial shifting, and
2) iterative shifting (Fig. 14). Initial shifting performs block
shifting once before our methodology is applied, as explained
later on. Iterative shifting is performed during TSV-island
insertion (INSERT−TSV−ISLAND, Fig. 10) when necessary.

Our algorithm for block shifting is based on the concept
of spatial slack in floorplanning [42] and performs analysis
of cluster regions. Slacks (for x-dimension and y-dimension)
describe maximal possible displacement of a block within the
floorplan outline. When blocks do not overlap, slacks are ≥ 0.
We determine slacks for each layer separately and use standard
linear-time traversals of floorplan constraint graphs [43], not
unlike those in static timing analysis [44]. Floorplan modifica-
tions based on constraint graphs are discussed in detail in [45].

Fig. 14. Proposed flow for block shifting.

Fig. 15. Slack-based block shifting. (a) Connecting pins p1, p2, and p3 to an
adjacent layer (not illustrated) requires another TSV island. Related x-slacks
are determined (labeled as xn). (b) Slacks are then annotated on the constraint
graphs (only the relevant part of the horizontal constraint graph is illustrated).
(c) Cluster c (corners are pointed to) contains the deadspace region Rd (white
dots); its area is too small for a TSV island. (d) Based on available slacks,
block b1 is shifted to resize Rd such that TSV-island insertion can succeed.

To calculate x-slacks, we: 1) pack blocks to the left boundary,
and, independently, 2) pack blocks to the right boundary, both
are invoked when dealing with constraint graphs. The x-slack
for each block is computed as the difference of the block’s
x-coordinates in these two packings. The y-slack is calculated
in the same way. Note that previously placed TSV islands are
considered fixed obstacles. Allowing for TSV-island shifting
might significantly increase wirelength, since our proposed
TSV-island insertion aims for minimal wirelength.

An example for slack-based block shifting is given in
Fig. 15. First, we determine slacks [Fig. 15(a)] and annotate
them on the constraint graphs [Fig. 15(b)]. For iterative
shifting, we determine the largest (rectangular) region Rd

of deadspace for the cluster of interest [Fig. 15(c)]. If no

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 237

deadspace is found, we nominally consider the center of the
cluster region as Rd . We then seek to consolidate additional
deadspace around Rd by shifting away the blocks adjacent
to Rd [Fig. 15(d)]. The distance by which each block is
shifted cannot exceed its slack in the respective direction.
Furthermore, the sum of such displacements in each direction
cannot exceed the floorplan slack (the largest slack of any
one block). Shifting a block may require shifting its abutting
neighbors and other blocks. To this end, we maintain the floor-
plan configuration using constraint graphs. If Rd cannot be
increased sufficiently, we choose another region of deadspace
within the cluster region.

For initial shifting, we independently determine available
slacks of blocks on all active layers and shift blocks such
that they are centered according to slacks. This may facilitate
TSV-island insertion around blocks since they are likely to be
distributed toward the center of the die afterward, resulting
in deadspace around them. Initial shifting is performed once
before applying our methodology.

VI. Empirical Validation

We obtain 3-D floorplans by running state-of-the-art soft-
ware [7]4 and configure the software to allow 10% deadspace
on each active layer. We construct two sets of rectangular
TSV islands, each containing via-first TSVs with footprints of
100 μm2 and 50 μm2, respectively. Each set contains islands
with capacities for 1–30 nets while providing one redundant
TSV, which is sufficient for practical TSV-failure rates [13]. Is-
lands are designed by packing single TSVs in all possible con-
figurations resulting in rectangular blocks. Packing accounts
for practical spacing between adjacent TSVs of 10 μm [19].
This facilitates manufacturing, the use of keep-out-zones and
landing pads, and limits coupling between TSVs [46].

We implemented our algorithms using C++/STL, compiled
them with g++ 4.4.3, and ran on a 32-bit Linux system with
a 2.4 GHz AMD Opteron processor (using one processing
unit) and 4 GB RAM. We configure parameters discussed
in Section V according to Table I. We initially set cx

ext =
c
y
ext = 10%. In cases where our algorithm terminates with

no solution, we increase the value of both variables by 10%,
and repeat the experiment until we obtain a valid solution or
reach the maximum value of 50%. Table II reports results on
representative GSRC benchmarks. As indicated in previous
work [14], these benchmarks contain artificial, small blocks.
To address this issue without modifying the floorplanner,
every block was inflated by five times before floorplanning.
After subsequently applying our methodology, active layers are
contracted to the original size again to facilitate comparison
with similar work. Thus, footprints of considered TSVs are
implicitly shrunk to 4 μm2 and 2 μm2, respectively, in the
contracted, final layouts. The benchmarks do not provide pin
offsets, therefore we assume net bounding boxes to be defined
by the bounding boxes of incident blocks. Since the used
floorplanning software does not allow to account for I/O pins,
nets connecting to such pins are not included in wirelength

4We thank the authors of [7] and Y. Chen for sharing their infrastructure
for 3-D floorplanning.

TABLE I

Parameters for Net Clustering and TSV-Island Insertion

Algorithms, Along with Their Values

Metric Meaning Value
�min Min overlap area between cluster region 25%

and grid tile (tile size)
�d

min Min deadspace per clustering-grid tile 70%
(tile size)

Onets Max nets per cluster 30
Olink Max clusters per net 5
nd

min Min deadspace per net in a cluster 110%
(TSV footprint and keep-out zone)

cx
ext, c

y
ext Extension of cluster region to search variable

for nearby deadspace (die dimensions) (10–50%)
fmax Max clustering-tile size 15
fmin Min clustering-tile size 5

Fig. 16. Estimated wirelength (BB-2D3D-HPWL) over grid-tile size for
L2Di integration of two dies. Results are obtained using initial shifting to
redistribute deadspace. Note that intralayer nets are not considered.

estimates. We consider intralayer nets by summing up the
HPWL of their bounding box and include them in wire-
length estimates. Since we do not perform net assignment to
particular TSVs within islands, reported wirelength estimates
consider the center of TSV islands to determine bounding
boxes (resulting in pessimistic wirelength estimates). We also
report runtime for our algorithms and methodology (summed
up for global iterations), values for cx

ext and c
y
ext, TSV count,

and the area of the final layouts (defined as the product of the
maximal height and maximal width over all active layers).

We consider two design configurations; one with guaranteed
channels, one without channels. To insert channels between the
blocks without modifying the floorplanner, every block was
inflated (block dimensions by 5%) before floorplanning and
contracted to the original size after floorplanning. However,
this increases floorplan size (by 10.25%). An alternative is to
pack blocks without channels, but carefully redistribute dead-
space to facilitate TSV-island insertion. While more complex,
this approach produces much more compact floorplans.

A. Impact of Grid-Tile Size

As mentioned in Section V-B, our methodology is wrapped
into a loop which iteratively decreases the grid-tile size f from
an upper bound fmax to a lower bound fmin (Table I). Fig. 16
indicates that the density of valid solutions may increase with

238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

TABLE II

L2Di Integration

Deadspace Redistributing Deadspace by
Dies and TSV Metrics Deadspace-Channel Insertion Initial Block Shifting Iterative Block Shifting

Footprint n100 n200 n300 n100 n200 n300 n100 n200 n300

10% BB-2D3D-HPWL 130 825 302 344 446 973 131 589 540 324‡ 414 126 149 473† 482 071‡ 530 096†

2 μm2 TSVs 378 888 1162 420 941 1285 399 985 1294
Runtime (s) 19.22 173.97 471.26 76.69 4075.93 1219.95 118.49 794.63 2689.91

10% BB-2D3D-HPWL 133 085 345 474 455 082 143 039 543 962‡ 442 638 151 272† 487 974‡ 740 244‡

2 4 μm2 TSVs 378 895 1154 422 943 1233 402 945 1209
Runtime (s) 19.78 295.22 503.46 86.627 4698.35 1346.74 124.73 2030.43 1835.08

Avg BB-2D3D-HPWL 131 955 323 909 451 028 137 314 542 143 428 382 150 373 485 023 635 170
Normalized avg BB-2D3D-HPWL 0.961 0.597 1.053 1 1 1 1.095 0.895 1.483

Area (mm2) 0.1326 0.1301 0.2203 0.1203 0.1180 0.1998 0.1203 0.1180 0.1998
10% BB-2D3D-HPWL 125 263 254 756 349 766 107 556 260 285 329 024 134 568 297 761 354 223

2 μm2 TSVs 534 1034 1480 541 1094 1467 582 1081 1519
Runtime (s) 123.21 628.22 2124.44 222.39 2216.5 3268.41 146.05 701.43 1619.91

10% BB-2D3D-HPWL 130 358 288 970 361 890 116 611 422 582‡ 381 228 140 626 320 208 409 382
3 4 μm2 TSVs 539 1038 1425 568 3809 1455 573 1055 1485

Runtime (s) 126.37 1167.69 2166.21 172.13 3404.6 2977.85 144.91 518.07 1612.56
Avg BB-2D3D-HPWL 127 811 271 863 355 828 112 084 341 434 355 126 137 597 308 985 381 803

Normalized avg BB-2D3D-HPWL 1.140 0.796 1.002 1 1 1 1.228 0.905 1.075

Area (mm2) 0.1036 0.0979 0.1408 0.0939 0.0888 0.1277 0.0939 0.0888 0.1277
10% BB-2D3D-HPWL 113 884 235 542 312 764 112 720 245 816 313 033 136 135 270 877 329 745

2 μm2 TSVs 654 1182 1597 696 1281 1700 698 1246 1758
Runtime (s) 141.22 670.97 1590.08 269.25 1608.07 1295.67 181.35 593.72 1458.01

10% BB-2D3D-HPWL 116 956 407 526‡ 341 536 130 925 273 112 366 571 147 328 369 895‡ 376 833
4 4 μm2 TSVs 652 2257 1569 705 1252 1659 719 2018 1710

Runtime (s) 147.2 1346.6 2316.36 383.66 2692.46 1576.98 154.36 1992.46 1415.2
Avg BB-2D3D-HPWL 115 420 321 534 327 150 121 823 259 464 344 933 141 732 320 386 353 289

Normalized avg BB-2D3D-HPWL 0.947 1.239 0.948 1 1 1 1.163 1.235 1.024

Area (mm2) 0.0653 0.0741 0.1177 0.0593 0.0673 0.1068 0.0593 0.0673 0.1068

Values for cx
ext and c

y
ext are 10% unless otherwise noted († for 20% and ‡ for 50%).

decreasing grid-tile size. Small tiles limit the per-tile net count,
thus also limiting the cluster size. In practice, smaller tiles
lead to fewer nets being assigned per cluster, larger cluster
regions, and easier TSV-island insertion. This also reduces
wirelength, as expected. However, there is a lower bound for
these relations. Very small tiles result in many clusters with
few assigned nets, thus many small TSV islands might be
inserted. Since placed TSV islands are fixed obstacles, this
may complicate iterative block shifting. Also, our local search
over cluster regions identifies contiguous deadspace for TSV-
island insertion greedily. Therefore, determining appropriate
regions for clusters considered late during TSV-island insertion
is more likely to fail; there are already many TSV islands
spread out within deadspace regions.

After confirming these trends in different experimental
configurations, we set global iteration variables fmax = 15 and
fmin = 5.

B. Results of TSV-Island Insertion

First, we evaluate our techniques for deadspace insertion
and redistribution. Recall that deadspace-channel insertion
increases floorplan’s deadspace by inflating blocks (and con-
tracting after floorplanning), which simultaneously increases
floorplan area by 10.25%. In contrast, block shifting retains
the floorplan’s outline. Comparing wirelength estimates in Ta-
ble II, we observe that deadspace-channel insertion on average
is superior to iterative shifting, but inferior to initial shifting.
On average, iterative shifting results in larger wirelength

TABLE III

L2Di Integration for Three Dies Using Only Square TSV Islands

Deadspace and
TSV Footprint Metric n100 n200 n300

10% BB-2D3D-HPWL 114 795 Fail 413 472
2 μm2 Normalized 1.067 – 1.257

10% BB-2D3D-HPWL 151 528 Fail Fail
4 μm2 Normalized 1.157 – –

Initial block shifting is used to redistribute deadspace. Values are
normalized to Table II.

compared to initial shifting. During TSV-island insertion,
previously placed islands represent fixed obstacles. Thus, the
success of iterative shifting is undermined by decreased slacks
compared to initial shifting. We therefore prefer initial block
shifting for L2Di integration.

Second, we analyze the impact of die count. We observe
that wirelength estimates decrease on average for increasing
die count. As expected, TSV counts increase on average.

Third, we analyze the impact of available TSV-island
types, considering their capacity and dimensions. As expected,
smaller TSVs simplify TSV-island insertion (Table II). Shape-
flexible TSV islands increase chances for successful TSV-
island insertion significantly; one particular setup using only
square TSV islands is illustrated in Table III.

Fourth, we evaluate the overhead of TSV islands. Islands
with more than a single TSV require larger continuous
deadspace. On the other hand, the intersection of several

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 239

Fig. 17. L2Di integration of the GSRC benchmark n200. TSV footprints
are 4 μm2, and initial shifting is used to redistribute deadspace. TSV islands
are shown as red dots. To enhance clarity, landing pads (red dots) are only
illustrated on the uppermost layer.

TABLE IV

L2Di Integration for Four Dies Using ‘‘Trivial’’ TSV Islands

(Single TSVs), Resulting in L2D Integration

Deadspace and
TSV Footprint Metric n100 n200 n300

10% BB-2D3D-HPWL 110 047 223 880 277 914
2 μm2 Normalized 0.976 0.911 0.888

10% BB-2D3D-HPWL 119 145 243 076 323 556
4 μm2 Normalized 0.91 0.89 0.882

Initial block shifting is used to redistribute deadspace. Values are
normalized to Table II.

net bounding boxes may be small in practice, depending
upon net selection. However, our methodology accounts for
sufficient deadspace while determining clusters and assigning
nets to clusters in order to facilitate TSV-island insertion.
Still, deadspace may be obstructed by iteratively placed TSV
islands, which cannot be accounted for during net clustering.
Therefore, using TSV islands may entail additional overhead
in terms of increased wirelength. Table IV reports wirelength
estimates for L2Di integration using trivial TSV islands (single
TSVs) for a particular configuration. Here, we do not account

for the possibly increased footprint of single TSVs (due to
increased keep-out-zones in comparison to packed TSV arrays)
and the loss of redundancy offered by TSV islands containing
one spare TSV. These estimates are at least 91% (on average)
of those in earlier experiments (Table II). Other configurations
produced similar results. We conclude that the overhead of
TSV islands is moderate and can be tolerated given their
benefits (Section III-A).

Fifth, Fig. 17 illustrates an example of successful L2Di
integration for the benchmark n200 using four active layers.

VII. Conclusion

Our work seeks to streamline the transition from existing
practice in 2-D chip design to 3-D integration. Numerous tech-
nical challenges in this transition were pointed out in Sections I
and II, as well as by Borkar [1] (Intel) and Topaloglu [47]
(Global Foundries). TSVs tend to disrupt conventional layouts,
each impacting several dies at once. Manufacturing of 3-D-
enabled dies is complicated by considerations of yield for
TSVs and thinned dies, as well as cost-effective testing.
EDA tools need to support both 3-D path-finding efforts
and comprehensive layout optimization, in particular TSV
management. Power delivery, DFT, and reliability verification
are further challenges for tool development.

The lack of commercial 3-D EDA tools hinders a cost-
effective transition, and even when such tools become widely
available, upgrading extensive 2-D IP portfolios for 3-D in-
tegration may take years. A key insight in our paper is that
many of the benefits provided by 3-D ICs can be obtained
while reusing existing 2-D IP blocks. In fact, such reuse is
required for heterogeneous 3-D system-on-chips where circuit
modules cannot be split between memory, digital, analog,
and MEMS dies. Therefore, we analyze feasible design styles
for 3-D integration of 2-D blocks. We introduce the design
style L2Di, where TSVs can be clustered into TSV islands
rather than always placed individually. This style appears
most promising and least risky for 3-D IC design in the next
5–8 years.

To enable the L2Di style, we draw on graph-theoretical
results to contribute novel techniques for net clustering and
TSV-island insertion. We also develop techniques to insert
and redistribute deadspace. Experiments validate the feasi-
bility and efficiency of our methodology. Typically, initial
block shifting is the most promising technique to redistribute
deadspace.

Initial experiments conducted at the outset of our research
indicated that naive algorithms for L2Di integration lead to
very high interconnect overhead. The ISPD 2011 version of
this paper reported smaller, but still significant overhead of
roughly 13–17%. However, the highly optimized techniques
developed in the course of our research reduce this overhead
down to ≈9% for block-level interconnect, making it tolerable.
Extensions of our core algorithms to 3-D ICs with more
than two active layers appear in this paper for the first time.
Compared to the entire interconnect stack, the wirelength
overhead is negligible because the majority of wires are
contained within individual blocks [30].

240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

References

[1] S. Borkar, “3D integration for energy efficient system design,” in Proc.
Des. Automat. Conf., 2011, pp. 214–219.

[2] ITRS. (2009). International Technology Roadmap for Semiconductors
[Online]. Available: http://www.itrs.net/Links/2009ITRS/Home2009.
htm

[3] Global Industry Analysts, Inc. (2010). 3D Chips (3D IC): A Global Mar-
ket Report [Online]. Available: http://www.prweb.com/releases/3D
chips/3D IC/prweb4400904.htm

[4] L. Cheng, L. Deng, and M. D. F. Wong, “Floorplanning for 3-D VLSI
design,” in Proc. Asia South Pacific Des. Automat. Conf., 2005, pp. 405–
411.

[5] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm
for 3D ICs,” in Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 306–313.

[6] J. Cong and Y. Ma, “Thermal-aware 3D floorplan,” in Integrated Circuits
and Systems. New York: Springer, 2010, ch. 4, pp. 63–102.

[7] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong, and Q.
Zhou, “3D-STAF: Scalable temperature and leakage aware floorplanning
for three-dimensional integrated circuits,” in Proc. Int. Conf. Comput.-
Aided Des., Nov. 2007, pp. 590–597.

[8] Z. Li, X. Hong, Q. Zhao, S. Zeng, J. Bian, H. Yang, and C. K.
Cheng, “Integrating dynamic thermal via planning with 3D floorplanning
algorithm,” in Proc. Int. Symp. Phys. Des., 2006, pp. 178–185.

[9] X. Li, Y. Ma, and X. Hong, “A novel thermal optimization flow using
incremental floorplanning for 3D ICs,” in Proc. Asia South Pacific Des.
Automat. Conf., 2009, pp. 347–352.

[10] P. Jain, P. Zhou, C. H. Kim, and S. S. Sapatnekar, “Thermal and power
delivery challenges in 3D ICs,” in Integrated Circuits and Systems. New
York: Springer, 2010, ch. 3, pp. 33–61.

[11] E. Wong and S. K. Lim, “Whitespace redistribution for thermal via
insertion in 3D stacked ICs,” in Proc. Int. Conf. Comput.-Aided Des.,
2007, pp. 267–272.

[12] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through-silicon-via
management during 3D physical design: When to add and how many?”
in Proc. Int. Conf. Comput.-Aided Des., 2010, pp. 387–394.

[13] A.-C. Hsieh, T.-T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng, and
H.-C. Li, “TSV redundancy: Architecture and design issues in 3D IC,”
in Proc. Des. Automat. Test Eur., 2010, pp. 166–171.

[14] M.-C. Tsai, T.-C. Wang, and T. T. Hwang, “Through-silicon via planning
in 3-D floorplanning,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 19, no. 8, pp. 1448–1457, Aug. 2011.

[15] Y.-J. Lee, M. Healy, and S. K. Lim, “Co-design of reliable signal and
power interconnects in 3D stacked ICs,” in Proc. Int. Interconn. Technol.
Conf., 2009, pp. 56–58.

[16] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-
silicon-via impact on the 3D stacked IC layout,” in Proc. Int. Conf.
Comput.-Aided Des., 2009, pp. 674–680.

[17] Y.-J. Lee, R. Goel, and S. K. Lim, “Multi-functional interconnect co-
optimization for fast and reliable 3D stacked ICs,” in Proc. Int. Conf.
Comput.-Aided Des., 2009, pp. 645–651.

[18] A. K. Coskun, A. B. Kahng, and T. S. Rosing, “Temperature- and cost-
aware design of 3D multiprocessor architectures,” in Proc. Euromicro
Conf. Digit. Syst. Des., 2009, pp. 183–190.

[19] M. Jung, J. Mitra, D. Z. Pan, and S. K. Lim, “TSV stress-aware full-
chip mechanical reliability analysis andoptimization for 3D IC,” in Proc.
Des. Automat. Conf., Jun. 2011, pp. 188–193.

[20] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead
fault tolerance scheme for TSV-based 3D network on chip links,” in
Proc. Int. Conf. Comput.-Aided Des., Nov. 2008, pp. 598–602.

[21] J.-S. Yang, K. Athikulwongse, Y.-J. Lee, S. K. Lim, and D. Z. Pan,
“TSV stress aware timing analysis with applications to 3D-IC layout
optimization,” in Proc. Des. Automat. Conf., Jun. 2010, pp. 803–806.

[22] S. Garg and D. Marculescu, “3D-GCP: An analytical model for the
impact of process variations on the critical path delay distribution of 3D
ICs,” in Proc. Int. Symp. Qual. Elec. Des., 2009, pp. 147–155.

[23] C. Liu, T. Song, and S. K. Lim, “Signal integrity analysis and optimiza-
tion for 3D ICs,” in Proc. Int. Symp. Qual. Elec. Des., 2011, pp. 42–49.

[24] D. H. Kim, S. Mukhopadhyay, and S. K. Lim, “Through-silicon-via
aware interconnect prediction and optimization for 3D stacked ICs,” in
Proc. Int. Workshop Syst.-Level Interconn. Pred., 2009, pp. 85–92.

[25] Z. Li, X. Hong, Q. Zhou, J. Bian, H. H. Yang, and V. Pitchumani,
“Efficient thermal-oriented 3D floorplanning and thermal via planning
for two-stacked-die integration,” ACM Trans. Des. Automat. Elec. Syst.,
vol. 11, no. 2, pp. 325–345, Apr. 2006.

[26] H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D integrated
circuits,” Des. Test Comput., vol. 26, no. 5, pp. 26–35, 2009.

[27] D. L. Lewis and H.-H. S. Lee, “Test strategies for 3D die stacked
integrated circuits,” in Proc. Workshop 3D Integr. Technol. Architecture
Des. Autom. Test in Conjunction with Des. Autom. Test Eur., Nice,
France, Apr. 2009.

[28] R. Fischbach, J. Lienig, and T. Meister, “From 3D circuit technologies
and data structures to interconnect prediction,” in Proc. Int. Workshop
Syst.-Level Interconn. Pred., 2009, pp. 77–84.

[29] V. S. Nandakumar and M. Marek-Sadowska, “Layout effects in fine-
grain 3-D integrated regular microprocessorblocks,” in Proc. Des. Au-
tomat. Conf., 2011, pp. 639–644.

[30] D. Sylvester and K. Keutzer, “A global wiring paradigm for deep
submicron design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Sys., vol. 19, no. 2, pp. 242–252, Feb. 2000.

[31] Cadence Design Systems, Inc. (2010). 3D ICs with TSVs: Design
Challenges and Requirements [Online]. Available: http://www.cadence.
com/rl/Resources/white papers/3DIC wp.pdf

[32] L. K. Scheffer, “CAD implications of new interconnect technologies,”
in Proc. Des. Automat. Conf., 2007, pp. 576–581.

[33] L. Jiang, Q. Xu, K. Chakrabarty, and T. M. Mak, “Layout-driven test-
architecture design and optimization for 3D SoCs under pre-bond test-
pin-count constraint,” in Proc. Int. Conf. Comput.-Aided Des., Nov.
2009, pp. 191–196.

[34] G. H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-
stacking technologies,” IEEE Micro, vol. 27, no. 3, pp. 31–48, May–Jun.
2007.

[35] C. Ferri, S. Reda, and R. I. Bahar, “Strategies for improving the
parametric yield and profits of 3D ICs,” in Proc. Int. Conf. Comput.-
Aided Des., 2007, pp. 220–226.

[36] M. B. Healy, K. Athikulwongse, R. Goel, M. M. Hossain, D. H. Kim,
Y.-J. Lee, D. L. Lewis, T.-W. Lin, C. Liu, M. Jung, B. Ouellette, M.
Pathak, H. Sane, G. Shen, D. H. Woo, X. Zhao, G. H. Loh, H. S. Lee,
and S. K. Lim, “Design and analysis of 3D-MAPS: A many-core 3D
processor with stacked memory,” in Proc. Custom Integr. Circuits Conf.,
Sep. 2010, pp. 1–4.

[37] K. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, and P. S. Ho, “Thermo-
mechanical reliability of 3-D ICs containing through silicon vias,” in
Proc. Electron. Compon. Technol. Conf., May 2009, pp. 630–634.

[38] X. Zhao, J. Minz, and S. K. Lim, “Low-power and reliable clock
network design for through-silicon via (TSV) based 3D ICs,” IEEE
Trans. Compon., Packag., Manuf. Technol., vol. 1, no. 2, pp. 247–259,
Feb. 2011.

[39] H. Imai and T. Asano, “Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane,”
J. Algorith., vol. 4, no. 4, pp. 310–323, 1983.

[40] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. New York: Dover, 1998.

[41] R. Fowler, “Optimal packing and covering in the plane are NP-
complete,” Inform. Process. Lett., vol. 12, no. 3, pp. 133–137, 1981.

[42] S. N. Adya and I. L. Markov, “Consistent placement of macro-blocks
using floorplanning and standard-cell placement,” in Proc. Int. Symp.
Phys. Des., 2002, pp. 12–17.

[43] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure. New York: Springer, 2011.

[44] S. S. Sapatnekar, Timing. Norwell, MA: Kluwer, 2004.
[45] M. D. Moffitt, J. A. Roy, I. L. Markov, and M. E. Pollack, “Constraint-

driven floorplan repair,” ACM Trans. Des. Automat. Electron. Syst.,
vol. 13, no. 4, pp. 1–13, 2008.

[46] D. H. Kim, S. Mukhopadhyay, and S. K. Lim, “TSV-aware interconnect
length and power prediction for 3D stacked ICs,” in Proc. Int. Interconn.
Technol. Conf., 2009, pp. 26–28.

[47] R. Topaloglu, “Applications driving 3-D integration and correspond-
ing manufacturingchallenges,” in Proc. Des. Automat. Conf., 2011,
pp. 214–219.

Johann Knechtel (S’11) received the M.S.
(Diploma) degree in information systems engineer-
ing from the Dresden University of Technology,
Dresden, Germany, in 2010. Currently, he is pursu-
ing the Ph.D. degree from the Institute of Electrome-
chanical and Electronic Design, Dresden University
of Technology.

In 2010, he was a Visiting Research Student with
the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor.
His current research interests include very large-

scale integrated physical design automation with emphasis on 3-D integration.

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 241

Mr. Knechtel received a scholarship from the German Academic Exchange
Service in 2010. He is a fellow and a Ph.D. Scholarship Holder of the research
group Nano and Biotechnologies for Packaging of Electronic Systems, funded
by the German Research Foundation.

Igor L. Markov (S’97–M’01–SM’05) received the
Ph.D. degree in computer science from the Univer-
sity of California at Los Angeles, Los Angeles.

Currently, he is an Associate Professor of electrical
engineering and computer science at the University
of Michigan, Ann Arbor. He has co-authored three
books and more than 180 refereed publications.
His current research interests include computers that
make computers.

Prof. Markov was the recipient of a DAC Fel-
lowship, an ACM SIGDA Outstanding New Faculty

Award, an NSF CAREER Award, an IBM Partnership Award, a Microsoft
A. Richard Newton Breakthrough Research Award, and the inaugural IEEE
CEDA Early Career Award. Some of his publications have received the Best
Paper Awards at the Design Automation and Test in Europe (DATE), the
International Symposium on Physical Design, and the IEEE Transactions
on Computer-Aided Design conferences. In the 2011 redesign of the ACM
Computing Classification System, he led the effort on the hardware tree. He
is an Executive Board Member of ACM SIGDA. He is an Editorial Board
Member of the Communications of ACM and IEEE Design and Test, as
well as several ACM and IEEE transactions. He has chaired tracks at DAC,
ICCAD, ICCD, DATE, and GLSVLSI.

Jens Lienig (M’97–SM’10) received the M.S.
(Diploma), Ph.D. (Dr.-Ing.), and Habilitation degrees
in electrical engineering from the Dresden Univer-
sity of Technology, Dresden, Germany, in 1988,
1991, and 1996, respectively.

He is currently a Full Professor of electrical en-
gineering at the Dresden University of Technology,
where he is also the Director of the Institute of Elec-
tromechanical and Electronic Design. From 1999 to
2002, he was a Tool Manager with Robert Bosch
GmbH, Reutlingen, Germany. From 1996 to 1999,

he was with Tanner Research, Inc., Pasadena, CA. From 1994 to 1996,
he was a Visiting Assistant Professor with the Department of Computer
Science, University of Virginia, Charlottesville. From 1991 to 1994, he was a
Post-Doctoral Fellow with Concordia University, Montréal, QC, Canada. His
current research interests include physical design automation of very large-
scale integrated circuits, multichip modules, and printed circuit boards, with
a special emphasis on electromigration avoidance in physical design, 3-D
design, and constraint-driven design methodologies.

Prof. Lienig has served on the Technical Program Committee of the DATE,
SLIP, and ISPD conferences.

