
1808 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Planning Massive Interconnects in 3-D Chips
Johann Knechtel, Member, IEEE, Evangeline F. Y. Young, Member, IEEE, and Jens Lienig, Senior Member, IEEE

Abstract—3-D chips rely on massive interconnect structures,
i.e., large groups of through-silicon vias coalesced with large
multibit buses. We observe that wirelength optimization, a clas-
sical technique for floorplanning, is not effective while planning
massive interconnects. This is due to the interconnects’ strong
impact on multiple design criteria like wirelength, routability,
and temperature. To facilitate early design progress of massively-
interconnected 3-D chips, we propose a novel 3-D-floorplanning
methodology which accounts for different types of intercon-
nects in a unified manner. One key idea is to align cores/blocks
simultaneously within and across dies, thus increasing the
likelihood of successfully implementing complex and massive
interconnects. While planning such interconnects, we also target
fast, yet accurate, thermal management, routability, and fixed-
outline floorplanning. Experimental results on Gigascale Systems
Research Center and IBM-HB+ circuits demonstrate our tool’s
capabilities for both planning massive 3-D interconnects and for
multiobjective 3-D floorplanning in general.

Index Terms—3-D integration, block alignment, bus planning,
floorplanning, massive interconnects, thermal management.

I. INTRODUCTION

THE 3-D stacking and die bonding, to obtain 3-D chips,
is a promising and critical approach for meeting current

and future design criteria, such as performance, functional-
ity, delay, and power consumption. Through-silicon via (TSV),
i.e., metal structures that pass vertically through whole dies,
are short, low-power interconnects; they are key enablers for
high-performance 3-D chips, also known as 3-D integrated
circuit (3-D IC).

Massive interconnect structures for 3-D chips have
been proposed to increase communication capabilities for
large-scale 3-D logic integration [1]–[3] and 3-D memory
integration [4], [5]. More generally, we consider any multi-
bit bus that runs within a single die or passes between

Manuscript received October 22, 2014; revised February 23, 2015; accepted
April 9, 2015. Date of publication May 12, 2015; date of current version
October 16, 2015. This work was supported in part by the grant from the
German Research Foundation under Project 1401/1, in part by the grant from
the Graduate Academy, Dresden University of Technology, Germany, and in
part by the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Project CUHK418611. This paper was recommended
by Associate Editor S. K. Lim.

J. Knechtel was with the Institute of Electromechanical and Electronic
Design, Dresden University of Technology, Dresden 01069, Germany. He is
now with the Institute Center for Microsystems, Masdar Institute of Science
and Technology, Abu Dhabi, UAE (e-mail: jknechtel@masdar.ac.ae).

E. F. Y. Young is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
fyyoung@cse.cuhk.edu.hk).

J. Lienig is with the Institute of Electromechanical and Electronic
Design, Dresden University of Technology, Dresden 01069, Germany (e-mail:
jens@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2432141

Fig. 1. Two macroblocks on adjacent dies, derived from [11]. Their massive
vertical buses require the macros to be aligned so that routing paths are short
and can be optimized for delay and power consumption.

multiple dies—in the latter case with additional deployment
of large groups of TSVs—a massive interconnect structure in
this paper.

In this context, the well-known bus-planning approach, i.e.,
grouping a large set of signals into adjacent wires, can be
applied to 3-D-chip design as well. The concept of block
alignment has been successfully applied in 2-D layout rep-
resentations for bus planning [6], [7], but it has been largely
neglected in 3-D representations. Some studies related to
3-D design [8]–[10] deploy fixed alignment, i.e., blocks are
aligned so that their relative positions exhibit specific dis-
tances. However, planning for vertical buses is only touched
in [9]. To the best of our knowledge, none of the studies
heretofore consider alignment ranges where blocks are aligned
so that their relative positions comply with upper and/or lower
distance boundaries. Thus, flexible block alignment has not
been deployed yet.

A key observation in this paper is that flexible block
alignment—along with “classical” fixed alignment—enables
efficient and effective planning of massive 3-D intercon-
nects (Figs. 1 and 2). The resulting improvements, which we
describe in this paper, stem from the simple fact that we can
shorten and optimize wiring paths if the blocks to be intercon-
nected are appropriately aligned and placed near each other in
early design stages.

In this paper, we propose a new methodology for planning
massive interconnect structures earlier in the design stages for
3-D chips. We summarize our contributions as follows.

1) A 3-D floorplanning methodology that emphasizes plan-
ning massive interconnect structures using block align-
ment is at the heart of this paper. We have made this
methodology available as an open-source 3-D floorplan-
ning tool [12]. Besides planning massive interconnects,
the tool encompasses the following design objectives: a)
optimized clustering of regular signal TSVs into massive
interconnects; b) floorplanning within fixed outlines;

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1809

Fig. 2. Massive interconnect structures and associated block alignment
in a 3-D IC. (A) Vertical buses connect blocks placed onto adjacent dies.
(B) TSV stacks, comprising aligned bundles of TSVs, pass through two or
more dies. Both (A) and (B) rely on interdie alignment. Regular 2-D buses
with (C) fixed or (D) flexible pins connect blocks within dies.

c) fast thermal management; d) layout packing; and
e) wirelength and routability optimization.

2) We provide a new layout representation by extending
the corner block list (CBL) [13] with a novel block-
alignment concept. This concept allows us to simulta-
neously encode fixed alignments and alignment ranges,
and to align blocks across dies (interdie alignment) and
within dies (intradie alignment).

3) We introduce algorithms for efficient 3-D layout gen-
eration, i.e., block placement and alignment as well as
inherent layout packing.

4) We link the planning of massive interconnects with
thermal management. Specifically, the thermal impact
of TSVs is considered by our fast thermal-analysis
approach which extends power blurring [14]. In addition,
clustering regular signal TSVs into massive intercon-
nects is thermally-aware, that is, it notably reduces
maximum temperatures.

This paper is organized as follows. First, we review a
range of practical types of massive interconnects in 3-D
chips in Section II. We then provide the specifics for block-
alignment encoding in Section III, and formulate our problem
in Section IV. Next, we present our floorplanning methodol-
ogy and its implementation in Section V. Experimental results
are discussed in Section VI. Finally, we conclude our findings
in Section VII.

II. MASSIVE INTERCONNECT STRUCTURES IN 3-D CHIPS

AND RELATED BLOCK ALIGNMENT

The vertical components of massive interconnect structures
in 3-D chips have a strong impact on design quality. Therefore,
such structures need to be considered early in the design
process, to avoid redesign iterations at later stages.

The following aspects are particularly critical for TSV-based
3-D ICs. First, TSVs introduce stress in the surrounding silicon
which affects nearby transistors [15]. However, as TSV islands
(i.e., grouped bundles of TSVs) need not include active gates,
they mitigate this negative effect. Second, TSVs occupy a
large design area. However, TSV islands can reduce area
overhead since TSVs can be packed densely within islands,

possibly reducing keep-out zones without increasing stress-
induced impact on active gates [16]. Third, compared to
spread-out single TSVs, TSV islands can more effectively
reduce maximum temperatures by improving vertical heat
conduction [17], [18].

Despite some drawbacks, such as the possibility of increased
delays and signal-integrity issues due to coupling between
TSVs [19], the benefits noted above confirm the superior-
ity of TSV islands over single TSVs. This has also been
borne out by [2], [20], and [21]. However, none of these stud-
ies proposed effective techniques for planning TSV islands
in conjunction with classical highly-parallel buses. And to
this day, no such generalized planning approach for massive
interconnect structures in 3-D chips has emerged.

A. Interconnect Types and Alignment Classification

We consider the (TSV-based) block-level design style. For
3-D integration following this style, blocks/modules are typi-
cally handled as encapsulated entities and assigned to separate
dies rather than split up among different dies. Block-level
design is reputed to be reliable and efficient, especially for
the first practical 3-D-IC applications [2], [3], [20], [21].

Block alignment in 3-D chips can be classified into: 1) inter-
die alignment, i.e., blocks placed among several dies are to
be aligned and 2) intradie alignment, i.e., blocks are to be
aligned within one die. The alignment specifics arise from dif-
ferent scenarios for 3-D integration and interconnects which
are discussed next and illustrated in Fig. 2.

Vertical buses [Fig. 2(A)] connect blocks spread among
multiple dies; in practice such interconnects are common in
3-D chips. For example, consider the two macroblocks in
Fig. 1. The tightly interconnected modules embed two ver-
tical buses, which are implemented by large groups of TSVs.1

Accounting for vertical buses during floorplanning requires
capabilities for interdie alignment for block intersection. That
is, in order to include a large number of vertical interconnects,
the related blocks must exhibit some minimal intersecting
region when considering their projection onto a 2-D plane.

It is important to note that blocks initially designed for
2-D chips may need to be adapted for such embedded verti-
cal buses. For example, hard design blocks with fixed layouts
cannot include massive vertical interconnects. Such blocks will
need to be either redesigned or encapsulated into macro blocks
with sufficient design area for integrating the interconnects.

A special case of vertical buses are aligned TSV
stacks [Fig. 2(B)], where bundled TSVs are placed such that
they pass straight through multiple dies. TSV stacks are, for
example, applied for regular 3-D network on chips, or to
limit power-supply noise and to simultaneously improve ther-
mal distribution [22]–[24]. Placement of aligned TSV stacks
requires interdie alignment with fixed, zero offsets. In other
words, TSV stacks placed among separate dies must be
arranged such that their outlines completely overlap in both
x- and y-dimension.

Fixed or flexible 2-D buses [Fig. 2(C) and (D)] are used
to connect blocks within dies. Such buses are tradition-
ally deployed to optimize datapath interconnects. Note that

1Note that our approach is not restrictive in this context, and can be applied
for different 3-D manufacturing technologies.

1810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

(a)

(b)

(c)

Fig. 3. Alignment topologies and related pairwise block relationships. The
chain (a) relates blocks in a sequential manner; the fixed reference topology
(b) defines one block as global reference (here b2); and the complete graph
(c) puts all blocks into a pairwise relationship with each other.

such structures rely on intradie alignment of related blocks.
Depending on whether blocks contain fixed pins (C) or flex-
ible pins (D), planning 2-D buses requires support for fixed
alignment or alignment ranges, i.e., alignment with fixed or
flexible offsets.

B. Multibend and Compound Interconnects

A flexible block arrangement, to enable multibend inter-
connects, is a crucial measure for massive interconnects
comprising many blocks [7]. Furthermore, the interconnect
structures introduced above are not necessarily disconnected.

Although our alignment approach (Section III) can encode
any arbitrary block arrangement, we restrict it in the following
to practical arrangements for massive interconnect structures.
Arranging blocks in a pairwise fashion is at the core of
our alignment approach. Specifically, we differentiate three
topologies: 1) chains; 2) fixed references; and 3) complete
graphs (Fig. 3).

Chains and complete graphs are deployed for vertical buses.
Chain-based alignment is more flexible; it enables lateral off-
sets of vertical-bus segments [Fig. 2(A)]. Complete graphs, in
contrast, enforce TSV-stack-like interconnects.

Both chain and fixed reference topologies are applicable to
TSV stacks. In addition, they produce comparable interconnect
structures, assuming that the TSV stack blocks are described
by fixed, zero offsets.

We implement flexible buses by selecting a fixed refer-
ence or by using a chain topology. Any straight-line and/or
cross-like interconnect structure can be deployed using a fixed
reference [Fig. 2(D′)], and any multibend interconnect struc-
ture can be created using chain topologies [Fig. 2(D)]. Thus,
this latter topology is more flexible when planning massive
buses.

Fixed buses exhibit similar structures like flexible buses, but
account for fixed block pins using fixed offsets.

Compound interconnects, i.e., multiple interconnect struc-
tures linked together, can be defined explicitly or created
implicitly. Take for example, an explicit definition of a verti-
cal bus linked to a flexible 2-D bus in Fig. 2(A) and (D′):
in this case, block alignment is needed for both intercon-
nects (b1..3 are aligned for the vertical bus and b3..6 for the
2-D bus) such that one block (here b3) is covered in both
alignments of the 2-D bus and the vertical bus. We can also
implicitly create compound interconnects by flexible alignment
encoding—which is at the heart of our methodology—such
that blocks are not restricted to particular dies. For example,
think of one block in the 2-D bus of Fig. 2(C) being placed in
another but the lowest die. This results in a compound structure

Fig. 4. Massive interconnect structures in a 3-D IC with corresponding
block-alignment encoding.

of a 2-D bus linked with a vertical bus. The notion of this
feature is similar to allowing multibend structures; massive
interconnects linking a large set of blocks may be easier to
implement when they are flexible and can employ the full
design space of the 3-D chip.

III. BLOCK-ALIGNMENT ENCODING

Each massive interconnect structure is described by a set
of block-alignment tuples {a1, . . . , am} and each tuple ak is
defined as

ak =
(
AH, wires, bi, bj, (x, ATx),

(
y, ATy

))

where AH denotes the alignment handling; wires encodes the
interconnect’s signal count; and bi and bj denote the respec-
tive blocks of the massive interconnect. Further, (x, ATx) and
(y, ATy) denote the partial alignment requests with respect to
bi’s and bj’s x- and y-coordinate. This encoding allows us to
independently and simultaneously align blocks in both x- and
y-direction. Thus, the different types of massive interconnect
structures discussed in Section II can be implemented. Further
encoding details are explained below.

A. Types of Block Alignment

The alignment handling AH can be either strict or flexible;
the former requires that requests for the x- and y-direction
are kept, while the latter allows x- and y-direction request
to be swapped. As explained below in Section III-B, flexible
handling is beneficial for planning of flexible buses.

The options for block alignment are fixed offsets (AT = 0),
minimal overlaps (AT = 1), maximum distances (AT = 2),
and don’t care (AT = −1). The meaning and application of
these types is explained next; examples are illustrated in Fig. 4.

Given a fixed offset, bj is to be placed x/y units to the
right/top (x/y ≥ 0) or to the left/bottom (x/y < 0) of bi,
respectively. Placement offsets are defined with respect to the
blocks’ lower left corners. Fixed-offset alignment is required
for restricted interconnects, e.g., when connecting blocks with
fixed pins [Fig. 4(B) and (C)].

Considering a positive minimal overlap, the projected inter-
section of blocks bi and bj must be at least x units wide
and/or y units high. The idea is to enable shortest-path inter-
connects within the blocks’ projected intersection, e.g., as
shown for a vertical bus in Fig. 4(A). Note that this type of
alignment—when defined in one dimension—is traditionally

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1811

considered for 2-D bus planning (see [25]). For convenience,
it is also deployed for 2-D buses in our methodology.

Defining a maximum distance requires that the center points
of blocks bi and bj are at most x/y units apart. This way, mas-
sive interconnects can easily be limited in their length and/or
width [Fig. 4(C) and (D)].

B. Flexible Alignment Encoding

Note that the tuples introduced above can easily be used
for both intradie or interdie alignment. In other words, our
encoding does not restrict blocks to particular dies and does
not require partitioning. As discussed, this enables flexible
implementation of compound interconnects. Such compound
structures, in turn, naturally facilitate the optimization of mas-
sive interconnects along with other design criteria during
floorplanning (Section V).

For flexible 2-D buses, we prefer flexible align-
ment handling. This enables partial alignments in the
x- and y-direction—typically minimal overlap and maximum
distance—to be swapped dynamically during floorplanning
optimization. This enables each block pair to form either a
vertical or horizontal bus segment, and the overall bus struc-
ture is predominantly multibend in nature—thus increasing the
probability of generating successful interconnects. For exam-
ple, the tuple a7 in Fig. 4 is handled dynamically so that
blocks b5 and b6 have a minimal overlap in the y-dimension
and a maximum distance in the x-dimension, contrary to the
illustrated initial encoding.

In addition, we support module preplacement. Suppose
block bj needs to be placed at fixed coordinates: this request
can be encoded as (bLL, bj, (x, 0), (y, 0)), where x and y denote
the preplacement coordinates and bLL is a dummy block
representing the 3-D ICs lower left corner.

IV. PROBLEM FORMULATION

We assume the following input for planning massive inter-
connects during floorplanning of 3-D chips.

1) Dies denoted as set D. Each die d ∈ D has a fixed and
common outline (h, w) so that every block assigned to
d can fit without incurring overlap.

2) Rectangular blocks denoted as set B. Each block b ∈ B
has dimensions (hb, wb) and fixed or flexible pins,
denoted as set Pb. Furthermore, each block is assigned
a power density bpd.

3) Netlist denoted as set N . A net n ∈ N describes a
connection between two or more pins.

4) Massive interconnect structures denoted as set MI.
Each interconnect structure mi ∈ MI contains a set
{a1, . . . , am} of block-alignment tuples.2

The objective of our methodology is similar to classical
3-D floorplanning: we seek to obtain a floorplan that opti-
mizes design criteria (e.g., thermal management) while, at the
same time, complies with constraints (e.g., fixed outlines).

2Our formulation thus relies on specific alignment and/or offset ranges. We
acknowledge that massive interconnects might be derived from a more abstract
value, e.g., the specified number of wires for a bus. However, such consider-
ations are highly technology-dependent, e.g., from minimum wire pitch and
wire widths, and thus we prefer that the designer in charge manually defines
appropriate alignment and/or offset ranges for massive interconnects.

Fig. 5. Corblivar’s core parts, embedded in an SA-based floorplanning tool.
Orchestration of block placement and alignment interacts with the SA heuristic
for layout optimization, monitors the overall layout process, and delegates to
block placement and block alignment in a synchronized manner.

In a holistic approach, we incorporate the task of planning
massive interconnects into our floorplanner’s modular concept.

V. 3-D FLOORPLANNING METHODOLOGY AND TOOL

For planning massive interconnects in 3-D chips, we
first propose the corner block list for varied alignment
requests (Corblivar), an extension of the classical CBL [13].3

Corblivar represents a 3-D IC containing n dies with an
ordered sequence {CBL1, . . . , CBLn} of CBL tuples and the
interconnects’ set MI. The key concepts of Corblivar’s layout
generation are discussed in Section V-A.

Like for any layout representation, we then embed Corblivar
in a floorplanning methodology and tool; core parts and main
features are outlined in Fig. 5. Our tool is a simulated anneal-
ing (SA)-based 3-D floorplanner, implemented in C++ and
made publicly available in [12]. Applying SA-based floorplan-
ning during initial experiments, we observed the limitations
of existing techniques with respect to solution-space explo-
ration for block alignment as well as for “classical” 3-D
floorplanning. Thus, some effective upgrades were needed;
notable features of our tool are: 1) an SA framework that
includes two global optimization stages and specific cost
models (Sections V-B and V-C); 2) clustering of regular
interconnects into massive interconnects (Section V-D); 3) an
adaptive SA optimization schedule (Section V-G); and 4) fast
yet sufficiently accurate thermal analysis (Section V-H).

A. Orchestrated Layout Generation

We extend the CBL technique [13] to simultaneously han-
dle interdie and intradie alignments, consider fixed offsets as
well as alignment ranges and efficiently pack the layout. We
implement this in an orchestrated fashion, such that a global
process: 1) generates the layout on each die; 2) keeps track
of all block-alignment requests; and 3) delegates to separate
processes for actual block placement and alignment. In the
following, we describe key elements of these processes.

3We leverage the CBL mainly for its efficiency (layout generation has a
O(n) complexity) and expandability toward a 3-D representation. For further
details, e.g., the concept of T-junctions, please refer to [13].

1812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Algorithm 1 Orchestration of Block Placement and
Alignment. The alignment stack AS memorizes alignment
requests in progress, progress pointers pi = bj denote the cur-
rently processed block bj for each die di, and a die pointer
p = di is used to keep track of the currently processed die
1: p← d1 � start without loss of generality on bottom die
2: pi ← b1
3: loop
4: bi ← pi ← p
5: if die d← p is stalled then
6: PLACE(bi)
7: mark bi in any a ∈ mi ∈MI as placed
8: mark d as not stalled
9: pi ← pi+1

10: else � d is not stalled
11: if some ak are defined for bi then
12: for all ak do � consider ak w/ placed blocks first
13: if ak in AS then
14: ALIGN(ak)
15: remove ak from AS
16: mark bi, bj in any a ∈ mi ∈MI as placed
17: mark dj = die(bj) as not stalled
18: else
19: add ak to AS
20: mark d as stalled
21: p← die(bj)
22: end if
23: end for � all ak considered
24: if d is not stalled then
25: pi ← pi+1
26: end if
27: else � no ak defined for bi
28: PLACE(bi)
29: pi ← pi+1
30: end if
31: end if � bi processed
32: if pi = end then
33: if some pj �= end then
34: p← pj
35: else
36: return done
37: end if
38: end if
39: end loop

1) Orchestration of Block Placement and Alignment: The
core concept behind CBL’s sequential layout generation is
maintained. As extension, a global orchestration process mon-
itors the layout generation on each die d and any block
alignment in progress. Details of this process are given in
Algorithm 1; the main steps are also explained next.

Whenever a block bi on d has to be aligned, we first check
whether the layout prerequisite for this particular alignment is
fulfilled. This means, we check whether the blocks preceding
bj are already placed on die d′—the die containing block bj,
which is being aligned with bi. Only then, i.e., when bj is
the “next block to be placed” on die d′, can we safely align
bi and bj. Details of Algorithm 1 are discussed next.

Initially, we check whether the associated die d is currently
marked as stalled (line 5), i.e., layout generation is halted
due to another alignment request in progress—this occurs
for intersecting requests, i.e., related blocks are arranged in
the CBL sequences so that their placement is interfering. To
resolve this, we need to unlock die d—we PLACE the cur-
rent block bi, mark related changes, and proceed with the next
block (lines 6 and 9). Otherwise (for nonstalled dies), we check
if some alignment requests ak are applying to bi (line 11). If no
ak are found, we directly PLACE bi and proceed with the next
block (lines 28–29). If some request(s) ak are defined, we need
to handle them appropriately (lines 12–23), as described next.

Fig. 6. Placement steps, to be performed for exemplary vertical insertion of
block b4 while covering two T-junctions.

For any given ak, we search the stack AS for it (line 13) and
continue accordingly.

a) If ak is found, it was previously handled while process-
ing bj, that is the block to be aligned with bi. Thus, it
is assured that preceding blocks on both related dies are
placed at this point. We can now safely ALIGN both
bi and bj, mark them as placed, and drop the request
ak (lines 14–17). Note that only in cases where all
requests for bi are handled, we proceed on the current
die d (line 25). Otherwise, we continue layout genera-
tion without loss of generality (w.l.o.g.) on bj’s die d′
(line 21).

b) If ak is not found in AS, bj was not processed yet. We
then memorize ak as in progress, halt layout generation
on d, and continue on d′ (lines 19–21).

Finally, if layout generation is done on d, we proceed on
yet unfinished dies until the whole 3-D layout is generated
(lines 32–38).

Note that deadlock situations, i.e., layout generation on dif-
ferent dies waiting for each other to align particular blocks,
cannot occur due to the process of resolving paused dies. With
this technique, we simply place die d’s current block bi when-
ever we switch to a paused die d. However, this also implies
that alignment of bi must be deferred and implicitly resolved
when its associated block bj is processed.

2) Block Placement: To maintain a valid layout during
placement, it is necessary to consider previously placed blocks.
We implement a technique that allows us to efficiently keep
track of relevant blocks and to perform implicit layout com-
paction (the latter is explained below). Besides this, our
technique follows the principles of CBL’s placement approach.

Placement is based on two stacks Hi/Vi for each die di.
These stacks contain di’s blocks currently covering the vertical
right/horizontal upper front; these blocks define the boundary
fronts for placement. Then during layout generation, we only
need to check the respective boundary front to determine the
coordinates for each block to be placed (Fig. 6).

For any block smaller than the “CBL room” it is supposed
to cover, the next adjacent block will be packed into this room
(Fig. 7). We refer to this technique as virtual CBL adaptation
since it results in practice in different CBL encodings for the
same compact layout. Hence, it supports efficient solution-
space exploration toward compact layouts that produce—on
average—shorter routing paths.

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1813

Fig. 7. Virtual CBL adaptation. Rooms and their assigned blocks are similarly
colored. Block b4 is “packed into the room” of b1, providing a more compact
layout. Without virtual CBL adaptation, b4 would be placed as b′4.

3) Block Alignment: Recall that our methodology sup-
ports different types of massive interconnects. We observe
that all corresponding block-alignment requests depend on
the blocks’ planar offsets, i.e., the relative distances consid-
ering their projections onto a plane. This implies that we can
rely on block shifting to handle alignment and thus massive
interconnects.

Our layout-generation process is tailored for block shifting:
it is synchronized across the whole chip, i.e., blocks to be
aligned “wait for each other’s die to be ready,” namely until
preceding blocks are placed. However, depending on whether
blocks to be aligned have been previously placed, shifting may
not be applicable for all configurations. In particular, we omit
“intrusive” block shifting, that is shifting when both blocks to
be aligned have already been placed in order to resolve stalled
dies. Based on experimental observations, such intrusive shift-
ing requires adjacent (or likely even other nearby) blocks to be
shifted in order to maintain a valid layout. This is impractical
in the presence of different massive interconnects—shifting
can undermine alignment for remaining interconnects, or even
invalidate previously optimized interconnect structures. It is
important to stress that such situations with both blocks pre-
viously placed only arise for particular CBL configurations,
mainly due to an inappropriate placement order. This means
that adapting the configurations, e.g., via dedicated layout
operations (Section V-F), will resolve such issues.

If one block has been previously placed, we derive the
required shifting range rsx(bi, bj) or rsy(bi, bj), i.e., the remain-
ing offset of bi and bj to be compensated in order to fulfill the
related block alignment (Fig. 8). In cases where rs(bi, bj) < 0,
we would need to shift bi left/down which is trivially prohib-
ited for a valid (i.e., overlap-free) layout. Alternatively, we
could shift previously placed bj right/up; however, this is not
practical in the presence of many blocks to be aligned, as
mentioned above. Finally, if and only if rs(bi, bj) ≥ 0, can we
safely perform a forward shift of bi in the x/y-direction—thus
satisfying the block alignment criteria.

For scenarios where both blocks are not placed yet, we can
trivially shift blocks so that the related massive interconnects
are properly facilitated.

B. Optimization Metrics and Cost Models

Applied optimization metrics along with their cost mod-
els/functions are discussed next. Note that cost functions are
formulated for SA’s classical cost-minimization approach, i.e.,
lower cost is equivalent to more optimized layouts.

1) Outline: This metric unifies evaluation of the layout’s
bounding boxes (i.e., packing density) as well as fixed-outline
fitting. This is achieved by extending Chen and Chang’s

Fig. 8. Required shifting ranges. During alignment of block b7 with previ-
ously placed b4, shifting b7 to the right was applicable so that rs(b7, b4) was
resolved. In contrast, shifting previously placed b5 and the “inverse shift” of
b8 to the left are not applicable.

aspect-ratio-based model [25]. Our model is defined as

coutline = cPD + cAR

cPD = 1

2
α
(

1+ nfeasible

n

)
×max

di

(
A(b ∈ di)

A(di)

)

cAR = 1

2
α
(

1− nfeasible

n

)
×max

di

(
�AR(di)

2
)

where cPD and cAR denote the respective cost terms for
packing density and aspect-ratio violation, A(b ∈ di) and
A(di) determine the blocks’ and die’s area, and α ≤ 1
denotes the cost weight. The aspect-ratio violation consid-
ers �AR(di) = AR(b ∈ di)− AR(di) where AR encodes the
aspect ratio for blocks or their assigned die, respectively.

The above model accounts for the SA process; calculations
refer to previous n layout operations where nfeasible ≤ n oper-
ations resulted in a valid layout (i.e., blocks on all dies are
fitting into the fixed outline). For best fitting solutions, we
determine cost with fixed nfeasible = n, i.e., we locally ignore
cost history for meaningful comparison of best solutions.

2) Wirelength and TSV Count: We assume that the lower-
most die d1 is connected to the package board; nets connecting
to terminal pins are thus routed through the whole stack
down to d1. For each net n, we determine the half-perimeter
wirelength (HPWL) on each die di separately, denoted as
HPWL(n, di). To do so, we construct the bounding box by
encircling the net’s relevant pins: connected pins of blocks
placed on die di and the connected terminal pins in case of
di = d1.

In order to model wires connecting blocks with TSVs, addi-
tional pins have to be considered. Depending on whether TSVs
have been placed (for massive interconnects or clustered TSV
islands, Section V-D) or not yet (i.e., for early estimations and
for guidance during clustering TSV islands), these pins differ:
for placed and connected TSVs, the TSVs’ pins in di are to
be considered; for yet unplaced TSVs, the pins of blocks to
be connected in the next upper die dj are to be considered.
For the latter, assuming that TSVs can be placed into the
resulting bounding boxes, this model provides the most accu-
rate HPWL-based estimate prior to actual TSV placement [2].
Cost terms are defined as

cWL =
∑

n

⎛

⎝lTSV × TSVs(n)+
∑

di∈n

HPWL(n, di)

⎞

⎠

cTSVs =
∑

n

TSVs(n)

1814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

where TSVs(n) denotes the required TSV count for net n. Note
that, we also account for “TSV wirelength” lTSV in cWL.

3) Routability: Cost is derived from the average and max-
imum of an evenly distributed routing utilization RU as

cR = avg∀n;∀d(RU(n, di))×max∀n;∀d(RU(n, di))

RU(n, di) = ωn × wwn × x+ y

x× y
; x, y ∈ bb(n, di)

where bb(n, di) refers to the outline of n’s bounding box on di,
ωn to n’s weight and wwn to n’s wire width. This model is
an efficient and effective approach for estimating routabil-
ity; it proved surprisingly accurate for practical benchmarks
(i.e., the International Symposium on Physical Design 2008
global-routing contest suite) and superior to other well-known
estimations (e.g., Westra’s net model) [26].

Assuming wwn = 1, we model an “idealized” technology-
independent utilization without consideration of minimum
pitches. Then, RU(di) = 1 means that one metal layer of di is
fully occupied.

This model is pessimistic/upper-bound for regions compris-
ing vertical/TSV buses: net bounding boxes are considered
to span across buses, thus nets are assumed to be routed over
whole TSV-bus regions. However, assignments of nets to TSVs
can be optimized later (e.g., during actual routing), most likely
limiting routing utilization.

4) Thermal Management: The cost cT = max∀d(T(dtc))

represents the estimated maximum temperature of the
thermally-critical die dtc.

Details on thermal-analysis-related material and chip prop-
erties are given in Section VI-A3; details of our fast thermal-
analysis approach are explained in Section V-H.

5) Block Alignment: We denote the weighted spatial align-
ment mismatches between desired alignment and actual layout
as cost term

cAMM =
∑

ak

(∣∣rsx
(
bi, bj

)∣∣+ ∣∣rsy
(
bi, bj

)∣∣)× wires.

Recall that rs(bi, bj) was introduced in Section V-A3 and
Fig. 8, and wires denotes the signal count of alignment ak.

C. Optimization Stages

We consider two different stages for SA optimization; these
stages support efficient solution-space exploration and layout
optimization for 3-D floorplanning with block alignment.

1) Stage I, “Fixed-Outline Fitting”: The cost function is
defined as

cI = coutline.

There is no block alignment applied in this stage. The reason
for initially focusing SA’s search solely on the fixed-outline
is simply that nonfitting layouts are a “knock-out,” regardless
of any block alignment and layout optimization that might
be achieved. The transition to stage II is made when the SA
search triggers the first fixed-outline-fitting layout.

2) Stage II, “Alignment and Layout Optimization”: We
compose the cost function as

cII = cI + (1− α)× c′II
c′II = β

cWL

cWLin

+ γ
cTSVs

cTSVsin

+ δ
cR

cRin

+ ε
cT

cTin

+ ζ
cAMM

cAMMin

with cost weights β + γ + δ + ε + ζ ≤ 1.
Note that we memorize inial cost terms like cWLin dur-

ing transition to stage II, i.e., we derive them from the first
valid solution. Furthermore, we consider cI = coutline as an
essential term in this stage as well; based on our experiments,
the multiobjective SA search still depends notably on outline
fitting/optimization.

D. Clustering of Regular Interconnects

Regular signal TSVs, not explicitly set up as massive
interconnect structures, are clustered into TSV islands dur-
ing stage II. Next, we motivate and outline our thermal- and
wirelength-driven clustering technique.

As mentioned in Section V-B4 (and elaborated later on in
Section V-H), there exists a thermally-critical die dtc, exhibit-
ing highest temperatures of the 3-D-IC stack. We consider
only dtc’s thermal distribution during clustering, which has
two benefits. First, the heat dissipation for hotspots on dtc is
increased, notably reducing overall maximum temperatures.
Second, we mitigate adverse thermal coupling between dies
which potentially introduces new hotspots in other dies when
dissipating heat away from dtc. The latter benefit is achieved
by clustering TSVs into nearly aligned stacks of TSV islands
which can serve as effective heatpipes. Previous studies have
shown the benefits for thermal management of both stacking
single TSVs [24] and TSV islands [17], [18].

For thermal- and wirelength-driven clustering, we lever-
age Knechtel et al.’s net-cluster concept [2] and Lindeberg’s
algorithm for gray-level blob detection [27]. We deploy the lat-
ter to determine hotspot regions; by considering these larger
regions instead of simply relying on points of local tempera-
ture maxima, our algorithm mitigates thermal hotspots more
effectively.

Initially, the bounding boxes bb(n, di) for each net n are
constructed separately on each related die di, as described in
Section V-B2. For all dies di, the respective set of bb(n, di) is
then sorted by the boxes’ covered area in descending order.

Next, the thermal distribution of dtc is determined
(Section V-H). Based on the resulting 2-D thermal map, gray-
level blob detection is applied as described in [27, Sec. 9.1]. As
indicated, hotspot regions are described by blobs—local tem-
perature maxima along with their surrounding region (Fig. 12).
The determined hotspot regions hs are sorted in descending
order according to their score

s(hs) = (Tmax(hs)− Tmin(hs))× Tmax(hs)2 × bins(hs)

where bins(hs) denotes the (discretized) area covered by hs.
Note that high-scored regions exhibit large thermal gradients,
very high (due to second-power term) maximum temperatures
and large covered areas. These regions have a strong impact
on the thermal distribution and are thus considered first.

Based on net bounding boxes and hotspot regions, both
sorted by their respective relevance, net clusters are deter-
mined stepwise on each die di. The idea is to gradually merge
bounding boxes into net clusters with consideration of hotspot
regions. More precisely, merging bounding box bb(nj, di) into
net cluster ck means redefining the cluster region as the inter-
section of ck and bb(nj, di). Merging executes as long as:

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1815

1) the intersection is trivially nonempty and 2) ck still cov-
ers a hotspot region after the merging operation. In other
words, whenever a merging step would relocate ck away from
a hotspot region, the respective box is ignored for cluster ck.
This step is repeated until all nets are merged into clusters.

Finally, TSV islands are placed into the clusters’ center.
These islands then yield massive interconnects which are
optimized for both thermal and wirelength management.

E. TSV Placement

For massive vertical buses or clustered signal TSVs, the
resulting TSV islands are sized and centred such that they
fit into the bus site or cluster center. That is, islands are
shaped according to their designated location and TSV dimen-
sions and pitches. In case islands overlap, a greedy shifting is
performed to legalize TSV placement.

For regular (nonclustered) TSVs, they are placed in the cen-
ter of die-wise bounding boxes, as determined in Section V-B2.
In case TSVs overlap, greedy shifting is applied as well.

Note that, we seek to embed TSV islands into
blocks—to limit local wiring between blocks and massive
interconnects—which may induce additional cost. For exam-
ple, hard blocks with fixed layouts cannot include TSVs.
Such blocks will need to be either redesigned or encapsu-
lated into macro blocks comprising TSVs and the actual block.
In general, embedding TSVs requires sufficient unoccupied
design area, i.e., deadspace. In our experiments (Section VI),
deadspace utilization by TSVs was not excessive (well below
40%) for any setup; embedding TSVs into blocks is thus
considered practical, without inducing notable additional cost.

F. Layout Operations

We deploy the following operations to support the SA
heuristic in its effective exploration of Corblivar’s solution
space.

1) Swapping blocks within or across dies or CBL
sequences.

2) Swapping or moving whole CBL tuples within or across
CBL sequences.

3) Switching a block’s insertion direction.
4) Changing a block’s T-junctions.
5) Rotating hard blocks.
6) Guided shaping of soft blocks, as proposed in [25].
Operations and blocks/CBL tuples are randomly selected in

optimization stage I. In stage II, blocks related to failed align-
ment requests are preferably selected. These blocks are then
swapped with adjacent blocks or moved across dies, depending
on the particular alignment, so that |rs(bi, bj)| is reduced. This
way, the alignment is more likely to be successfully performed
in the next iteration of layout generation.

G. Adaptive Optimization Schedule

As mentioned earlier, we need an adaptive optimization
(SA cooling) schedule to improve the efficiency of solution-
space exploration. Our schedule is capable of: 1) effectively
guiding the SA search within the optimization stages and
2) escaping local minima. The schedule is composed of three
different stages, explained below. Note that in the following,

Fig. 9. Adaptive optimization schedule. “Brief reheating” (e.g., A and C)
enables to escape local minima while “reheating and freezing” (B) increases
chances for triggering new best solutions with notably decreased cost.

i labels the current step of imax total temperature steps. An
illustrative schedule example is given in Fig. 9.

1) “Adaptive Cooling” Stage: We deploy this cooling stage
during optimization stage I. The cooling follows:

TSA(i+ 1) =
(

cf1 + i− 1

imax − 1
× (cf2 − cf1)

)
× TSA(i)

with cooling factors cf1 < cf2 < 1.
The cooling rate slows down; our intention here is to achieve

initially fast cooling for the global scope, followed by slower
cooling in a more confined, “local” solution space.

2) “Reheating and Freezing” Stage: This type of cooling
is invoked for optimization stage II, i.e., after a fitting layout
has been found in the ifitting step. The function is defined as

TSA(i+ 1) =
(

1− i− ifitting

imax − ifitting

)
× cf3 × TSA(i).

The cooling rate increases steadily, i.e., the temperature is
reduced exponentially. However, setting factor cf3 > 1 results
in initial reheating. This way, the SA search increases chances
of high-cost solutions being deployed in this “critical solution-
space region” which covers the first fitting layout. According
to our experiments, this allows to notably decrease cost during
the subsequent search, i.e., facilitates high-quality solutions.

3) “Brief Reheating” Stage: This stage enables a robust
cooling schedule. The function is defined as

TSA(i+ 1) = cf4 × TSA(i)

with cooling factor cf4 > 1.
Brief reheating helps the SA search escape local minima.

It is applied stepwise, in alternation with individual temper-
ature steps during stages I and II. Additionally, it is only
applied when we observe σ(cII) ∼ 0 during previous k steps,
that is when the search reached a local “cost plateau.” This
technique is inspired by Chen and Chang’s study [25]; their
approach, however, proposes reheating solely at one particular
temperature step, which we believe is not as effective as our
cost-controlled reheating.

H. Fast Thermal Analysis

For fast, yet accurate, steady-state temperature analysis, we
extend Park et al.’s work on power blurring [14]. Instead of
using computationally intensive finite differences or finite ele-
ment analysis (FEA), power blurring is based on simple matrix

1816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 10. Power-blurring-based thermal analysis (illustrated for die 1). Given
are a set of power-density maps and thermal-impulse responses. The latter
describe how heat spreads from power sources placed in different dies; they
model the overall heat conduction within a 3-D IC. Each power-density map is
to be convoluted with the related thermal-impulse response. The superposition
of these convolution results provides the temperature map for a particular die.

convolution of thermal-impulse responses and power-density
distributions. More precisely, to determine the thermal profile
T(di) on die di, multiple convolution results are superposed
to model the effect of vertical heat transfer in the 3-D IC
(Fig. 10). The superposition is determined as

T(di) =
∑

dj

pdm
(
dj, x, y

) ∗ tm
(
dj, di, x, y

)
.

Here, pdm(dj, x, y) denotes the gridded 2-D power-density
map for die dj’s layout, with 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax,
where xmax = ymax represents the upper bins of the uniformly
gridded die outlines. Furthermore, tm(dj, di, x, y) describes the
discretized thermal mask—or thermal-impulse response—that
models the impact of dj’s power dissipation on di’s thermal
profile.

During initial experiments, we found that d1 (i.e., the die
furthest away from the heatsink) generally experiences the
highest temperatures; we refer to d1 thus as the thermally-
critical die. This is due to the fact that the bonding material, e.g.,
Benzocyclobutene (BCB) adhesive polymer, has a significantly
lower thermal conductance compared to the silicon in the
chips—bonding layers are a thermal barrier in the 3-D IC. It is
important to note that this finding is based on heat conduction
only toward the heatsink, not through bumps and thus ignoring
the secondary heat path toward the package and printed circuit
board.4 For scenarios with the secondary heat path considered,
the thermally-critical die is more likely found in the middle of
the 3-D IC. W.l.o.g., we restrict i = 1 in the following.

1) Parameterization of Thermal Masks: For modeling
the mask functions, we refrain from time-consuming FEA

4This is due to the lack of modeling secondary heat paths within the—for
reference thermal simulations applied—3-D extension of HotSpot [28].

runs [14]. Instead, we model the masks using discretized 2-D
Gauss functions

tm
(
dj, d1, x, y

) = g
(
dj, x, y

)

= w
(
dj
)

exp

(

− 1

s
(
dj
)x2

)

exp

(

− 1

s
(
dj
)y2

)

where w(dj) is an amplitude-scaling factor and s(dj) a lateral-
spreading factor specifically parameterized for each die dj.

According to initial experiments, it is needless to spread the
discretized Gauss functions across the entire gridded power-
density map. Instead, sweeping a relatively small 2-D “mask
window” (xm × ym = n × n, with n xmax, ymax) stepwise
across the map is practical [29]. This notably reduces compu-
tational efforts for the convolution calculations. However, for
this method we need to parameterize the masks: their center
points cp have to be aligned with the Gauss functions’ peaks
and their boundary points need to feature a minimum value
gmin > 0. To do this, we adapt the Gauss functions—mainly
w(dj) and s(dj)—such that

g
(
dj, x, y

) = g
(
dj, xm, ym

)

= w
(
dj
)

exp

(
− m

cp2
x2

m

)
exp

(
− m

cp2
y2

m

)

where

m = 1

2
ln

(
w
(
dj
)

gmin

)

; w
(
dj
) = w

jws
= w(d1)

jws
.

The masks’ center points are cp = �n/2�. During convolution,
the Gauss-function parameters xm, ym sweep through the mask
windows −cp ≤ xm, ym ≤ cp. Furthermore, max(j) represents
the uppermost die and ws is a scaling factor.

In the course of the parameterization of gmin, w, ws, and
pdPZ , and pdTSV (the latter two will be introduced later), we
determine an optimized parameter set for each different 3-D-IC
setup—different with respect to die count and dimensions.
Therefore, we initially determine a reference thermal distribu-
tion. This is done by applying a 3-D extension of HotSpot [28],
a state-of-the-art academic thermal analyzer, on an exemplary
3-D-IC layout. (Details on material properties for HotSpot sim-
ulations are given in Section VI-A.) For this reference thermal
distribution, we then determine a best fit for the above param-
eters using a local search. Initial experiments revealed that
the parameters have no consistent correlations. Thus, the local
search treats each parameter independently, and derives can-
didate parameter values using normal distributions which are
initially confined by a broad range. Whenever the local search
finds a better parameter set, i.e., when the deviation of the
power-blurring thermal distribution from the HotSpot distribu-
tion is reduced, the associated parameter values are considered
as the new best set. Then, each parameter’s normal distribution
is adapted such that: a) the mean is set to the respective new
best value and b) the standard deviation is reduced by a user-
defined factor. This loop is repeated several times, controlled
by user parameters for accuracy and/or runtime.

2) Separated 1-D Convolutions: The power-blurring
approach can be sped up even further by separated 1-D con-
volutions. Therefore, note that the 2-D Gauss function can be
separated easily, i.e., it can be substituted by a 1-D function’s

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1817

product gx × gy. For separable functions defining a matrix,
applying a 2-D convolution is equivalent to applying two suc-
cessive and orthogonal 1-D convolutions [27, p. 43]. With the
latter approach, however, we can reduce the number of oper-
ations needed from n2 to 2n [27, p. 43]. For experiments with
n = 9, we observed an overall speedup of ∼4× for such
separated 1-D convolutions.

3) Error Compensation—Padding Zones: We propose error
compensation for thermal estimation near die boundaries, as
declared necessary by Park et al. [14]. To this end, we intro-
duce power-density padding zones. That is, we extend the
power-density maps with a “ring” of �n/2� additional bins
whose values are derived from blocks abutting the die bound-
aries, and weighted with a scaling factor pdPZ . Note that this
only affects the power-density maps, not the floorplan.

This approach is beneficial in two ways. First, the error com-
pensation can be tuned flexibly via pdPZ and is thus adaptable
to different 3-D-IC setups. Second, the convolution calcula-
tions themselves are freed from checking if bins are within
well-defined matrix boundaries. These checks are computa-
tionally trivial, but required for innermost loops,5 and thus
their omission reduces runtime notably; we observed an overall
speedup of ∼3.5× in our experiments.

4) Consideration of TSV Islands: In order to extend power
blurring to account for TSV islands, we investigated three dif-
ferent approaches: a) post-processing the thermal distribution;
b) applying different thermal masks for design regions with
and without TSV islands; and c) adaptation of power-density
maps for design regions with TSV islands.

Options a) and b) were ruled out after exploratory experi-
mentation. A related key finding was that TSV islands have
both a local impact on temperature gradients/values, and a
global impact on the overall temperature ranges. While post-
processing [option a)] can easily account for the islands’ global
impact, the local impact has proven difficult to capture since it
varies depending on island location and number, and on neigh-
boring islands. Deploying different thermal masks [option b)]
produced a more accurate estimation of the thermal distri-
butions. However, this approach would considerably increase
runtime: it requires “real” 2-D convolution since different
masks would introduce discontinuities in the result when the
stepwise 1-D convolutions are deployed.

Our approach [option c)] is predicated on scaling down the
power density pdm(dj, x, y) for TSV regions. In other words, it
simply models the improved vertical heat conduction in TSV
regions with reduced power densities, subsequently resulting
in (both globally and locally) lower temperatures. The scaling
is defined as

pdm
(
dj, x, y

) × =
(

1+ pdTSV − 1

100
× dTSV

(
dj, x, y

))

where 0 ≤ pdTSV ≤ 1 is the scaling factor, and 0 ≤
dTSV(dj, x, y) ≤ 100 is the TSV density on dj at bin x, y. Note
that pdTSV is parameterized simultaneously with the other

5The 2-D convolution of pdm(dj, x, y) ∗ g(dj, xm, ym) generally requires a
fourfold nested loop [29], where the innermost loop is executed x×y×xm×ym
times. In our case of separated 1-D convolutions, the innermost loops are
executed (x × xm) + (y × ym) times. Within these loops, the convolution is
stepwise performed, and the checks for well-defined samples, i.e., if data are
within matrix bounds, are required for every step.

TABLE I
CHIP AND MATERIAL PROPERTIES

thermal-mask parameters (Section V-H1); the scaling factor
pdTSV allows us to model the local impact of TSV islands,
while w and ws now capture additionally the global impact of
TSV islands.

VI. EXPERIMENTAL RESULTS

We conducted several experiments to validate Corblivar’s
capabilities; configurations and results are discussed next.

A. Configuration

1) Planning of Massive Interconnects: We consider two
width- and length-restricted buses, each covering five
blocks, along with two vertical buses, each connecting two
blocks. We assume that each interconnect bundles 512 sig-
nals. Furthermore, we deploy a Wide-IO interface as outlined
in [30], i.e., a vertical bus sized 600 × 160 μm and connect-
ing two dies through 960 TSVs. Note that Wide-IO interfaces
are designed for memory integration; we apply it here mainly
for its relevance to 3-D integration.

As such a scenario has not been considered in previous stud-
ies, we cannot meaningfully compare it to other approaches.6

However, we can evaluate whether these massive interconnects
can be successfully considered within our methodology. To do
so, we investigate two setups: a) dedicated block alignment and
b) classical optimization. For the former setup a), we consider
our proposed block alignment and for setup b), we deliberately
ignore these measures. We consider the HPWL contribution of
massive interconnects—weighted by the interconnects’ signal
count—for both setups, as an equitable comparison. Besides
considering wirelength, we optimize for routing utilization,
maximum temperatures, and also apply clustering of signal
TSVs for both setups.

2) Regular and Large-Scale 3-D Floorplanning: To eval-
uate Corblivar’s efficiency with respect to key 3-D floorplan-
ning objectives, mainly for comparison with other relevant
studies [31], [32], we look into layout packing, wirelength

6Previous studies on block alignment for 3-D ICs considered different
scenarios. Nain and Chrzanowska-Jeske [8] proposed to split up and align
(sub-)modules among adjacent dies with fixed, zero offsets. However, as they
did not produce derived benchmarks containing split-up blocks, we cannot
compare our approach with theirs. Law et al. [9] considered a more flexible
problem with vertical bus planning: sets of blocks are defined separately for
each die, and at least one block from each set is to be vertically aligned with
one block from the other sets. This simplified problem is not compatible with
our approach; we require all specified blocks to be aligned. Li et al. [10] refer
to block-alignment capabilities but refrain from providing details and related
experimental results. Finally, all studies consider only vertical alignment with
fixed offsets.

1818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

TABLE II
RESULTS FOR PLANNING OF MASSIVE INTERCONNECTS—UPPER PART REPRESENTS DEDICATED BLOCK ALIGNMENT,

LOWER PART REPRESENTS CLASSICAL OPTIMIZATION

and thermal optimization in this setup. Note that we neglect
massive interconnects and block alignment as well as cluster-
ing of signal TSVs here, since the other studies omitted such
measures.

In addition, we demonstrate Corblivar’s scalability by uti-
lizing the IBM-HB+ benchmark suite [33]. As far as we are
aware, this is the first time that these large-scale circuits have
been considered for 3-D floorplanning.

3) 3-D-IC Configuration and Benchmarks: We assume
face-to-back stacking of two or three dies; further technologi-
cal properties are given in Table I. Terminal pins are available
on the lowermost die d1 which is assumed to be connected
to the package board. Practical (i.e., stackable) fixed outlines
up to 5× 5 mm are considered. We apply Gigascale Systems
Research Center (GSRC) [34] and IBM-HB+ [33] circuits. To
use die outlines in a more meaningful manner, we enlarged
GSRC benchmarks by a factor of 5, and IBM-HB+ bench-
marks by a factor of 2. In this context and for practical thermal
management, power-density values of GSRC benchmarks are
scaled down by a factor of 10, resulting in average power
consumption of 2–3 W. Note that layouts were packed where
possible, enabling reduced die outlines. Deadspace utilization
by TSVs was not excessive in any setup; we thus refrain from
minimizing TSV counts.

4) General Setup: We conduct all experiments on an
Intel Core 2 system; reported runtimes are thus comparable.
Corblivar and [32] are SA-based tools; best results are chosen
from 5 to 25 runs. Applied Corblivar parameters are retriev-
able from [12]. Default settings [28] and material properties
as detailed in Table I are deployed for HotSpot.

B. Results

1) Planning of Massive Interconnects: We observe that all
massive interconnects can be successfully planned for both
setups (dedicated block alignment and classical optimiza-
tion, contrasted in Table II). However, the average success

rate for planning all interconnects as well as respective TSV
counts are higher for dedicated block alignment. Furthermore,
final wirelength as well as maximum routing utilization are
notably smaller for dedicated block alignment than for classi-
cal optimization. Recall that the estimated maximum routing
utilization is pessimistic since nets are assumed to span
across whole TSV-island sites (Section V-B3). Still, estimated
utilizations larger than, e.g., 15, as experienced for classi-
cal optimization, are prohibitive: this translates to designs
with some regions exceeding routing resources of 15 metal
layers.

In short, our proposed block alignment is effective and
greatly supports managing routability and wirelength during
planning of massive interconnects.

Comparing die outlines and deadspace for both setups, we
expect, and observe, a slight increase for dedicated block
alignment—such measures limit the flexibility for layout pack-
ing and thus the increase in deadspace. Nevertheless, fixed
die outlines were delivered in all cases. i.e., the proposed SA
optimization stages are effective. An example of successfully
planned interconnects and their corresponding block alignment
is illustrated in Fig. 11.

2) Fast Thermal Analysis and Clustering of Signal TSVs:
An initial observation is that our power-blurring approach
shows some local deviations compared to HotSpot-verification
runs. As indicated in [14], convolution-based thermal anal-
ysis particularly induces estimation errors at die bound-
aries; we reduced these errors after initial experiments
(not illustrated) by introducing the power-density padding
zones (Section V-H3).

When TSV islands are considered, related errors increased
again, as is clearly visible in Fig. 12. This is due mainly to
inhomogeneous material properties (Cu TSVs and Si dies) and
associated variations in heat conduction, especially near die
boundaries. However, our approach is practical for the evalua-
tion and localization of maximum-temperature regions—which
we consider sufficient for thermal-aware layout optimization.

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1819

Fig. 11. Massive interconnect structures with corresponding block alignment,
benchmark n100. The wide vertical bus contains the Wide-IO interface, the
other two are regular embedded buses. For clarity, TSV landing pads in the
upper die are only illustrated for vertical buses, not for signal-TSV clusters.

(a) (b)

Fig. 12. Thermal maps in Kelvin of critical die d1 for benchmark n300; three
dies in total, here without dedicated vertical buses. TSV islands are marked as
white-framed, brown rectangles in (a) and (b). Hotspot regions (Section V-D)
are marked as white-framed rectangles in (a). The temperature scale of our
power-blurring analysis (a) largely matches the scale obtained by HotSpot (b);
yet, local deviations are visible, especially for regions with TSV islands.

Refer to Tables II and III for comparison of estimated and
by HotSpot verified maximum temperatures. In most cases,
the error is below 1%, but generally increasing with the die
count and for scenarios with few relatively large TSV islands
(Table III). This is expected, since the thermal impact of:
a) more dies stacked and b) few but large TSV islands (which
are not aligned, in contrast to clustered signal-TSV islands) is
more complex and thus more difficult to model. Our thermal
analysis is also very efficient due to fast computation—it can
be conducted in ∼20 ms—and is thus invoked in every opti-
mization iteration. Compare this with HotSpot where one run
can take on the order of tens of seconds up to a few minutes.

TABLE III
RESULTS FOR PLANNING MASSIVE INTERCONNECTS BUT

WITHOUT CLUSTERING OF SIGNAL TSVS

HotSpot is thus not applicable during optimization iterations
but only for final verification.

For clustering of signal TSVs (i.e., comparing results with
clustering in Table II to results without clustering in Table III)
we provide the following findings. First, wirelength is slightly
increased for applied clustering. This can be expected [2]:
some nets may necessitate minor detours to connect to TSV
islands. Second, die outlines and deadspace ratios are compa-
rable, i.e., clustering signal TSVs has little impact on chip area.
Third, without clustering applied, routing utilization decreases
for two-die setups but increases for three-die setups. This find-
ing suggest that clustering is beneficial when stacking more
dies; the floorplanner can then more effectively optimize rout-
ing utilization by (implicitly) rearranging few TSV islands
rather than many single TSVs. Fourth, maximum tempera-
tures are reduced when clustering is applied, especially for
three-die ICs. This indicates that our technique is helpful for
“breaking the thermal barrier” posed by the bonding layers
between stacked dies. Recall that the latter is achieved by
stacking TSV islands during clustering.

3) Regular 3-D Floorplanning, Comparative Results:
Next, we discuss comparative results for floorplanning with
(equal) consideration of thermal and wirelength optimization
(Table IV). Note that massive interconnects and dedicated
block alignment as well as thermal- and wirelength-driven
TSV clustering are not considered in this setup, since the other
studies in comparison do not feature these functions. Also,
benchmarks have not been enlarged in these experiments to
ensure that the comparison is impartial.

We observe that Corblivar is superior to both a force-
directed tool [31] and an SA-based tool [32]. In particular,

1820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

TABLE IV
COMPARATIVE RESULTS ON GSRC BENCHMARKS (NOT ENLARGED FOR UNBIASED COMPARISON)

TABLE V
RESULTS ON IBM-HB+ BENCHMARKS

we achieve notably reduced wirelength, smaller outlines along
with lower deadspace ratios, and slightly decreased maxi-
mum temperatures when comparing to [31]. This indicates the
general effectiveness of our methodology. Compared to [32],
however, we note that Corblivar’s layouts are slightly larger.
Nonetheless, we achieve notably reduced wirelength and lower
maximum temperatures. Note that, in the interests of objectiv-
ity, we even neglect TSVs/TSV islands and related reductions
in maximum temperatures caused by increased heat conduc-
tion. Thus, our methodology effectively addresses the trade-off
between packing density and maximum temperature. Fixed
outlines were obeyed in these experiments as well.

4) Large-Scale 3-D Floorplanning: The IBM-HB+ suite
does not include power information; we thus configured
Corblivar only for wirelength optimization, layout packing and
the (successful) consideration of fixed-outline constraints.

Results on arbitrarily selected circuits are provided in
Table V. We observe that total wirelength (including TSVs’
wirelength) for three-die chips is smaller than for two-die
chips, which clearly indicates the benefit of 3-D integration
for these large-scale benchmarks. In contrast, for small-scale
GSRC benchmarks considered in previous setups, this was
rarely the case. Our finding—only reasonably large circuits
will generally benefit from 3-D integration—is in accordance
with other studies (see [20]).

VII. CONCLUSION

In this paper, we have extended 3-D floorplanning toward
effective planning of massive interconnects—an important, yet
inadequately addressed, scenario for (future) 3-D ICs.

To tackle deficits in previous studies, we promote block
alignment. In the first place, we discussed how 3-D (interdie)
and 2-D (intradie) alignment can be simultaneously applied

for planning diverse interconnects like vertical buses. We then
introduced Corblivar, a 3-D layout representation with a novel
alignment concept. In this regard, we developed effective
techniques for layout generation, block alignment and layout
evaluation, as well. We note that it is vital to synchronize align-
ment across the whole 3-D IC. In particular, when aligning
buses vertically, our algorithms need to consider each related
die’s layout in progress.

We have embedded Corblivar into an open-source, SA-based
floorplanning tool. We have also developed necessary exten-
sions including an adaptive SA schedule, clustering regular
signal TSVs into vertical buses and convolution-based fast
thermal analysis. For the latter, we proposed dedicated tech-
niques (e.g., for efficient parameterization of thermal masks)
which notably improve runtime and applicability.

Experimental results on GSRC and large-scale IBM-HB+
benchmarks demonstrate Corblivar’s applicability for planning
massive interconnects, as well as its competitive performance
for “classical” 3-D floorplanning, while considering fixed out-
lines, layout packing and thermal and wirelength optimization.
A key observation is that classical floorplanning [35]—seeking
to minimize the by signal count weighted wirelength—is
also applicable for planning massive interconnects, but pro-
vides inferior results. Our methodology, in contrast, facilitates
routability, reduction of wirelength as well as thermal man-
agement for massively-interconnected 3-D chips.

REFERENCES

[1] F. Miller, T. Wild, and A. Herkersdorf, “Virtualized and fault-tolerant
inter-layer-links for 3D-ICs,” Microprocess. Microsyst., vol. 37, no. 8,
pp. 823–835, 2013.

[2] J. Knechtel, I. L. Markov, and J. Lienig, “Assembling 2-D blocks into
3-D chips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 2, pp. 228–241, Feb. 2012.

[3] M. Jung et al., “How to reduce power in 3D IC designs: A case study
with OpenSPARC T2 core,” in Proc. IEEE Custom Integr. Circuits Conf.,
San Jose, CA, USA, 2013, pp. 1–4.

[4] JEDEC Solid State Technology Association. (Dec. 2011). JEDEC
Standard: JESD229 Wide I/O. [Online]. Available: http://www.jedec.org/
standards-documents/results/jesd229

[5] T. Zhang, C. Xu, K. Chen, G. Sun, and Y. Xie, “3D-SWIFT: A high-
performance 3D-stacked wide IO DRAM,” in Proc. Great Lakes Symp.
VLSI, Houston, TX, USA, 2014, pp. 51–56.

[6] H. Xiang, X. Tang, and M. D. F. Wong, “Bus-driven floorplanning,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2003,
pp. 66–73.

[7] J. H. Y. Law and E. F. Y. Young, “Multi-bend bus driven floorplanning,”
Integration, vol. 41, no. 2, pp. 306–316, 2008.

KNECHTEL et al.: PLANNING MASSIVE INTERCONNECTS IN 3-D CHIPS 1821

[8] R. K. Nain and M. Chrzanowska-Jeske, “Fast placement-aware 3-D
floorplanning using vertical constraints on sequence pairs,” IEEE Trans.
Very Large Scale Integr (VLSI) Syst., vol. 19, no. 9, pp. 1667–1680,
Sep. 2011.

[9] J. H. Law, E. F. Y. Young, and R. L. S. Ching, “Block alignment in
3D floorplan using layered TCG,” in Proc. Great Lakes Symp. VLSI,
Philadelphia, PA, USA, 2006, pp. 376–380.

[10] X. Li, Y. Ma, and X. Hong, “A novel thermal optimization flow using
incremental floorplanning for 3D ICs,” in Proc. Asia South Pac. Design
Autom. Conf., Yokohama, Japan, 2009, pp. 347–352.

[11] S. K. Lim, “Personal communication,” Mar. 2013.
[12] J. Knechtel. (2015). Corblivar Floorplanning Suite. [Online]. Available:

http://www.ifte.de/english/research/3d-design/index.html
[13] X. Hong et al., “Corner block list: An effective and efficient topological

representation of non-slicing floorplan,” in Proc. Int. Conf. Comput.-
Aided Design, San Jose, CA, USA, 2000, pp. 8–12.

[14] J.-H. Park, A. Shakouri, and S.-M. Kang, “Fast thermal analysis of ver-
tically integrated circuits (3-D ICs) using power blurring method,” in
Proc. ASME InterPACK, San Francisco, CA, USA, 2009, pp. 701–707.

[15] H. Jao et al., “The impact of through silicon via proximity on CMOS
device,” in Proc. Microsyst. Packag. Assembly Circuits Technol. Conf.,
Taipei, Taiwan, 2012, pp. 43–45.

[16] K. H. Lu et al., “Thermo-mechanical reliability of 3-D ICs contain-
ing through silicon vias,” in Proc. Electron. Compon. Technol. Conf.,
San Diego, CA, USA, 2009, pp. 630–634.

[17] Y. Chen, E. Kursun, D. Motschman, C. Johnson, and Y. Xie, “Through
silicon via aware design planning for thermally efficient 3-D inte-
grated circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 32, no. 9, pp. 1335–1346, Sep. 2013.

[18] P. Budhathoki, A. Henschel, and I. A. M. Elfadel, “Thermal-driven
3D floorplanning using localized TSV placement,” in Proc. Int. Conf.
IC Design Technol., Austin, TX, USA, 2014, pp. 1–4.

[19] W. Yao, S. Pan, B. Achkir, J. Fan, and L. He, “Modeling and application
of multi-port TSV networks in 3-D IC,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 4, pp. 487–496, Apr. 2013.

[20] D. H. Kim, R. O. Topaloglu, and S. K. Lim, “Block-level 3D IC design
with through-silicon-via planning,” in Proc. Asia South Pac. Design
Autom. Conf., Sydney, NSW, Australia, 2012, pp. 335–340.

[21] X. Zhao and S. K. Lim, “TSV array utilization in low-power 3D clock
network design,” in Proc. Int. Symp. Low Power Electron. Design,
Redondo Beach, CA, USA, 2012, pp. 21–26.

[22] J. Knechtel, I. L. Markov, J. Lienig, and M. Thiele, “Multiobjective
optimization of deadspace, a critical resource for 3D-IC integration,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2012,
pp. 705–712.

[23] H.-T. Chen, H.-L. Lin, Z.-C. Wang, and T. Hwang, “A new architecture
for power network in 3D IC,” in Proc. Design Autom. Test Europe,
Grenoble, France, 2011, pp. 1–6.

[24] P. Hsu, H. Chen, and T. Hwang, “Stacking signal TSV for thermal dissi-
pation in global routing for 3-D IC,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 33, no. 7, pp. 1031–1042, Jul. 2014.

[25] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-tree
and fast simulated annealing,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 4, pp. 637–650, Apr. 2006.

[26] T. Meister, J. Lienig, and G. Thomke, “Interface optimization for
improved routability in chip-package-board co-design,” in Proc. Int.
Workshop Syst. Level Interconnect Predict., San Diego, CA, USA, 2011,
pp. 1–8.

[27] T. Lindeberg, Scale-Space Theory in Computer Vision. Boston, MA,
USA: Kluwer Academic, 1994.

[28] A. Coskun, K. Kawakami, and D. Rossell. (2012). Hotspot
3D Extension. [Online]. Available: http://lava.cs.virginia.edu/
HotSpot/links.htm

[29] S. H. Ahn. (2005). Convolution. [Online]. Available: http://
www.songho.ca/dsp/convolution/convolution.html

[30] M. Jung, D. Z. Pan, and S. K. Lim, “Chip/package mechanical
stress impact on 3-D IC reliability and mobility variations,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 11,
pp. 1694–1707, Nov. 2013.

[31] P. Zhou et al., “3D-STAF: Scalable temperature and leakage aware floor-
planning for three-dimensional integrated circuits,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2007, pp. 590–597.

[32] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin,
“Interconnect and thermal-aware floorplanning for 3D microprocessors,”
in Proc. Int. Symp. Qual. Electron. Design, San Jose, CA, USA,
2006, pp. 98–104. [Online]. Available: http://www.ece.ucsb.edu/
∼yuanxie/Research-3d.html

[33] A. N. Ng, R. Aggarwal, V. Ramachandran, and I. Markov,
(2006). IBM-HB+ Benchmarks. [Online]. Available: http://
vlsicad.eecs.umich.edu/BK/ISPD06bench/

[34] W. Dai, L. Wu, and S. Zhang, (2000). GSRC Benchmarks. [Online].
Available: http://vlsicad.eecs.umich.edu/BK/GSRCbench/

[35] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical
Design: From Graph Partitioning to Timing Closure. Dordrecht, The
Netherlands: Springer, 2011.

Johann Knechtel (M’11) received the M.Sc.
(Dipl.-Ing.) degree in information systems engineer-
ing and the Ph.D. (Dr.-Ing.) degree in computer engi-
neering from the Dresden University of Technology,
Dresden, Germany, in 2010 and 2014, respectively.

In 2010, he was a Visiting Research Student
with the Department of Electrical Engineering
and Computer Science, University of Michigan,
Ann Arbor, MI, USA. In 2012, he was a Research
Assistant with the Department of Computer Science
and Engineering, Chinese University of Hong Kong,

Hong Kong. From 2010 to 2014, he was a Research Associate and a Scholar
with the DFG Research Training Group Nano- and Biotechnologies for
Packaging of Electronic Systems, Dresden University of Technology, Dresden,
Germany. He is currently a Post-Doctoral Researcher with the Institute
Center for Microsystems, Masdar Institute of Science and Technology, Abu
Dhabi, UAE. His current research interests include very large-scale integration
physical design automation with emphasis on 3-D integration.

Evangeline F. Y. Young (M’13) received the
B.Sc. degree in computer science from the Chinese
University of Hong Kong (CUHK), Hong Kong, and
the Ph.D. degree from the University of Texas at
Austin, Austin, TX, USA, in 1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. She
is actively focusing on floorplanning, placement,
routing, design for manufacturability and Electronic
Design Automation on physical design in general.
Her current research interests include algorithms and

very large-scale integration (VLSI) computer-aided design.
Prof. Young was a recipient of several championships and prizes in several

recent renown EDA contests. She has served on the Organization Committee
of ISPD, Applied Reconfigurable Computing, and Field Programmable
Technology and on the Program Committee of conferences including Design
Automation Conference (DAC), International Conference on Computer-Aided
Design, ISPD, Asia and South Pacific Design Automation Conference (ASP-
DAC), System-Level Interconnect Prediction (SLIP), Design, Automation
and Test in Europe, and Great Lakes Symposium on VLSI. She was the
Area Chair in the TPC of ASP-DAC and DAC in 2015. She serves on
the Editorial Board of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ACM Transactions on
Design Automation of Electronic Systems, and Integration, the VLSI Journal.

Jens Lienig (M’97–SM’10) received the M.Sc.
(Diploma), Ph.D. (Dr.-Ing.), and Habilitation
degrees in electrical engineering from the Dresden
University of Technology, Dresden, Germany, in
1988, 1991, and 1996, respectively.

He is currently a Full Professor of Electrical
Engineering with the Dresden University of
Technology, where he is also the Director of
the Institute of Electromechanical and Electronic
Design. He was a Post-Doctoral Fellow with
Concordia University, Montréal, QC, Canada, from

1991 to 1994 and a Visiting Assistant Professor with the Department of
Computer Science, University of Virginia, Charlottesville, VA, USA, from
1994 to 1996. From 1996 to 1999, he was with Tanner Research Inc.,
Pasadena, CA, USA. He was the Tool Manager with Robert Bosch GmbH,
Reutlingen, Germany, from 1999 to 2002. His current research interests
include physical design automation, electromigration avoidance, 3-D design,
and constraint-driven design methodologies of analog circuits.

Prof. Lienig has served on the Technical Program Committee of the
DATE, SLIP, and ISPD conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

