
Fig. 1  Comparison of optimization-based (left) and procedural generator-

based approaches (right), adapted from [2, 4]. Whereas a suitable solution is 

searched using an iterative method in optimization-based approaches, a

sequence of commands defines a circuit solution in a deterministic way in 

procedural generator-based design. The latter re-use expert knowledge with 

the result of solutions previously conceived and captured in a procedural 

description, such as in Cadence’s PCells concept [13]. 

Abstract Technology Handling for  

Generator-Based Analog Circuit Design

 Benjamin Prautsch*, Uwe Eichler*, Torsten Reich*, Ajith Puppala*, Jens Lienig
†
 

*Fraunhofer Institute for Integrated Circuits IIS,

Design Automation Division EAS, Dresden, Germany 

{Benjamin.Prautsch, Uwe.Eichler, Torsten.Reich, Ajith.Puppala}@eas.iis.fraunhofer.de 
†
Dresden University of Technology, Dresden, Germany 

jens.lienig@tu-dresden.de 

Abstract—Designing analog and mixed-signal integrated circuits 

is still a matter of comprehensive manual tasks. Although a 

variety of optimization-based and procedural generator-based 

analog design automation approaches have been presented, they 

still lack a proper handling of so-called expert knowledge in an 

abstract way. We present a new method to capture expert 

knowledge by an abstract, generator-based analog circuit 

description. This approach moves detailed procedural circuit 

descriptions further towards a high-level description. Using the 

presented method, the circuit is defined by generic code which is 

converted to an abstract graph representation. The graph is 

subsequently used to apply technology-specific design rules and 

further constraints to ensure DRC-clean and robust layouts. As a 

result, a much wider set of advanced technology nodes can be 

targeted by the same parameterizable, procedural circuit 

description compared to previous approaches. Therefore, re-use 

of dedicated circuit blocks is improved which both eases 

utilization by designers and supports circuit optimization. 

Keywords— Layout; Analog Automation; Generator; 

Technology Independence; Reuse 

I.  INTRODUCTION 

The design of analog and mixed-signal integrated circuits 
demands a significant quantity of manual work done by expert 
analog designers. Therefore, both design time and quality 
strongly depend on the designer’s experience, thus making 
analog design an uncertain process. As it is frequently 
mentioned in the literature, automation is rarely used in the 
analog domain, although many approaches already exist in 
academia and even commercial tools have appeared. One 
reason is that analog design constraints are usually considered 
in an implicit way, instead of an explicit fashion, since the 
explicit definition of such constraints is still challenging [1, 2]. 

Proposed methodologies to automate analog design can 
mainly be divided into optimization-based and procedural 
generator-based approaches [3, 4] (see Fig. 1), and the 
combination of both named template-based optimization [5, 6]. 
The main advantage of optimization-based approaches is their 
high flexibility. The user has to define the performance targets 
together with a very detailed set of analog constraints [7] to 
reduce the solution space. Complex constraint handling 
techniques such as propagation, transformation, and 
verification are necessary to consider constraints throughout 
complex design hierarchies [8]. Subsequently, an optimization 
is used to find the optimal solution of this constrained problem. 

For procedural generator-based approaches, on the other hand, 
the sequential manual design tasks are defined as a sequence of 
program commands, which create, parameterize, move, place, 
and align circuit elements. Such approaches enable fast, 
parameterizable generation of schematic and layout realizations 
to enable efficient reuse of approved modules while ensuring 
design safety [9, 10, 11, 12]. Due to the fixed procedure, they 
are typically less flexible regarding placement and routing but 
they enable distinct definition of detailed layout tasks by means 
of expert knowledge. This makes them especially suited for 
smaller circuits with strong requirements on quality or basic 
building blocks with regular structures. The definition of such 
expert knowledge is still a main challenge for optimization-
based approaches [4]. Therefore, experts agree that each 
approach may not separately solve the analog design problem 
in its entirety, but a combination of both approaches is 
promising [4, 10]. 

In [4] the vision of a “bottom-up meets top-down design 
flow” is presented and “context-aware” module generators are 
found to be required. The proposed generators provide an 
extensive parameter interface to parameterize details of the 
concrete circuit to be aware of influences by the layout 
environment. Varying these parameters, one is able to consider 
LDE (layout dependent effects) such as WPE (well proximity 
effect). In advanced technology nodes, dependent design rules 

56

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach



 
 

Fig. 2  Comparison of conventional technology abstraction (left) and our 

TAL-based generator approach (right). New technology nodes are adjusted 

according to the gray arrows. Dashed lines represent the “borders” within 

the design flow. 

could also be considered this way. However, if such generators 
are in the inner loop of an optimization, the increasing count of 
parameters would tend to cause long iteration cycles. 
Moreover, in this phase the parameters would be decoupled 
from the particular layout task, although rules (e.g. dependent 
spacing) are known and could be automatically derived within 
the module generator in a deterministic manner. Therefore, an 
increased level of abstraction within procedural generators is 
needed to encapsulate the variety of parameters by means of a 
powerful generator programming interface. 

A. State of the Art 

Previous procedural analog automation approaches provide 
technology-handling especially for “neighboring” technology 
nodes with minor changes regarding the complexity of design 
rules. The solution of [12] provides an interface to encapsulate 
technological parameters by a large set of variables which are 
used within the code description of e.g. placement steps of 
layout components. It was applied in [10]. This approach 
works well as long as the technology variables are not 
dependent on the particular layout situation, which 
unfortunately is the case in advanced technology nodes. The 
framework in [11] also provides an interface to the technology. 
The authors claim that the technology independence of their 
generators is eased by the tool, but, since the programmer has 
to ensure it for each module explicitly, technology 
independence is not intrinsically ensured. Both approaches are 
well-suited to realize re-use for similar technologies. They 
create the full set of design data, namely schematic, symbol, 
and layout which is important for data consistency and an 
effective method to improve the productivity by new 
opportunities for analog design flows [9]. However, strongly 
different technologies cannot be handled by these generator 
description approaches in an appropriate way.  

Template approaches often combine generators with 
optimization [5, 6]. The relative position of layout elements is 
defined using a generic template language such as presented 
in [14] resulting in a much more technology-independent 
representation. The template is then used as a set of constraints 
for the automatic placement. Auto routing is usually done in a 
separate step, but can also be part of the template [15]. The 
disadvantage of template-based optimization is that strongly 
technology-dependent module generators are still required to 
realize the particular layout, as mentioned in [5]. Advanced 
technology handling is necessary to improve both re-use of 
procedural generators and template-based optimization. 

B. Our Contribution 

We propose a new generator programming interface that 
contains a separate command layer for technology-dependent 
parts of the circuit description (see Fig. 2). This technology 
abstraction layer (TAL) separates detailed, technology-
dependent placement, routing, and device-level 
parameterization commands from the topological schematic 
and layout description. This means that each elementary design 
step (generator command) is not directly executed by the 
framework. Instead, each command is used to successively 
create an abstract graph representation which allows the 
consideration of other layout elements during a design step, if 
necessary. Therefore, e.g. automatic consideration of the layout 

context is possible during the placement of a new element in 
relation to another one. This way, TAL saves design know-how 
even at this low level of complexity and covers a much larger 
variety of technology nodes which is essential for managing 
the complex design rules of advanced technology nodes. 

This paper is organized as follows: Section II provides an 
overview of the main technology differences from a designer’s 
point of view; Section III contains our new abstraction layer 
approach; in Section IV an example and its results are 
presented. The conclusion and outlook are given in Section V. 

II. DIVERSITY OF TECHNOLOGIES 

One of the first steps of analog design is the selection of a 

technology to be used. The choice depends on performance 

and commercial constraints and addresses a large variety of 

available technologies. Furthermore, updates of technologies 

can also behave like a change of the technology and force 

designers to re-design older circuits at least partly. To be 

aware of this diversity and to enable new module 

parameterization a generic technology handling by reusable 

generator implementations (i.e. parameterizable circuit 

descriptions) is desirable. From a designer’s point of view, 

technologies are represented by process design kits (PDKs) 

which generally differ in number and type of layers, devices 

and their models, layer interconnects (vias), and rules, as well 

as their identifiers and parameters. For a true generic 

technology handling a detailed analysis has been performed 

and a software structure has been created to handle the 

particular technologies by a generic, procedural, object-

oriented design description. This software structure can be 

easily extended for further technologies with other design 

rules. 

A. Technology Parameters 

Technology parameters can basically be divided into 
identifiers and technological data. Identifiers can be names of 
layers and devices and, thus, do not represent physical 
quantities. Technological data relate to physics, as e.g. the 
mobility of a particular MOS-transistor or the sheet resistance 

57

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach



 
 

Fig. 3  Sketch of the implementation for the generic technology data handling. 

Data of a PDK and their mapping functions are stored in objects for design 

rules, devices, layers, and vias. Each of the latter objects is further refined. 

of a particular layer. These parameters are mapped by simple 
functions ��� which map generic parameters ��	out of a set of 

generic parameters �� to a set �� of particular parameters	��: 

���: �� →	��, 	�� ↦ �� 

This mapping is implemented in a class TechMap() which is 

frequently specialized for a variety of elements in each PDK. 

B. Library Elements 

Each technology provides a library of elementary cells such 
as MOS-transistor or metal capacitor devices, vias, or substrate 
contacts. Devices are usually provided as parameterized cells, 
for example PCells [13], implemented in a design-tool-specific 
programming language. They create custom layout 
representations of the device each time an instance of such cell 
is to be accessed. Although the basic functionality of same 
devices is comparable for different technologies, the particular 
realization is diverse. These differences for cells include the 
cell identifier, parameters (and again their identifiers), size and 
pins (and their position) of both symbol and layout of a device, 
and the effect of device parameters on the resulting layout 
configuration (geometry). 

A cell identifier and a part of the device parameters can be 
mapped using the aforementioned class TechMap(). However, 
in order to realize an overall generic description, an abstract 
class needs to be defined which encapsulates the remaining 
particular parameters in a generic manner. For example, we 
have defined a MOS-transistor class TechMosDevice() which 
inherits from an again abstract class TechPdkDevice(). A 
generic device may define a set of n generic device 

parameters	��	  	���	�, ��	�, … , ��	�	�, with each ��� generic 

parameter having a set of generic values	��	� 	of which one 

single value can be chosen. Each generic parameter value 

results in a variable number ��  ������	�� of particular 

parameters �� ∈ ��	 of the device, resulting in a more complex 

mapping function	���	� for each ��� generic parameter: 

���		�:	�� → ��	, ��	� ↦ ���	�, ��	�, … , ��	��
�, �	 ∈  1, …�" 

For example, in our implementation a generic parameter to 
vary the connection style of the gate of a MOS-transistor is 
called	“$%&��'(�”. Allowed generic values are	 “�&�'”,
“�&*+”, “�'�1”, “�'�2”, … " which, as in this case, can itself 
depend on technology (here: number of metal layers). A 
particular value results in a dedicated set of technology-
dependent parameters which are applied to the concrete PCell 
of the PDK. This complex mapping is realized by a separate 
class hierarchy which eases the transformation between generic 
and particular parameters. 

Unfortunately PDKs show a large variety in terms of PCell 
parameters. Therefore, the previously mentioned simple 
example could already fail, since the concrete PCell could miss 
parameters to realize the desired gate connection (e.g. certain 
metal layer). One possibility to overcome this problem is to 
utilize completely self-made device generators as in [12] or 
[16] which are defined using the generic generator interface. 
However, this would result in problems of acceptance by 
designers, since such generators are not validated by the PDK 
provider. Therefore, we have implemented device generators 

such that concrete PCells are always instantiated from the 
PDK. Only if necessary, missing parts are added to the PCell 
instance to obtain structurally generic devices including generic 
pin identifiers. This is done by a generic device wrapper 
description that was implemented once per device type. 

C. Design Rules 

Design rules can basically be separated into those which 
have a fixed value and those which can have multiple values 
(dependent rule). The latter dependent design rules can only be 
evaluated if the concerned layout elements and their 
dimensions (and sometimes also their connectivity) are known, 
while the evaluation of fixed rules does not require such 
considerations. One could transform a dependent rule to a fixed 
rule, if e.g. the maximum value of a dependent spacing rule is 
used. However, this would result in huge waste of chip area, 
since these spacing values can, depending on the PDK, easily 
vary by a factor of up to ten for a single layer. Therefore, such 
simple solution has not been applied. The consideration of 
dependent rules necessitates the definition of dependent rule 
types in a generic manner to handle them within the TAL 
system. Furthermore, it is important to consider that some rules 
can be immediately evaluated during a design step, while 
others need further information from other design steps or the 
design hierarchy to be evaluated. Accordingly, these 
possibilities can be summarized as shown in Table 1. 

For example, a dependent spacing rule can be calculated as 

soon as layers, shapes, and sizes of the concerned layout 

elements are defined. A density rule (percentage of a layer 

area in the whole design or a defined window of the design), 

Table 1:  Classification of design rules and their applications 
 

 Fixed Rule Dependent Rule 

Rule can be 

evaluated 

Fixed Constraint 

(e.g. minimal width, 

fixed spacing) 

Dependent Constraint 

(e.g. dependent spacing in a 

fixed, known environment) 

Further 

information 

necessary 

Fixed Constraint in 

design hierarchy 

context 

(e.g. density rules) 

Dependent Constraint in 

design hierarchy context 

(e.g. spacing between 

different cells) 

 

58

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach



(a) (b) (c)  
  

Fig. 5  Graph generation through the generator API by the “above”

placement task with reference points “ll” and “ul”. Instance-based 

representation (a), detailed placement graph with logical reference points (b),

and detailed placement graph with resolved additional rule where “spc” 

denotes spacing (c). 

on the other hand, can only be considered if such layout 

blocks are finished. Since the layout must be completed to 

evaluate the density rule, this evaluation cannot take place 

during a particular design step. Therefore, each step of the 

procedural description of an integrated circuit needs to be 

transformed into a placement relation within an abstract graph 

representation (e.g. relative placement with dependent spacing 

rules). The graph is subsequently analyzed to evaluate the 

particular rule necessary to obtain a DRC-clean layout. As a 

result, relations not yet evaluated during the current step must 

be stored to be considered later. In addition, a method must be 

available to enable proper consideration of such rules by 

means of overriding previously calculated rule values. 

III. ABSTRACTION OF TECHNOLOGIES 

In the previous chapter a variety of technological 

differences, seen by the designer, was presented which should 

all be part of TAL. Therefore, TAL must be divided into the 

following parts to consider these differences: 
  

(1) Technology data mapping: All data and parameters to 

be mapped are collected in a generic manner and stored in 

object representations of design rules, devices, layers, and vias 

(see Fig. 3). A particular version of the class ConcreteTech() 

is defined for each applied PDK. This class contains all 

necessary data for the proper circuit generation in the 

particular technology. All instantiated classes are further 

refined by inheritance and provides a variety of information 

(e.g. maximum current density or sheet resistance of a layer or 

interconnects). The simple mapping is realized as discussed in 

Section II.A. Complex mapping, as discussed in Section II.B, 

is done for each element of a concrete technology within class 

ConcreteTech(). All parameters can be accessed through the 

methods defined in the abstract class AbstractTech() which 

serve as a generic interface for each particular technology. 
 

(2) Design task support: Each layout command of TAL is 

encapsulated such that particular technology information is not 

directly used. This way the generator description is as generic 

and simple as possible. Effectively, each design task adds 

nodes, edges, or information to the abstract graph 

representation (see the code in Fig. 4, which creates the graph 

in Fig. 5a). Currently, tasks are implemented which realize 

instantiation, placement, and alignment of arbitrary layout 

elements. Required data are automatically evaluated 

depending on the particular design task the generator 

programmer defines. The relation between class objects for 

layout information and class objects, which handle design 

tasks, are shown in Fig. 6. For example, detailed placement, 

which supports dependent design rules, would need to access 

the structure and relation of involved layout elements (i.e. 

reference points and relative placement direction of layout 

elements) as shown in Figs. 5a and 5b. The required spacing 

rule including its dependency on the layout situation is stored 

in the technology data mapping and is used by the framework 

to automatically calculate the minimum spacing for the current 

task dependent on the abstract graph representation. In 

addition, a user-defined minimum spacing (here: 

“spc_default”, see Fig. 4) can still be defined, which is 

comparable, but not equal, to the technology variables of 

former approaches (see Fig. 2). The difference is that this 

user-defined minimum spacing can still be overridden by 

another rule, if necessary. In the example of Fig. 5a, the layout 

situation is first defined by the shapes of both the “pmos” and 

“nmos” MOS-transistor instances and their placement relation 

(“above”). This layout situation is then used by the generic 

1: // define NMOS-, and PMOS-transistor (Nodes) 
2: nmos= generate_device(Mos,nmos_params) 

3: pmos= generate_device(Mos,pmos_params) 

4: // place PMOS-transistor (Edge) 

5: pmos.plc_above(nmos, ul, ll, nmosLay, pmosLay, 

                  spc_default) 
  

Fig. 4  Pseudo-code of an example placement of a MOS-transistor in 

relation to another one. Both transistors are represented by nodes within 

TAL. The placement task will generate an edge, where “ul” and “ll” are 

reference points of the boundary box identifying upper left and lower left, 

respectively. For a more accurate placement, definition layers of layout 

elements can be defined, as well as an additional constraint. 

  

Fig. 6  Implementation of the abstract graph representation. Each layout 

situation is stored in an object of the class LayoutSituation(), which contains 

data LayoutElemData() of two layout elements and their relation. The 

overall graph LayoutGraph() stores this information in edges and nodes, 

which is used by the particular technology rule TechRule(). 

59

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach



(a) 

(b) 

(c)  (d) 

Fig. 7  Layout example created through TAL for detailed technology-

aware layout description considering dependent design rules. Figure (a) 

shows the abstract graph representation (rectangle boxes represent layout 

elements, which can be organized in “FigureGroups”), (b) shows the 

overall layout example in 180 nm, (c) and (d) depict parts of this example 

in 180 nm and 40 nm, respectively. 

spacing rule in form of a class object representation, which 

stores all information about both involved layout elements and 

their relation. Using this class object, the generic rule applies 

its strategies to evaluate the related rule value. 

(3) Consideration of all rules: Since multiple rules can 

affect the same elementary design step, as discussed in 

Section II.C, a previous decision can be overridden. For 

example, during a design task an instance is placed dependent 

on the concrete minimum spacing design rules of a PDK 

(e.g. edge “above” in Fig. 5). Another rule (e.g. spacing rules 

for other layers of a placed instance or minimum layer 

density), forces the evaluated spacing to a larger value 

resulting in a actually larger spacing constraint for this 

particular placement step (e.g. edge in Fig. 5c).  

IV. IMPLEMENTATION

A simple implementation of two transistors including 
routing has been executed in two technology nodes (180 nm 
and 40 nm) in order to show the capability of the approach 
(see Fig. 7). The technologies are very different regarding the 
properties discussed in Section II (i.e. device identifiers and 
parameters, dependent vs. independent design rules), thus 
enabling an efficient verification of our approach with 
reasonable effort. Using the new TAL, the generator can 
handle these differences by means of a graph construction step 
including mapping followed by the particular layout 
generation.  

A. Graph Construction 

An abstract graph representation is derived from the 
generic, abstract generator description to address the 
aforementioned challenges. This description contains each 
circuit element (devices, routing, etc.) and their relative 
positions to other circuit elements and, thus, represents a very 
dedicated template comparable to [14] and [15]. However, the 
difference with TAL is that e.g. spacing is not defined by a 
variable. It is directly calculated considering the current design 
task and the related advanced node design rule, making the 
code much more technology independent. The procedure first 
maps all parameters (see Section III.1) and then generates the 
generic devices to derive geometric information. The geometric 
details of these instances can still depend on the particular 
technology. Nevertheless, all pins and their positions are 
defined in a generic manner using the device generators 
mentioned in Section II.B. The spacing values (see dashed 
edges in Fig. 7a) are not explicitly defined yet, but are 
evaluated depending on both the particular layout environment 
and the concrete technology (see Section III.2). The graph 
contains all information necessary to enable both realizing the 
expert designer’s aim and fulfilling concrete rules from the 
technology. Moreover, with TAL it can be checked if a 
generator description contains logical errors, as for example 
unwanted overlaps of layout instances. The simplified graph of 
the example including hierarchy is shown in Fig. 7a. 

B. Generator Execution 

Once the graph has been created, the particular rule of the 

concrete technology has to be evaluated for each layout task. 

Since the graph contains all relations of layout elements and 

their parameters, the particular object of a rule class can 

compute this information to return a resolved rule value (see 

Fig. 6). This result is then applied to the dashed edges shown in 

Fig. 7a. If another rule affects the same edge, a particular 

solution for each layout task is defined. In our previous 

example (see Fig. 5), the maximum of both rules is used since 

the layout task is a placement using the minimum allowed 

spacing value.  

Figure 7 shows a part of the resulting layout for both 

180 nm and 40 nm technologies generated by the same 

procedural generator description. All generic parameters of the 

generator are mapped to the particular ones. It is important to 

mention that for the wires (denoted as “Wire” in the graph) the 

minimum possible spacing of the 180 nm technology is static 

(fixed rule) while the 40 nm technology encompasses five 

different values, which are to be evaluated from thirty 

different cases of values for this layout situation. The lowest 

60

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach



possible value within this set of dependent minimum spacing 

values is less than 150 nm, but since the rule is dependent on 

this particular layout situation, the actual value was set to the 

according spacing of 150 nm. It is obvious that a consideration 

of such dependent rules within the procedural generator 

description code itself, as it is done in former approaches, 

would be strongly technology dependent, as well as error-

prone. 

V. CONCLUSION AND FUTURE WORK 

The presented approach is a step towards the conflation of 
both implicit expert knowledge and constraint-based analog 
circuit design automation. Our technology abstraction layer 
(TAL) enables a new explicit, well-readable and robust 
description of layout blocks while considering dedicated design 
rules for a wide range of technology nodes. 

TAL is implemented such that new design rules from 
technologies not considered yet, as well as new design tasks, 
can easily be added into the software structure. Thus, the 
variety of target technologies will increase with reduced 
migration effort. This is supported by an automated import of 
technology data as well as a generic interface to add particular 
methods. These methods define how to apply new rules to 
particular design tasks and layout situations. Moreover, in 
future work the system will be extended such that further 
electrical constraints like layout dependent effects, current 
densities [17], or IR-drop are considered. 

This work is part of the development of a complex 
Intelligent IP library of parameterizable and robust circuits for 
a variety of target technologies including advanced nodes. The 
library is planned to contain highly technology-independent 
elements (e.g. operational amplifiers, comparators, ADCs etc.) 
to ease the design of analog circuits. Moreover, the presented 
approach can be part of a technology-independent template-
based optimization approach to support the further automation 
of analog design. 

ACKNOWLEDGEMENTS 

The presented work was partly supported by the European 
Union and the German Ministry for Education and Research 
BMBF within the project THINGS2DO (Ref. No. 16ES0240). 

We would like to thank Mohamed Sabra for his extensive 
analysis of design rules of diverse technology nodes.  

REFERENCES

[1]  G. Jerke and J. Lienig, "Constraint-driven Design — The 

Next Step Towards Analog Design Automation," Proc. of 

the 2009 International Symposium on Physical Design, pp. 

75–82, 2009.  

[2]  R. Rutenbar, "Analog Synthesis (and Verification) 

Revisited: What's Missing? Invited Talk," Computer Aided 

Verification (CAV) Frontiers in Analog Circuit (FAC) 

Synthesis and Verification Workshop, July 2011, 

http://www.async.ece.utah.edu/FAC2011/abstracts/Rutenba

rSlides.pdf.  

[3]  G. G. E. Gielen and R. A. Rutenbar, "Computer-Aided 

Design of Analog and Mixed-Signal Integrated Circuits," 

Proc. of the IEEE 88.12, pp. 1825–1854, Dec 2000.  

[4]  J. Scheible and J. Lienig, "Automation of Analog IC Layout 

— Challenges and Solutions," Proc. of the 2015 Symposium 

on International Symposium on Physical Design, pp. 33–40, 

2015. 

[5]  R. Martins, N. Lourenco and N. Horta, "LAYGEN II—

Automatic Layout Generation of Analog Integrated 

Circuits," Computer-Aided Design of Integrated Circuits 

and Systems, IEEE Transactions, pp. 1641–1654, 2013.  

[6]  H. Graeb, F. Balasa, R. Castro-Lopez, Y.-W. Chang, F. V. 

Fernandez, P.-H. Lin and M. Strasser, "Analog Layout 

Synthesis – Recent Advances in Topological Approaches," 

Proc. of the Conference on Design, Automation and Test in 

Europe, pp. 274–279, 2009.  

[7]  A. Krinke, G. Jerke and J. Lienig, "Adaptive Data Model 

for Efficient Constraint Handling in AMS IC Design," 20th 

International Conference on Electronics, Circuits, and 

Systems, pp. 285–288, 8–11 Dec 2013.  

[8]  A. Krinke, M. Mittag, G. Jerke and J. Lienig, "Extended 

Constraint Management for Analog and Mixed-Signal IC 

Design," Circuit Theory and Design (ECCTD), 2013 

European Conference, pp. 1–4, 2013.  

[9]  T. Reich, H. D. B. Prautsch, U. Eichler and R. Buhl, 

"Silicon Proof of The Intelligent Analog IP Design Flow for 

Flexible Automotive Components," Proc. of the 2015 

Design, Automation & Test in Europe Conference & 

Exhibition, pp. 403–404, 2015.  

[10]  A. Graupner, R. Jancke and R. Wittmann, "Generator Based 

Approach for Analog Circuit and Layout Design and 

Optimization," Design, Automation & Test in Europe 

Conference & Exhibition (DATE), pp. 1–6, 2011.  

[11]  J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, 

K. Jung, L. Kong, N. Narevsky, Y. Lu, N. Sutardja, E. An, 

A. Sangiovanni-Vincentelli and E. Alon, "BAG: A 

Designer-Oriented Integrated Framework for the 

Development of AMS Circuit Generators," Computer-

Aided Design (ICCAD), 2013 IEEE/ACM International 

Conference, pp. 74–81, 2013.  

[12]  IPGen 1Stone Developer, [Online]. Available: 

http://www.ipgenme.de/eda-and-ip-products/1stone-

developer.html. [Accessed 06 2015]. 

[13]  Cadence, "Virtuoso Parameterized Cell Reference Product 

Version 6.1.6," 2015. 

[14]  A. Unutulmaz, G. Dündar and F. Fernández, "LDS based 

Tools to Ease Template Construction," Synthesis, Modeling, 

Analysis and Simulation Methods and Applications to 

Circuit Design (SMACD), 2012 International Conference, 

pp. 61–64, 2012.  

[15]  A. Unutulmaz, G. Dündar and F. V. Fernández, "A 

Template Router," Circuit Theory and Design (ECCTD), 

2011 20th European Conference, pp. 334–337, 2011.  

[16]  X. Jingnan, J. Vital and N. Horta, "A SKILL-based Library 

for Retargetable Embedded Analog Cores," Conference on 

Design, Automation and Test in Europe, pp. 768–769, 

2001. 

[17]  J. Lienig, "Electromigration and Its Impact on Physical 

Design in Future Technologies," Proc. of the ACM 2013 

International Symposium on Physical Design, pp. 33–40.  

61

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf  ∙  21. – 23.09.2015 in Siegen 

ISBN 978-3-8007-4071-0 ©  VDE VERLAG GMBH · Berlin · Offenbach

http://www.async.ece.utah.edu/FAC2011/abstracts/RutenbarSlides.pdf



