
Chapter 7
Constraint-Driven Design Methodology –
A Path to Analog Design Automation

Göran Jerke1, Jens Lienig2, Jan B. Freuer1

1 Robert Bosch GmbH, AE/EIM, 72762 Reutlingen, Germany
2 Dresden University of Technology, IFTE, 01062 Dresden, Germany

Abstract Physical design for analog ICs has not been automated to the same degree

as digital IC design, but such automation can significantly improve the productivity

of circuit engineers. Analog design remains difficult to formalize due to a large

amount of expert knowledge involved, such as sophisticated constraints that are

specified manually and satisfied through manual layout. We therefore propose a

constraint-driven design methodology – a suite of algorithms and methodologies

to capture key rules governing analog layouts and to produce layouts that satisfy

these rules. In this chapter, we identify major challenges in analog physical design,

and relate them to constraints. We introduce techniques for constraint representation

and highlight the essential components of a constraint-driven design methodology.

Finally, we explain how constraint-driven design impacts a typical analog design

flow, layout algorithms and the overall physical design methodology.

7.1 Introduction

While physical design automation of analog IC design has seen significant improve-

ment in the past decade, it has not advanced at nearly the rate of its digital counter-

part. This shortfall is primarily rooted in the analog IC design problem itself which

is very complex even for small problem sizes [7, 16, 23, 29].

The quality of a design result is generally determined by the degree to which

compliance constraints have been met and pre-defined design objectives achieved.

Due to the lack of uniform representation and interpretation of design constraints

in the analog design flow context, most of the constraints in today’s analog designs

are still specified and considered manually by expert designers (expert knowledge).

Furthermore, analog constraints are often used implicitly (i. e., based on a designer’s

experience) rather than being explicitly defined, which prevents their effective use

in design automation. However, progress in physical design automation for analog

ICs is urgently needed as design sizes increase, along with significant challenges

271

Andreas Krinke
Schreibmaschinentext
© Springer 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The final version was published in G. Jerke, J. Lienig, J. B. Freuer "Constraint-Driven Design Methodology: A Path to Analog Design Automation". In: Analog Layout Synthesis — A Survey of Topological Approaches, H. Graeb (ed.) Springer Verlag, New York, ISBN 978-1-4419-6931-6, pp. 271-299, 2011.

272 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

�������� ���� ����

�
�
	

��

��
�

�
�
�
��

�
�
�

�����
�����
��

��������	�
�

�������

��	����
���	
����
�

 ������ �	���

������� �	���

��
�!�
���

���	
����

"���#
�
���

$"�

 %�

�������	�
��

��
������	�������
�
�� �����	���
������

�
��!�
�
�

 ������$����

Fig. 7.1 The evolution of analog physical design methodologies, such as schematic-driven layout
and constraint-driven design, towards the goal of a fully automated analog design flow.

such as increasingly stringent reliability and robustness requirements, and a rapidly

widening verification gap.

Analog circuits are currently designed interactively, in terms of schemat-

ics, which are subsequently verified. Most researchers agree that this so-called

schematic-driven layout (SDL) methodology will be replaced by analog design au-

tomation in the future, more in line with current practices for digital circuits. As we

will show, constraint-driven IC design is both a necessary step toward full automa-

tion and also a precondition for it (Fig. 7.1).

The ultimate goal of fully automated analog design (analog design automa-

tion) can only be achieved if the schematic-driven design paradigm evolves into

a constraint-driven design paradigm. This is based on the belief that we first need

a methodology that allows for automatic inclusion of expert knowledge in the form

of constraints, which also must be verified automatically. Only then one is able to

tackle the task of analog layout synthesis in a comprehensive and consistent manner.

In other words, the abilities of “analyzing” and “verifying” are a precondition for

“synthesizing” [30].

This chapter provides an introduction to the concept of a constraint-driven phys-

ical design approach for arbitrary ICs in general, and for analog ICs in particular.

First, we identify key similarities and differences between the physical design of

analog and digital circuits, and the corresponding challenges, which we show are

primarily constraint-related (Section 7.2). We discuss the constraint representation

and classification in Section 7.3 and give an overview of the constraint-driven de-

sign flow and its essential components in Section 7.4. Here, we introduce funda-

mental components required in this flow, such as constraint representation, man-

agement, transformation and verification. The application and resolution of con-

straints, through constraint engineering, is discussed in Section 7.5. In Section 7.6,

we then present the impact this methodology has on the overall IC design flow,

7.2 Problem Description 273

Fig. 7.2 Simplified design
flow for analog IC design
where design steps are typ-
ically overlapping. Multiple
design steps are active at the
same point of time [30].

100 %0 %

0 %100 %

Speci
ficatio

n

Circ
uit D

esi
gn

Sim
ulatio

n

Place
and Route

Physi
cal

Veri
ficatio

n

Floorplanning, D
evi

ce
Gen- e

ratio
n

D
eg

re
e

of
D

es
ig

n
Fr

ee
do

m

Design Time

Ph
ys

ic
al

R
ea

liz
at

io
n

Design Flow

the core design of design automation algorithms, and the required paradigm adjust-

ments needed for analog physical design approaches. The chapter concludes with

an anticipatory look at open problems (Section 7.7).

7.2 Problem Description

7.2.1 The Design Problem

In general, any (IC) design problem represents a complex and constrained optimiza-

tion problem. The degrees of design freedom linked to the optimization problem

span a multi-dimensional solution space which is at least partially constrained by

the given global design constraints. A feasible solution for a specific design problem

is obtained by sequentially removing all degrees of design freedom while traversing

and reducing the solution space and considering all context-relevant constraints and

application profiles.

This reduction is done by sequentially transforming functional representations

with many degrees of design freedom into equivalent ones with fewer degrees of

design freedom. For example, using suitable methods one may transform a given

functional specification into a netlist1, which is subsequently transformed into a

floorplan, a placement order, a wired layout and finally into a physical mask layout2

which contains no further degree of design freedom.

Several functional transformations (design steps) can be active at the same time

during analog IC design (Fig. 7.2). The strategy of how and when to remove a degree

of design freedom during the design phase depends on several specific factors in the

design context. Among others, these factors may include the type of IC applica-

tion, its usage profiles, reliability and robustness requirements as well as the current

problem situation in a design phase with its linked constraints (design context).

1 Functional representation of the given specification.
2 Functional representation of the given netlist.

274 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

In general, design constraints must be fulfilled whereas design objectives may
be fulfilled. A design objective that must be fulfilled hence represents a constraint,

and must be treated as such. Similarly, any given design constraint that may be

fulfilled should be considered as an design objective. The design goal is to achieve

design results that fulfill all given constraints and which offer the highest level of

achievement toward pre-defined design objectives.

7.2.2 Analog Versus Digital Design Automation

Analog IC designs often contain only a small number of devices as compared to dig-

ital IC designs. Nevertheless, the effort required to design analog function modules

often matches or even exceeds the effort for digital modules. This is mainly due to a

much richer set of constraints that must be considered simultaneously (Section 7.3).

On average, each design object (instance, net, path, etc.) in an analog IC design

must comply with a larger and more extensive set of constraints to fulfill its intended

function (compared to digital design). The primary reason for this observation is the

higher level of functional abstraction offered in digital designs. This allows digital

designs to use fewer top-level constraints to guarantee a robust function.

Furthermore, the majority of constraints may yet be unknown when the analog

design process begins. This renders automatic top-level design planning for analog

IC designs nearly impossible. It is one of the reasons that highly skilled design

engineers are still required to perform top-level design planning manually.

This constraint-related problem also makes algorithm and tool development for

analog IC design much more difficult because the number of specific design algo-

rithms may increase with each new type of constraint. Considering today’s con-

ventional design-algorithm development approach (one type of constraint and one

algorithm to handle it), this approach falls short when it comes to linked constraints

(Section 7.3). This represents one of the primary reasons why analog design au-

tomation is lagging behind its digital counterpart and why this gap is currently still

growing.

Another important reason for the design gap is rooted in the level of completeness

and consistency that can be applied to the consideration of constraints during IC de-

sign. Today’s digital design tools already offer consistent and seamless design solu-

tions. This is mainly due to their focus on a small set of various types of constraints,

such as delay and clock skew. A unified description of constraints is not used in

today’s analog design tools and algorithms3. A common understanding of design

implications due to constraints is not guaranteed with existing approaches. Hence,

many analog constraints must still be considered manually or semi-automatically

leading to their often inconsistent and non-comprehensive consideration.

Any inconsistent or non-comprehensive consideration of constraints widens the

existing constraint verification gap. This gap exists because the design rule check

3 If not stated otherwise, the term “design algorithm” is subsequently used for both, design tools
and their built-in algorithms due to their close relationship.

7.3 Constraint Classification and Representation 275

(DRC) and the layout versus schematic check (LVS) do not include the verification

of all constraints. A tremendous amount of research effort has already been ex-

pended for the tailored consideration and verification of special types of constraint,

such as signal delay, device matching and IR-drop. Nevertheless, a unified approach

capable of dealing with all constraints during the entire design and verification phase

is still missing.

Another difference between analog and digital IC designs is found in the way the

functional transformations, i. e., the design steps, are linked and carried out. While

most steps in digital IC design are separated from each other, the design steps of

analog ICs are typically overlapping, and hence, tightly linked due to the impact

of analog constraints (Fig. 7.2). For example, device generation, pre-placement and

global routing usually occur simultaneously during the floorplanning phase of ana-

log ICs. Analog design algorithms must thus consider various types of constraints

simultaneously. This greatly reduces the impact of specialized design algorithms

that handle only a small set of types of constraints.

In order to address the current shortcomings discussed in this section, a

constraint-driven design approach is required that considers constraints in a compre-

hensive and consistent manner. Its cornerstones will be introduced in Sections 7.4 –

7.6.

7.3 Constraint Classification and Representation

Constraints for IC design (hereafter, constraints) are classified by their complexity,

category, form and type. The classification criteria are discussed in this section.

From a formal point of view, constraints define relations between values of de-

sign variables (hereafter, variables). A relation between independent variables rep-

resents a simple constraint. Relations between dependent variables are denoted as

complex constraints (Fig. 7.3). Constraints for IC design are linked to design objects

which represent data objects in the database of a design tool, such as cell, cellview,

instance, net, terminal.

In general, constraints belong to one of the following four categories:

• Technology constraints enable manufacturing for a specific technology node

(e. g., wire width, spacing, layer thickness).

• Functional (electrical) constraints ensure the intended IC functionality (e. g.,

maximum IR-drop between two net terminals, minimum gain, maximum offset

voltage).

• Design methodology (geometry) constraints reduce the overall complexity of the

design process. They also guide transformations, enforce a specific design pattern

or describe a context to which other constraints are associated to (e. g., maximum

design hierarchy depth, maximum number of devices in a cluster, pre-defined

layer for power-routing, bus width).

• Commercial constraints (e. g., maximum die area, number of layers).

276 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

Design parameter unification

Design parameter unification

1

Simple
Constraint C 2

Simple
Constraint C 3

Simple
Constraint C 4

Simple
Constraint C 5

Simple
Constraint C

starShaped N netPin N P2 netPin N P1 irDrop P1 P2 V V 0 1V

Complex Constraint Cc

Fig. 7.3 Four simple constraints (starShaped(N), netPin(N,P2), netPin(N,P1),
irDrop(P1,P2,V), and V < 0.1V) form a complex constraint Cc through a conjunction de-
fined in constraint logic programming (CLP) notation. The complex constraint Cc is satisfied if all
four simple constraints are satisfied. The simple constraints are tightly coupled through the design
parameters N, P1, P2 and V that must be substituted (unified) to resolve Cc.

A constraint is given in either an implicit or explicit form. An implicit constraint

is not clearly expressed and may be given as plain textual note or may arise from as-

sumptions intrinsically built into circuit descriptions or design algorithms. Implicit

constraints represent non-formalized design knowledge. Contrary to implicit con-

straints, explicit constraints are clearly expressed and represent formalized design

knowledge. Examples of implicitly defined constraints are the placement require-

ments of differential pair transistors – they must be placed symmetrically in order

to maximize device matching. While this is obvious to any layout designer, the in-

clusion of such complex rules into both layout and verification tools is often not

possible for applications that contain additional requirements, such as parasitic in-

terconnect matching. Hence, due to its non-formal nature, implicit constraints can-

not be utilized for any type of controlled and automated constraint-driven design.

On the other hand, explicitly defined constraints are accessible to design algorithms

and thus are a primary requirement for any constraint-driven design flow.

Each constraint belongs to a specific constraint type that represents a classifica-

tion property for the same class of constraints. The type of a constraint always cor-

responds to the type of the corresponding design variables. Constraint types have

a clearly defined physical, electrical, mechanical, mathematical or geometrical unit

(e. g., the constraint type “IR-drop” has the unit Volt, the type “signal delay” the

unit Seconds). The relevance and impact of a constraint type strongly depend on the

specific design context.

In order to formalize design constraints, all constraints and all related design

variables must be uniformly represented in an abstract form. The conversion of

constraints into a uniform representation must be complete and unambiguous. An

uniform representation enforces a common understanding of constraints among

all involved design algorithms. Hence, it is a primary requirement for addressing

the analog (constraint) design problem [11, 26]. Constraint Logic Programming

7.4 Components of a Constraint-Driven Design Flow 277

(CLP) [8, 19] embodies a feasible approach for uniform constraint representations.

In CLP, constraints are defined in the body of conditions (clauses) (Fig. 7.3). All

constraint examples discussed in this chapter are based on the CLP notation.

Assume an IR-drop constraint VIR(P1,P2) < 0.1V stating that the IR-drop be-

tween two layout pins P1 and P2 must be less than 0.1 V. This functional con-

straint is simple since it is completely independent from any other constraint. If

this example is transferred to a more formal representation such as CLP, the IR-

drop constraint must be written as a relation between design parameters. A possi-

ble representation is the relation irDropLessThan(P1,P2,0.1). However, this ap-

proach is very restrictive. For example, neither equality nor any other inequality can

be expressed. In order to obtain a more general representation, it is advisable to

split this constraint into a conjunction of a functional and an arithmetic constraint

irDrop(P1,P2,V)∧V < 0.1 with V representing the actual IR-drop between pins

P1 and P2.

The IR-drop between two net pins P1 and P2 is usually considered within a spe-

cific design context, in our case the net N which owns both pins. This introduces

two structural constraints netPin(N,P1) and netPin(N,P2). Additionally, if the

IR-drop needs to be considered only for nets with, for instance, a star-shaped layout

topology, another structural constraint starShaped(N) must be added. Figure 7.3

depicts the conjunction of these constraints that form the complex constraint Cc.

The coupling of the simple constraints is obtained via substitution (unification) of

the design variables N, P1, P2 and V (Section 7.5.1).

7.4 Components of a Constraint-Driven Design Flow

A design flow that considers all relevant constraints in a consistent and compre-

hensive manner is subsequently denoted as constraint-driven design flow. This flow

requires several complementary design flow components that are shown in Fig. 7.4.

Constraint management provides the management of constraint data and the

assignment of constraints to design objects (Section 7.4.1). In order to obtain de-

sign results meeting their specification, constraints are derived from design objec-

tives (constraint derivation, Section 7.4.2). Constraints are transformed between the

physical, electrical or geometrical domain to be suitable for design algorithms in a

particular design context (constraint transformation, Section 7.4.3). The constraint
sensitivity analysis (CSA) determines the sensitivity of a design parameter with re-

spect to related constraints. The CSA finds the most constraint-sensitive design pa-

rameters in a particular design context. Constraint sensitivity information can then

be used to guide the design generation (Section 7.4.4). Finally, despite the use of a

constraint-driven layout generation, the compliance of a design result with its given

constraints must be verified using constraint verification (Section 7.4.5).

278 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

Simulation

Circuit Design

Placement

Routing

Compaction

Verification

Manufacturing

Test

Constraint
Derivation

Constraint
Management

Constraint
Sensitivity Analysis

Constraint
Transformation

Constraint
Verification

Verification
Rules

Constraint
Templates

Transform.
Models

Start

Constraint
Data

Design
Data

Floorplanning
Device Generation

Fig. 7.4 Essential components of a constraint-driven design flow.

7.4.1 Constraint Management

The task of constraint management is to administer the storage of constraint data

while synchronizing the link between constraints and design objects. The manage-

ment system must also guarantee the semantic integrity of the constraints across

different levels of abstraction, and support hierarchical relations between design

objects and dependencies [6, 22]. Additionally, it is responsible for keeping con-

straints consistent and valid, which requires close interaction with design databases

as well as with constraint and design data manipulating design algorithms. Further-

more, constraint-driven design algorithms require fast access to constraint informa-

tion through (standardized) application programming interfaces.

The detection of over-constraints is an important sub-component of a constraint

management system. It is made available by the constraint verification (Section

7.4.5). Over-constraints represent a condition in which not all given constraints can

be fulfilled simultaneously. The related formal mathematical problem is denoted as

constraint satisfaction problem (CSP). Over-constraints must be resolved by con-

straint satisfaction methods, such as constraint propagation, constraint relaxation or

backtracking, in order to obtain feasible design results [20]. The use of constraint

weights as a decision criterion to resolve over-constraint conflicts is a common ap-

proach. However, this method is likely to become unsuitable if the number of con-

straints increases since many constraints may have equal or similar weights, thus

making them unusable as decision criteria.

7.4 Components of a Constraint-Driven Design Flow 279

I211

I11

T

I2I1

I12 I21 I22

I212 I213 I211

I11

T

I2I1

I12 I21 I22

I212 I213 I211

I11

T

I2I1

I12 I21 I22

I212 I213

C1

C2

C3

Top-Down
Assignment

Bottom-Up
Assignment

Top-Down & Bottom-Up
Assignment

Fig. 7.5 Assignment of constraints to design objects in a design hierarchy tree. In this example, T
represents a top cell incorporating several cellview instances I1–I213.

Constraint management also incorporates the assignment of constraints to design

objects (i) in the existing design hierarchy, (ii) across the extent of design objects

and design steps, as well as (iii) within a design hierarchy that is defined by design

objects and linked constraints (virtual design hierarchy). The use of these assign-

ment options strongly depends on the specific constraint. Furthermore, constraint

assignment is either permanent or temporary depending on the particular design

context.

The assignment of constraints within a hierarchical design can be either per-

formed top-down, bottom-up or combined top-down-bottom-up (Fig. 7.5). For in-

stance, a net shielding constraint may be assigned from the I/O pad in the top cell

down to a specific instance terminal in a sub-cell (top-down assignment). The shield-

ing constraint is then assigned to all connected net objects in the design hierarchy.

The assignment can also be performed across the extent of design objects, such

as instances. Using the previous example, cellview instances (e. g., metal resistors)

must be skipped if the net shielding constraint is to be assigned to all nets that are

physically connected on the chip mask. The net shielding constraint is then also

hierarchically assigned to all sub-nets that would connect to the main net if the

metal resistors were shorted.

In case the I/O pad is located in a sub-cell, then the shielding constraint must

be assigned to all connected lower level nets as well as to all higher level nets that

are connected to the I/O pad cell’s instances (top-down and bottom-up assignment).

Here, net shielding constraints are assigned within a virtual design hierarchy that is

defined by the I/O pads’ location in the design hierarchy tree and the hierarchical

connectivity of the nets to be shielded.

During top-down assignment of a single constraint, only one constraint is as-

signed to each related design object in the cellviews that are traversed in the design

hierarchy tree. In contrast, the bottom-up assignment allocates as many constraints

in the design hierarchy tree as instances of that cellview exist in the flattened design

hierarchy, making it computationally more expensive.

280 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

7.4.2 Constraint Derivation

The process of deriving constraints from design objectives is denoted as constraint

derivation or constraint generation. Design objectives are given as specification

goals or requirements that must be met, but they can also arise from a local design

context.

Design objectives are translated into constraints using (i) derivation rules, (ii)

deduction processes based on logic calculus or (iii) the designer’s expert knowl-

edge. The first two derivation methods can be applied with a high degree of automa-

tion in case the IC specification is given in a computer-processable form, such as

an executable specification. The derivation process creates constraints belonging to

the technology, functional, design methodology, or commercial constraint category

(Section 7.3).

The rule-based derivation of constraints utilizes a fixed rule to transform a design

objective into a set of constraints while considering the particular design context.

The constraint transformation discussed in Section 7.4.3 is a form of indirect con-

straint derivation since it creates lower level constraints that depend on higher level

constraints.

Deduction-based constraint derivation can be seen as a high-level extension of

rule-based derivation methods. Here, a logic reasoning system draws conclusions

from design and constraint data and then applies a set of constraint derivation rules

to relevant design objects. For example, based on a logical conclusion that MOS

and bipolar transistors both belong to the same category of devices “transistor”, a

specific constraint rule may be applied to both MOS and bipolar transistors, even

in the case where the derivation rule was only defined for one transistor type. This

functionality permits the development of high-level constraint derivation methods

and offers an important level of abstraction required for the reuse of analog blocks.

Expert knowledge is still often required to translate critical design objectives into

constraints. This is especially the case for global design objectives that would result

in various sets of complex constraints and cannot be easily resolved by automatic

rule-based approaches. Unfortunately, the expert knowledge only exists in an un-

structured and non-formalized form. Nevertheless, making expert knowledge more

accessible represents a good starting point for further analog design automation.

7.4.3 Constraint Transformation

Constraint transformation translates higher level constraints into a set of equiva-

lent lower level constraints and vice versa (inverse constraint transformation) us-

ing transformation rules [21]. Multiple transformation rules may apply for a spe-

cific higher level constraint resulting in different sets of lower level constraints.

The choice of an appropriate transformation rule inherently constrains the solution

space, thus reducing the number of global degrees of design freedom.

7.4 Components of a Constraint-Driven Design Flow 281

The choice of a transformation rule depends on the particular design problem and

design context. Any transformation process must ensure a complete and unambigu-

ous transformation result. The same applies to the inverse constraint transformation

which must be defined for constraint verification purposes (Section 7.4.5).

The transformation of constraints is based on a particular transformation model

which is translated into a set of transformation rules. Transformation rules for sim-

ple constraints are represented by independent equations. They contain the involved

design variables in the higher transformation level and the variables in the lower

level. Transformation rules for complex constraints are represented by a set of cou-

pled equations containing all coupled design variables.

The relation of sub-constraints specific to each complex constraint type is not

affected by the transformation since the transformation of simple constraints only

focuses on their specific context. This statement is made here since it is assumed

that any transformation will only produce lower level constraints that do not affect

higher level constraints. In the case where lower level constraints affect higher level

constraints, design iterations are very likely to occur (i. e., the design steps must be

reversed and re-done with another design strategy).

In general, more than one transformation rule may exist for a particular type of

constraint. The decision which transformation rule to use is specific to the design

context, the design algorithm and the applied design strategy. For example, sup-

pose the functional specification of a circuit results in a specific maximum IR-drop

between an I/O pad and a specific instance terminal in a sub-cell. Assuming that

the current flow in the interconnect is known, the transformation of the IR-drop

constraint may result in constraints for I/O pad and sub-cell placement and a corre-

sponding set of routing constraints. A constraint-driven design algorithm can then

decide whether the placement in this context is more critical to deal with than the

routing and act accordingly (see also Section 7.4.4). For instance, in case the place-

ment is fixed, the final transformation of the given IR-drop constraint would then

yield a set of routing constraints and local degrees of design freedom (i. e., routing

design parameters such as wire length, layer, wire width). These can then be used

by a routing algorithm to find a suitable interconnect layout.

7.4.4 Constraint Sensitivity Analysis

Constraint sensitivity analysis (CSA) determines the context-specific sensitivity of

numerical design parameters with respect to related constraints. The CSA consists

of two modules: a module that determines sensitivity of design parameters with

respect to output parameters and a module that determines the relative distance of

a design parameter value to its related constraints. Both modules provide valuable

information that can be utilized by designers and by design algorithms.

The sensitivity analysis is based on a mathematical model which describes the

physical, electrical or geometrical nature of a particular design sub-problem. The

model represents an equation system that contains all relevant design parameters

282 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

and output parameters. Several approaches are reported to determine the sensitivity

of design parameters. Among these approaches, local methods based on the partial

derivatives of the model output parameter and statistical methods based on sam-

pling, Bayesian and Monte Carlo methods are the most important ones [4, 18].

Considering a set of constraints xl ≤ x ≤ xu, the relative distance d of design pa-

rameter value x to a lower constraint boundary xl and an upper constraint boundary

xu is determined as follows:

dl(x) = exp(xl− x)−1 and du(x) = exp(x− xu)−1 . (7.1)

The parameter value x matches with the lower bound constraint value if the relative

distance dl = 0. A constraint violation is detected in (7.1) if dl > 0 while no violation

occurs if dl < 0. The same applies to du while considering the upper bound constraint

value.

Design decisions can be made by design algorithms based on the sensitivity infor-

mation of parameters, the relative distance of parameter values to related constraints

and a given design strategy. Design algorithms may use that information in several

ways. Depending on the design strategy, a design algorithm may point its focus to

the fixation of design parameters with a high sensitivity towards an important output

parameter or it may focus on low sensitivity parameters. The information about the

parameter distance lets the design algorithm recognize the severity of constraint vi-

olations. For example, design parameters violating related constraints may then be

considered with a higher priority.

It is also of interest for a design algorithm to know which design sub-problems

are independent from each other. A low sensitivity of design parameters towards a

common output parameter means that they are weakly coupled with respect to that

output parameter. The sensitivity analysis can be used as a method to identify local

design task parallelism by searching for groups of design parameters and constraints

that are either not or only weakly coupled. They can be dynamically partitioned into

independent groups for which the next design step can then be performed indepen-

dently from each other.

An example of a CSA application is given in Fig. 7.6. Here, a constraint sen-

sitivity analysis is applied while routing a wire closely located to a heat source

(e. g., a power transistor). Given an IR-drop constraint VIR ≤ VIR−max, a design de-

cision has to be made whether to move the wire away from the heat source, thus

varying the interconnect temperature T , or to fix the wire width w. The design

parameters and the constraint in Fig. 7.6 are denoted as follows: wire width w,

length l, thickness d, reference temperature Tref , IR-drop constraint VIR ≤ VIR−max,

VIR = i ·ρ l
w·d · (1+TK1 · (T −Tref)), DC current i. A constraint violation is likely in

case T is varied while w≈w1, whereas it becomes less likely in case w>w1. In order

to avoid an IR-drop constraint violation, the modification of the design parameter w
is the primary choice if w ≈ w1 due to its high local sensitivity related to the output

parameter VIR while w looses its impact for w�w1. If CSA is used as a filter to find

all sensitive design parameters, then w is only required to be considered if w � w2.

7.4 Components of a Constraint-Driven Design Flow 283

Constraint violation!

Sensitivity of w with respect to VIR

VIR-max

w1 w2 w3 w

VIR

Sensitivity of w and T with respect to VIR

T Tref

T Tref

T Tref

Fig. 7.6 A constraint sensitivity analysis is applied to parameters of a wire segment that is closely
located to an on-chip heat source. A constraint violation is likely in case the interconnect tem-
perature T is varied (by moving the wire’s location) and a wire width w with w ≈ w1, whereas it
becomes less likely in case w > w1. In order to avoid an IR-drop constraint violation, the modifica-
tion of w is the primary choice if w ≈ w1 due to its high sensitivity towards VIR while w looses its
sensitivity for w � w1. (See text for parameter denominations and further explanation.)

The CSA allows designers to study the impact of local design decisions and to

trace root causes in case compliance requirements cannot be met by the given set

of constraints. Sensitivity analysis is the key to the power of decision analysis in

situations where the influence of design parameters is not known precisely, since

it considers the design context in which constraints apply. As is obvious from this

explanation, the availability and application of the CSA allows new approaches for

algorithm development and analog design automation.

7.4.5 Constraint Verification

Constraint verification comprises the verification (i) whether a set of constraints is

fulfilled for a particular design result and (ii) if a given set of constraints raises

mutual conflicts (over-constraint, Fig. 7.7). Constraint verification represents a key

component of the constraint-driven design flow. This is due to its formidable con-

tribution to reduce the verification gap discussed in Section 7.2.2. Constraint verifi-

cation ensures correct application functionality, and it is essential to improve design

quality, reliability and robustness. Commercially available constraint verification

tools with yet limited verification capabilities currently comprise Mentor Graphics

284 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

P12

P22

P11 P21

l2

l1

w1

w2 i

i

General constraints

R j R
l j

w j
VIR j i R j

l1 const.

l2 const.

VIR 1 VIR 2 w1 w2

Set of valid constraints(a)

(b) Set of mutual
conflicting constraints

VIR 1 VIR 2 w1 w2

Fig. 7.7 Constraints illustrated in a two-net topology. A DC current i is present in both wires
leading to a static IR-drop voltage VIR. While the set of constraints in (a) is feasible, the two
constraints in (b) are mutual conflicting (over-constraint). Here, a smaller IR-drop within one of
two wires cannot be achieved if this wire is not allowed to be wider than the other one.

Calibre R© PERC [24] and the constraint verification engine integrated into Cadence

Virtuoso R© IC 6.1 [5].

As mentioned earlier, a rich set of constraints must be considered during the de-

sign of analog ICs. A significant fraction of these constraints are complex constraints

whose fulfillment cannot be verified with conventional verification approaches. This

is due to the fact that all of today’s verification approaches require one specific ver-

ification algorithm for each type of constraint. Clearly, conventional constraint one-

to-one verification approaches (one verification algorithm for one type of constraint)

are not feasible for the complete verification of analog IC designs. Making matters

worse, many constraints (and constraint types) are still unknown at the beginning of

the design process.

An approach to address the verification problem for complex constraints, the

“meta-verification approach”, was introduced in [11] and is discussed in more detail

in Section 7.5.2. The core idea of meta-verification is that each complex verification

problem can be subsequently resolved into smaller and usually independent verifi-

cation sub-problems. These sub-problems can then be addressed using existing ver-

ification algorithms. The meta-verification references functionality accessible from

external tools (e. g., design data access or specialized verification functions offered

by a particular tool) to perform verification tasks. The meta-verification framework

creates an abstraction layer around multiple design and verification tools, and it

manages correct execution of the defined meta-verification tasks.

The CLP-based verification approach in [11] is capable to address independent as

well as coupled, i. e. dependent verification problems. It also allows the detection of

mutual constraint conflicts (over-constraints) by drawing logical conclusions from

7.4 Components of a Constraint-Driven Design Flow 285

the given constraint and design data information. The approach is described in more

detail in Section 7.5.

The definition of verification tasks for a meta-verification system to check con-

straint compliance is generally done as follows. First, the constraint verification task

is defined and formalized. The formal description of a verification problem is then

translated into a set of constraint verification rules. Finally, the verification rules are

used by circuit and layout designers to perform constraint verification tasks. The ap-

plication of these rules may depend on the design context of the particular constraint

verification problem.

Significant effort must be spent by PDK developers and designers to develop,

optimize and verify the set of rules for constraint derivation, transformation and

verification. The sequence in which sub-verification tasks are processed has a sig-

nificant impact on the required overall time for constraint verification. For example,

suppose there are short-running and long-running sub-verification tasks defined in

a specific CLP-based meta-verification rule. If feasible for a particular verification

task, it is beneficial to shift all long-running sub-verification tasks to the end of

that rule in order to execute them later than the short-running sub-verification tasks.

Sub-verification tasks are not executed if a previous sub-verification task of a rule

already revealed constraint violations. This approach will effectively prevent unnec-

essary and potentially long-running sub-verification tasks from being executed. As

obvious, verification rule development and optimization requires a deep understand-

ing of the underlying verification task.

Practical application of the meta-verification approach has revealed that the re-

quired initial effort is comparable to the effort needed for the development of DRC

and LVS rule sets [11]. The reuse of rules for constraint derivation and meta-

verification is simple and efficient since, in general, data and rule abstraction can

be used for technology, design and constraint data (Section 7.5).

Constraint verification is divided into static and dynamic constraint verification,

based on the constancy of the constraint and design data. The corresponding con-

straint satisfaction problems (CSP) which are to be solved are denoted as static CSP

and dynamic CSP [15]. For example, any sign-off verification of an IC design must

be based on constant design and constraint data, hence, static constraint verification

is applied in this case. Nevertheless, constraint-driven design algorithms can also

use constraint verification for specific “what-if” analyses. Since these algorithms

can change design and constraint data during their analyses and during the design

step, the related constraint verification is based on dynamic data. Hence, the latter

case represents dynamic constraint verification. Both, static and dynamic constraint

verification can be applied to either the full set of constraint and design data, or to a

design-context specific sub-set.

The required overhead for static constraint verification is typically significantly

smaller compared to dynamic constraint verification. The additional overhead in

the latter case is primarily caused by a cumulative data latency effect that occurs if

design and constraint data are frequently accessed by design algorithms and/or the

verification framework. Hence, low-latency access to design and constraint data will

significantly speed-up dynamic constraint verification. For static constraint verifica-

286 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

tion, design and constraint databases are usually accessed only once during initial-

ization, thus mostly avoiding data access latency issues.

7.5 Constraint Engineering

The application and handling of constraints during the IC design process is denoted

as constraint engineering. In this section, we first provide a brief overview of com-

putational approaches to address the constraint resolution problem (constraint pro-

gramming). We then introduce the constraint engineering system (CES) which rep-

resents a framework that combines several constraint programming approaches in a

single software framework. This framework integrates the previously discussed de-

sign flow components into a unified design environment which facilitates the inter-

operability between these components. It also increases the ability to perform design

tasks on a higher level of abstraction, thus enabling new possibilities for analog de-

sign automation.

7.5.1 Constraint Programming

Constraint programming represents a programming paradigm where relations be-

tween (design) variables are stated in the form of constraints. These relations form

a constraint satisfaction problem which is resolved by constraint solvers.

The resolution of constraints usually occurs when multiple constraints can be

simplified or when the existence of one or more constraints leads to new (lower

level) constraints. The constraint engineering uses specialized constraint solvers to

handle all aspects of the constraint handling. The specialization is required since the

handling strongly depends on the domain (or type) of the constraints. For example, a

boolean constraint must be handled differently than a constraint that is defined over

real numbers. The solving of arithmetic constraints, for instance, highly depends

on the constraint complexity, such as linear or polynomial. Different constraint-

solving approaches exist that are tailored to address various constraint satisfaction

problems [3, 31].

As mentioned before, the formal constraint representation is a key requirement

for a constraint-driven design flow. A formalism is required in order to describe the

interaction of constraints which are mainly the constraint derivation (Section 7.4.2)

and constraint transformation (Section 7.4.3).

There are many approaches where constraints have been integrated into tradi-

tional programming languages [1, 10, 17, 27]. Due to the stateless character of con-

straints, the family of constraint logic programming (CLP) languages [8, 9, 32] is

the natural choice not only for the formalization of constraints. The declarative logic

calculus approach in CLP has also the advantage that only the problem has to be for-

malized but not its solution. Compared to other constraint programming approaches,

7.5 Constraint Engineering 287

the application of CLP significantly reduces the effort needed to provide the required

rules for constraint derivation, transformation and verification. Therefore, the core

of the constraint engineering system discussed in the next section is based on a logic

calculus engine (Fig. 7.8).

With the introduction of constraint handling rules (CHR) in 1991 [12], it became

very easy to define new constraint solvers that are perfectly tailored to a specific

constraint problem. Via CHR, new constraint solvers can be defined through two

different kinds of handling rules. The propagation rule creates one or more con-

straints from a given set of constraints. Assume for instance the less-equal constraint

“≤”. If there already exist two constraints A ≤ B and B ≤ C, a suitable propagation

rule would derive the constraint A ≤ C. The second rule represents a simplification

rule that removes one or more constraints from a given constraint set. Regarding

the previous example, assume that there are two constraints A ≤ 5 and A ≤ 7. The

simplification would remove A ≤ 7 since it is overridden by A ≤ 5. Due to efficiency

reasons, there is usually also a third rule in CHR, the “simpagation”. It combines

simplification and propagation within a single rule.

7.5.2 The Constraint Engineering System

The application of constraint engineering is an important step towards a constraint-

driven design flow. A flexible software architecture is required to integrate the new

design flow components introduced in Section 7.4. Our approach of such an archi-

tecture will be subsequently denoted as constraint engineering system (CES) whose

structure is depicted in Fig. 7.8 [11].

The CES is designed to act as a middleware between various design tools that

offer an accessible application programming interface. The CES core engine is ca-

pable of making logical decisions based on multiple knowledge bases, which are

provided from various external sources.

As shown in Fig. 7.8, the CES is based on a plug-in architecture that allows

the flexible extension of its functionality. An extension point of the CES regards

the access to all design tools that are accessible within the existing design flow. A

translation layer, denoted as Tool Integration Kit (TIK), transforms the tool-specific

data into logic calculus knowledge using CLP language so that it can be accessed by

meta-verification. Vice versa, the TIK also provides the functionality of transferring

data from the meta-layer back to the connected design tool. This allows the back-

annotation of constraints that were processed in the CES to an external design tool.

A TIK also enables a high-level access to the functionality of a design tool which

can then be utilized by particular design algorithms or the constraint verification.

For example, a schematic entry editor provides access to netlist (design) data, and a

DRC tool provides the functionalities to merge polygons and to measure the distance

between the edges of two layout polygons. Since every external tool is very unique

in its functionality and the design data it processes, a specific TIK is required for

each connected design tool.

288 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

Layout
Editor

TIK TIK TIK TIK TIK TIK

Schematic
Editor

Constraint
Management

DRC &
LVS

Other
Tool

Requirement
Management

Design specfic
Rules

General
Rules Technology Abstraction

Tech.
 1

Tech.
 2

Tech.
 n

Constraint SolverCore Extensions

Ext. Lin-ArithmeticCSA

CHR

Other Solvers

CLP Core

Constraint
Engineering
System

…

…

Fig. 7.8 Architecture and data flow of the constraint engineering system (CES). The tool integra-
tion kits (TIK) transform tool-specific data into the CLP language and vice versa.

Another extension point of the CES regards its internal handling of constraints.

The CES enables the integration of arbitrary constraint solvers that are directly con-

nected to its CLP core. The standard solver currently considers linear arithmetic

constraints and non-linear constraints that can be subsequently reduced to linear

constraints. This solver is very efficient due to the use of the simplex algorithm.

Additionally, the meta-verification rule developer can define new constraint

solvers via CHR. The flexibility of CHR allows the definition of reusable solvers

that are highly tailored to a specific constraint satisfaction problem. If neither the

extended linear constraint solver nor the definition of new solvers via CHR lead to a

suitable solution, new constraint solvers can be added via this extension point to the

CES core. It is for instance expected that the resolution of polynomial and statistical

7.5 Constraint Engineering 289

constraints within CHR would not lead to constraint solvers that are efficient enough

to handle complex constraint problems of that domains. Hence, specific solver could

be added that resolve these constraint problems more efficiently.

Constraint compliance is the main matter of interest in a CES application. As

previously mentioned, meta-verification ensures that all complex constraints are ful-

filled by the design result. The definition of meta-verification rules within the CES

is simple. Figure 7.3, where several simple constraints form a complex constraint,

can be used as an example.

It is advisable for the demonstration to slightly modify the complex constraint Cc

in Fig. 7.3, so that all star-shaped nets within an IC design can be reported whose

IR-drop between two pins is greater than a maximal allowed IR-drop VIR-max. The

following CES meta-verification rule depicts the definition of such a deduction using

CLP:

starShapedIRDrop(P1, P2, V, Virmax) :-

starShaped(N), netPin(N, P1), netPin(N, P2),

irDrop(P1, P2, V), V > Virmax.

The predicate starShapedIRDrop(P1,P2,V,Vmax) encapsulates Cc so that it

can be reused for other verification purposes. In order to obtain all pins of star-

shaped nets that do not meet the criterion VIR ≤ 0.1V, the following query is to be

submitted to the CES:

starShapedIRDrop(P1, P2, V, 0.1).

With that query, the CLP core tries to find suitable bindings for the unbound

variables P1, P2, and V. If a solution is found, the CES reports a tuple consisting of

two pins and the actual IR-drop between these pins. The search can be continued

until all solutions, i. e. star-shaped nets violating the IR-drop constraint, are found.

The example of the complex constraint Cc in Fig. 7.3 demonstrates the applica-

tion of constraints that originate from different external sources. The simple con-

straint C4 instruments an external tool that is capable of computing the IR-drop

between two given pins in a net layout. From the verification point of view, C4 is a

standard relation like the other constraints of this example. The CES then forwards

the calculation of the IR-drop to an external IR-drop calculation tool. The transfor-

mation of parameters and result of the evaluation are performed by the TIK of this

tool. The same applies to all other constraints with the difference that C1, C2 and

C3 originate from a layout editor tool. Finally, the constraint C5 is evaluated by the

build-in arithmetic constraint solver.

Regarding the constraint sensitivity analysis example illustrated in Fig. 7.6, the

sensitivity of the wire width w and the temperature T can be determined with the

CLP example below. In order to enable the CSA, the sensitivity variables need to

be limited. The temperature T in this example should range from 218 K to 448 K

and the wire width w from 0.18μm to 2.0μm. These ranges are added as additional

constraints to the temporary constraint list.

{T>=218, T<=448, W>=0.18e-6, W<=2e-6}

@ csa(V,[W,T],[SW,ST]).

290 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

Fig. 7.9 The tabular result of the IR-drop constraint verification applied to an IC design. The
shown star-shaped nets contain pin-to-pin connections having an IR-drop VIR > 0.1V.

The csa predicate performs the actual sensitivity analysis. The first argument

denotes the target function represented by the variable V (= VIR), the second a list of

variables for which the sensitivity has to be determined (W = w and T = T), and the

last argument the resulting list of normalized sensitivity coefficients.

The CES provides a graphical user interface that simplifies the practical work

with meta-verifications. The graphical user interface provides a uniform access to

all meta-verification runsets that are associated with an IC design. Queries can be

task-centric chosen and executed by a designer from the user interface. This releases

the designer from the burden to manually specify verification queries. Figure 7.9

depicts the result of the previously described starShapedIRDrop query that has

been applied to an IC design.

Constraint transformation, assignment and derivation can be directly obtained by

providing assignment and transformation rules using CLP and CHR. The CES re-

gards the reuse aspect such that these rules can be applied to multiple IC designs.

The CES also supports multiple process technologies by providing specific technol-

ogy properties as well as an abstraction of technology properties.

7.6 Impact Analysis 291

7.6 Impact Analysis

In this section, we discuss the impact of an automated constraint-driven approach on

the overall IC design flow, the core design of algorithms used for design automation

and the required paradigm adjustments for analog physical design.

7.6.1 Impact on Design Flow

A holistic approach to analog design automation requires several new design flow

components to enable an automated constraint-driven IC design. The components of

the constraint-driven design flow, such as constraint management, derivation, trans-

formation, constraint sensitivity analysis and verification have been introduced in

Section 7.4. Hereafter, they will be denoted as “new design flow components” whose

impact on the analog IC design flow will be discussed in this section.

The new design flow components complement the existing analog IC design flow.

They must be perpetually available during all design stages to allow a comprehen-

sive derivation, application and verification of constraints throughout the entire de-

sign process (Fig. 7.4). Any breach of the constraint application can lead to inconsis-

tent design and constraint data, and hence, to a reduction of constraint verification

coverage and an inconclusive verification result. The persistent use of automatic

constraint verification offers greater verification coverage and reproducibility than

manual verification.

All utilized design tools must fully understand the syntax and semantics of the

used constraint representation. If different constraint representations exist within

the design flow, then constraints must be converted between design tools that are

mutually linked by a particular design task (e. g., conversion of device placement

constraints within a layout editor to be used by a connected external third-party

layout compaction tool). Furthermore, linked tools must support all constraint types

that are relevant within a particular design context.

Constraint verification complements existing verification methods (e. g., DRC

and LVS) required for sign-off in order to guarantee the intended circuit function-

ality. The achievable verification coverage depends on the traits and capabilities of

the constraint verification framework as well as on the set of verification rules (Sec-

tion 7.4.1). The chance of design iterations may increase if constraint verification is

applied consistently due to better verification coverage. A back-annotation of con-

straints and verification results is required in order to minimize these iterations by

addressing only relevant violations.

The constraint management system must guarantee low-level constraint data con-

sistency by keeping each constraint and its referencing design object synchronized.

Additionally, the high-level constraint data consistency, i. e. the maintenance of de-

sign data and constraint data as single data entity on file and cellview level, must be

guaranteed by design guidelines and design data management systems.

292 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

7.6.2 Impact on Design Methods

Several challenges have to be addressed for a successful practical application of

constraint-driven design. Among others, these challenges comprise new responsi-

bilities for designers and the way how designers communicate with each other. The

impact of these challenges is strongly dependent on the structure of the design team

and the IC applications to be designed.

Several challenges arise from the change of design responsibilities since design-

ers now must provide all necessary constraint information in a formalized fashion.

This may lead to additional and possibly error-prone design work whose effort must

be considered in the project schedule.

As demonstrated in Fig. 7.2, the analog IC design flow exhibits overlapping de-

sign steps to account for concurrent design problems. This is partially addressed

by assigning constraints and using them in subsequent design steps. Here, the key

question is to clarify which constraints are to be defined at which design step. This

question can be answered with good confidence for constraints having an immedi-

ate impact in the next design step. Unfortunately, it cannot be easily answered for

constraints either having a continuous impact or only having an impact on remote

design steps. Here, designers must currently rely on their expert knowledge while

future research should address this problem.

The assignment of constraints also has an impact on the partitioning of now sep-

arated design tasks with many positive but also negative effects. While the availabil-

ity of complete constraint information may now allow the use of fully constraint-

driven design tools there is also an increasing chance of over-constraining. An over-

constraining done in a previous design step may aggravate or even prevent an op-

timization in a later design step. After performing a root cause analysis to iden-

tify the causing over-constraints designers may consider two options: (i) return to a

previous design step while avoiding the causing over-constraints (design iteration),

(ii) override or elimination of the causing over-constraints and continuation. If root

causes cannot be found then unwanted design iterations are very likely. The elegant

consideration of over-constraints is a critical issue which strongly influences the ac-

ceptance and practical success of a constraint-driven design flow. This consideration

is also subject to further research.

Simultaneous semi-automatic and manual design styles must complement each

other as long as the relevant constraint types cannot be considered at all or in case

their consideration is limited to a specific design context only. For example, in the

latter case a constraint would only be considered by a design algorithm within a

cellview instead of considering it within the design hierarchy (e. g., hierarchical IR-

drop constraint).

In order to address the tight interaction between these design steps and to con-

sider the concurrent nature of the analog design problem, all artificially introduced

boundaries between existing design steps should be gradually dissolved in the fu-

ture. The removal of degrees of design freedom should occur gradually rather than

abruptly in order to keep them available for design optimization as long as possible.

While the automatic approach to achieve this goal is still subject to further research,

7.6 Impact Analysis 293

this issue is also of relevance for semi-automatic and manual design. In current ana-

log design approaches, the strategy by which the degrees of design freedom are

removed strongly depends on the designer’s expert knowledge and the design task

partitioning in a design team.

The reuse of analog IP often fails because small differences may prevent a direct

IP reuse. A direct reuse is often not feasible if all degrees of design freedom were

already removed from an IP block. However, the consistent definition of constraints

between design objects allows design reuse of structural information based on IP

templates, such as circuit and layout templates, that already include constraints. The

structural information represents the most valuable part of the design knowledge,

and hence, it enables a more flexible reuse since relevant degrees of design freedom

are not fixed yet. In that respect, analog design automation should address low-

level layout generation and high-level design planning as discussed in the next sub-

section.

7.6.3 Impact on Design Algorithms

In this section we discuss the impact constraint-driven design has on design algo-

rithms and design planning. Furthermore, we briefly discuss new concepts and ideas

for constraint-driven IC design. While some of these design approaches are new,

others, such as the application of the constraint sensitivity analysis or the introduc-

tion of standardized algorithm interfaces, have already matured and thus have led to

new insights into the analog design problem [14, 23, 25].

Present design algorithms are special-built for a particular purpose (e. g., focus-

ing on placement, global or detailed routing). While this provides several benefits,

such as an optimized execution time and memory footprint, it also introduces several

significant limitations to “conventional design algorithms”, such as incompatible in-

terfaces for design and constraint data and a lack of functional abstraction. These

limitations aggravate further advances in analog design automation.

A primary limitation in conventional algorithm design is the narrow focus on fast,

but low-level execution without an implementation of standardized data interfaces.

A standardized data interface creates a layer around a core algorithm to enable a

common understanding of the syntax and semantic of the design and constraint data

representation. This layer connects a design algorithm to the design and constraint

databases as well as to other concurrently executed design algorithms. Thus, all

design algorithms share a common understanding of the syntax and semantic of the

design and constraint data representation.

Standardized algorithm interfaces enable the modularization and abstraction of

design algorithms. The abstraction of their algorithmic work greatly improves algo-

rithm reuse and flexibility because a single algorithm can be used to solve similar

design tasks (this concept is similar to algorithm abstraction available in various pro-

gramming languages). In turn, this flexibility enables the construction of high-level

294 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

design algorithms that utilize modularized low-level design algorithms in order to

perform specific design tasks on a higher level of abstraction.

The strategy in which the degrees of design freedom are removed must be care-

fully chosen as mentioned earlier. A removal strategy can be applied to actuate high-

level design algorithms. The actuation greatly benefits from the constraint sensitivity

analysis (CSA, see Section 7.4.4).

First, CSA can be used to identify design task parallelism by searching for tem-

porary groups of design variables and constraints that are either not or only weakly

coupled (dynamic design task partitioning). For these groups, the next design step

can then be performed independently of each other. Note that the independency of

design variables and constraints in these groups may only be temporary, and hence,

may not exist anymore after the design step is completed.

Second, CSA can also be used to determine the most sensitive design parameters

in a particular design context that will more likely violate a constraint than non-

sensitive parameters. Sensitive design parameters could then be considered with a

higher priority within the specific design context.

A dynamic hierarchy of concurrent design tasks can be established in which de-

sign algorithms perform functional transformations (instead of conventional distinct

design tasks) (Section 7.2.1). These transformations could be governed by either a

fixed execution regime or by more flexible approaches such as high-level design

planning algorithms that are guided by a design strategy.

Another major advantage for the development of high-level design algorithms is

the possible dynamic consideration of new constraint types without the need to in-

troduce major low-level algorithm changes. High-level design strategies can be used

to solve low-level design problems by eliminating degrees of design freedom in a

top-down methodology. This approach typically leads to better design results be-

cause low-level constraints are now less likely to break high-level constraints (Sec-

tions 7.4.2, 7.4.3).

Most of these introduced approaches promise great potential, namely the dy-

namic design task partitioning, the actuation of high-level design algorithms and

the replacement of conventional algorithms by a sequence of continuous functional

transformations. Nevertheless, all of them are still subject to further research.

7.7 Outlook

Despite the recent advances in constraint-driven design for analog IC design, there

are several problems that need to be addressed in the near future to further broaden

the applicability of analog design automation approaches. Methods to check the

completeness of a set of constraints and constraint (meta-)verification rules, as well

as the achieved verification coverage, must be developed to guarantee IC functional-

ity, reliability, robustness, etc. The set of meta-verification rules must be optimized

to allow time-efficient constraint verification. Today, such optimization is done man-

References 295

ually but automatic rule-optimization methods should be developed to reduce this

burden.

As mentioned earlier, constraint sensitivity analysis is a powerful tool to drive

and support high- and low-level design decisions, and to develop high-level design

algorithms that allow more gradual IC design. The scalability of existing constraint-

sensitivity analysis approaches is still limited to a few thousand design variables.

This is sufficient for mid-sized analog blocks with typically several hundreds of

analog devices. Application to top-level design problems requires the development

of new complexity reduction methods, as well as fast constraint sensitivity calcula-

tion methods to improve scalability.

Key factors for next generation analog design automation are design techniques

that reduce the degree of design freedom gradually rather than abruptly while per-

forming several conventional design steps concurrently. This will require that the

current artificial boundaries between conventional design steps be (gradually) dis-

solved. While breaking with conventional design approaches, this paradigm change

could lead to a new class of (higher level) design algorithms that brings us one step

nearer to the goal of full-scale analog design automation.

Acknowledgment

We would like to thank Jürgen Scheible of Robert Bosch GmbH and Ammar Nas-

saj of IFTE at Dresden University of Technology for the many fruitful discussions

related to the topic of this chapter.

References

1. S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. JACK: A Java constraint kit. In
Proc. Int. Workshop Functional and (Constraint) Logic Programming, volume 64, pages 1–
17. Elsevier B.V., 2001.

2. F. Baader and W. Snyder. Handbook of Automated Reasoning, volume 1, chapter Unification
Theory, pages 445–533. Elsevier Science B.V., Amsterdam, 2001.

3. R. Barták. Theory and practice of constraint propagation. In Proc. 3rd Workshop Constraint
Programming for Decision and Control (CPDC), pages 7–14, 2001.

4. D. G. Cacuci, M. Ionescu-Bujor, and I. M. Navon. Sensitivity & Uncertainty Analysis: Appli-
cations to Large-Scale Systems, volume 2. Chapman & Hall / CRC, 2005.

5. Cadence Design Systems, Inc. http://www.cadence.com.
6. J.A. Carballo and S.W. Director. Constraint management for collaborative electronic design.

In Proc. IEEE/ACM 36th Design Automation Conference (DAC), pages 529–534, 1999.
7. H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A. Sangiovanni-

Vincentelli, and I. Vassiliou. A Top-Down, Constraint-Driven Design Methodology for Analog
Integrated Circuits. Springer, 1999.

8. J. Cohen. Constraint logic programming languages. Commun. ACM, 33(7):52–68, 1990.
9. M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The con-

straint logic programming language CHIP. In Proc. Int. Conf. 5th Generation Computer Sys-
tems, pages 693–702, 1988.

296 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

10. B. M. Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of
Washington, Department of Computer Science and Engineering, 1991.

11. J. Freuer, G. Jerke, J. Gerlach, and W. Nebel. On the verification of high-order constraint
compliance in IC design. In Proc. IEEE/ACM Int. Conf. Design Automation and Test in Europe
(DATE), pages 26–31, 2008.

12. Th. Frühwirth. Introducing simplification rules. Technical Report ECRC-LP-63, European
Computer-Industry Research Centre, Munich, Germany, 1991.

13. Th. Frühwirth, A. Herold, V. Küchenhoff, Th. Le Provost, P. Lim, E. Monfroy, and M. Wallace.
Constraint logic programming – an informal introduction. Lecture Notes In Computer Science,
636:3–35, 1992.

14. G.J. Gad El-Karim, R.S. Gyurcsik, and G.L. Bilbro. Sensitivity-driven placement of analog
modules. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pages 363–366, 1994.

15. V. Gerard and Th. Schiex. Solution reuse in dynamic constraint satisfaction problems. Proc.
Association for the Advancement of Artificial Intelligence (AAAI), pages 307–312, 1994.

16. H. Gräb, F. Balasa, R. Castro-Lopez, Y.-W. Chang, F.V. Fernandez, P.-H. Lin, and M. Strasser.
Analog layout synthesis – recent advances in topological approaches. In Proc. IEEE Int. Conf.
Design Automation and Test in Europe (DATE), pages 274–279, 2009.

17. M. Grabmüller and P. Hofstedt. Turtle: A constraint imperative programming language. In
Proc. 23rd SGAI Int. Conf. Innovative Techniques and Applications of Artificial Intelligence,
2003.

18. D. R. Insua. Sensitivity Analysis in Multi-Objective Decision Making. Springer, 1990.
19. J. Jaffar, S. Michaylov, P.J. Stuckey, and R. H. C. Yap. The CLP(�) language and system.

ACM Trans. Programming Languages and Systems, 14(3):339–395, July 1992.
20. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1):32–

44, 1992.
21. E. Malavasi and E. Charbon. Constraint transformation for IC physical design. IEEE Trans.

Semiconductor Manufacturing, 12(4):386–395, 1999.
22. E. Malavasi, E. Charbon, B. Arsintescu, and W. Kao. A constraint management system for IC

physical design. In Proc. 11th Brazilian Symp. Integr. Circuit Design, pages 240–243, 1998.
23. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. Automation of IC layout

with analog constraints. IEEE Trans. CAD of Integr. Circuits and Systems, 15(8):923–941,
1996.

24. Mentor Graphics Inc. http://www.mentor.com.
25. P. Miliozzi, I. Vassiliou, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli. Use of

sensitivities and generalized substrate models in mixed-signal IC design. In Proc. IEEE/ACM
33rd Design Automation Conference (DAC), pages 227–232, 1996.

26. A. Nassaj, J. Lienig, and G. Jerke. A new methodology for constraint-driven layout design
of analog circuits. In Proc. IEEE Int. Conf. Electronic, Circuits and Systems (ICECS), pages
996–999, 2009.

27. J.-F. Puget. A C++ implementation of CLP. Tech. rep. 94-01, ILOG SA, Gentilly Cedex,
France, 1994.

28. J. A. Robinson. A machine-oriented logic based on the resolution principle. ACM, 12(1):23—
41, 1965.

29. R. A. Rutenbar and J. M. Cohn. Layout tools for analog ICs and mixed-signal SoCs: A survey.
In Proc. IEEE/ACM Int. Symp. Physical Design (ISPD), pages 76–83, 2000.

30. J. Scheible. Constraint-driven Design – Eine Wegskizze zum Designflow der nächsten Gener-
ation (in German). In Proc. VDE ANALOG’08, 2008.

31. G. Tack. Constraint Propagation – Models, Techniques, Implementation. PhD thesis, Saarland
University, 2009.

32. M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint logic program-
ming. Technical report, IC-Parc, Imperial College, London, U.K., 1997.

Andreas Krinke
Schreibmaschinentext
© Springer 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The final version was published in G. Jerke, J. Lienig, J. B. Freuer "Constraint-Driven Design Methodology: A Path to Analog Design Automation". In: Analog Layout Synthesis — A Survey of Topological Approaches, H. Graeb (ed.) Springer Verlag, New York, ISBN 978-1-4419-6931-6, pp. 271-299, 2011.

References 297

Glossary

Constraint Constraints define relations between values of design variables. Con-

straints defining a single relation are denoted as simple constraints. Constraints

defining a set of relations are denoted as complex constraints.

Constraint Assignment Process of linking constraints to design objects. In case

the corresponding design objects are located in different design hierarchy levels,

the linking is done by traversing the hierarchy tree either strictly top-down, strictly

bottom-up or in a mixed top-down and bottom-up manner. The linking can be per-

manent or temporary.

Constraint Derivation Process of deriving constraints from design objectives.

Constraint derivation is also known as constraint generation.

Constraint-Driven Design Design paradigm that considers all constraints in a con-

sistent and comprehensive manner.

Constraint Engineering Design paradigm that comprises the use of several design

flow components, such as constraint assignment, derivation, propagation, transfor-

mation and verification.

Constraint Engineering System (CES) Software architecture that implements the

constraint engineering concept so that all components of the constraint-driven de-

sign flow are available during the design process [11].

Constraint Handling Rules (CHR) Programming language that, among others,

allows the definition of problem-specific constraint solvers [12].

Constraint Logic Programming (CLP) Form of constraint programming, in

which logic programming is extended to include concepts from constraint satis-

faction. The unification process in CLP is extended by constraint handling in the

boolean, real or integer constraint domain [13]. CLP is often implemented as an

enhancement of Prolog-like computer languages with additional constraint solving

mechanisms.

Constraint Management Software architecture to enable the storage, manage-

ment, access and synchronization of constraint data. Features of the constraint man-

agement are used by all components of the constraint-driven design flow.

Constraint Programming Programming paradigm where relations between vari-

ables are stated in the form of constraints.

Constraint Satisfaction Problem (CSP) Mathematical problem defined as a set

of objects whose state must satisfy a number of constraints. These problems repre-

sent the entities in a problem as a homogeneous collection of finite constraints over

variables.

Constraint Sensitivity Analysis (CSA) Method to determine the sensitivity of a

design parameter in relation to an objective function and related constraints.

298 7 Constraint-Driven Design Methodology – A Path to Analog Design Automation

Constraint Solver Mechanism to solve a given constraint satisfaction problem.

Constraint Transformation Process of transforming a higher level constraint into

a set of lower level constraints of the same or a different domain and vice versa

(inverse constraint transformation).

Constraint Type Type of a constraint that corresponds to the type of design vari-

ables which share a relation defined by that constraint.

Constraint Verification Verification process to ensure that no over-constraints ex-

ist and that all constraints are fulfilled by the design result [11].

Design Context Local context in which a particular design task is performed.

Design Object Data object represented in the database of a design tool, such as

cell, cellview, instance, net, terminal etc.

Design Objective Design goal to be achieved or specification requirement to be

met by either a final or a partial design result.

Design Rule Check (DRC) Verification process to ensure that all manufacturing-

related constraints are fulfilled by the design result.

Design Tool Software tool for IC design generation and verification.

Expert Knowledge Entity of a designer’s problem-specific design knowledge in

formalized and non-formalized form.

Layout Versus Schematic (LVS) Verification process to ensure that a given device

netlist matches a netlist extracted from the layout representation.

Logic Programming (LP) Software language paradigm based on logic, more

specifically on resolution theorem proving in the predicate calculus [28].

Meta-Verification Verification process to ensure that all complex constraints are

fulfilled by the design result [11].

Over-Constraint Condition in which not all given constraints can be fulfilled si-

multaneously.

Predicate (→ LP, CLP) Mathematical sentence that describes a common property

by which a subset of objects can be identified within a global set of objects.

Propagation (→ CHR) The propagation within CHR is the derivation of one or

more new constraints from a given set of constraints. It is triggered by the exis-

tence of one or more constraints that are already part of the constraint set. After the

propagation took place, the new constraints are part of the constraint set [12].

Root Cause Analysis Class of problem solving methods aimed at identifying the

root causes of problems or events. One approach of solving an existing design prob-

lem is to eliminate its root causes. Root cause analysis is often used iteratively (con-

tinuous improvement).

References 299

Schematic-Driven Layout (SDL) Design paradigm in which the layout generation

is driven by the schematic representation of the circuit.

Simpagation (→ CHR) The simpagation is a combined application of propaga-

tion and simplification. While it can be expressed by solely using propagation and

simplification rules, it can be handled more efficiently [12].

Simplification (→ CHR) The simplification within CHR removes one or more

constraints from a given set of constraints. It is triggered by the existence of one or

more constraints that are already part of the constraint set [12].

Tool Integration Kit (TIK) Data interface of the constraint engineering system

that translates tool-specific data into the CLP language and vice versa.

Unification (→ CLP) Process that tries to match symbolic expressions by assign-

ing sub-expressions to variables that are part of two expressions [2]. Unification is

a core concept of logic programming.

Andreas Krinke
Schreibmaschinentext
© Springer 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The final version was published in G. Jerke, J. Lienig, J. B. Freuer "Constraint-Driven Design Methodology: A Path to Analog Design Automation". In: Analog Layout Synthesis — A Survey of Topological Approaches, H. Graeb (ed.) Springer Verlag, New York, ISBN 978-1-4419-6931-6, pp. 271-299, 2011.

