
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig

Chapter 2 – Netlist and System Partitioning

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 2

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 3

2.1 Introduction

ENTITY test is
port a: in bit;

end ENTITY test;

DRC
LVS
ERC

Circuit Design

Functional Design
and Logic Design

Physical Design

Physical Verification
and Signoff

Fabrication

System Specification

Architectural Design

Chip

Packaging and Testing

Chip Planning

Placement

Signal Routing

Partitioning

Timing Closure

Clock Tree Synthesis

©
 2

02
2

Sp
rin

ge
r V

er
la

g

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 4

Circuit:

Cut ca: four external connections

1

2

4

5

3

6

7 8

5

6

48

7 23

1

56

48

7 2

3 1

Cut ca

Cut cb

Block A Block B Block A Block B

Cut cb: two external connections

2.1 Introduction

©
 2

02
2

Sp
rin

ge
r V

er
la

g

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 5

2.2 Terminology

5 6

4

2

1

3 3

2

4

5 6
1

Graph G2: Nodes 1, 2, 6.

Graph G1: Nodes 3, 4, 5.

Collection of cut edges
Cut set: (1,3), (2,3), (5,6),

Block (Partition)

Cells

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 6

2.3 Optimization Goals

• Given a graph G(V,E) with |V| nodes and |E| edges where each node v ∈ V
and each edge e ∈ E.

• Each node has area s(v) and each edge has cost or weight w(e).

• The objective is to divide the graph G into k disjoint subgraphs such that all
optimization goals are achieved and all original edge relations are respected.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 7

2.3 Optimization Goals

• In detail, what are the optimization goals?

− Number of connections between partitions is minimized

− Each partition meets all design constraints (size, number of external connections..)

− Balance every partition as well as possible

• How can we meet these goals?

− Unfortunately, this problem is NP-hard

− Efficient heuristics are developed in the 1970s and 1980s.
They are high quality and in low-order polynomial time.

7

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 8

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 9

Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with
minimum cut cost and |A| = |B| = n.

2

5

6

3

1

4

7

8

Example: n = 4

Block A Block B

2.4.1 Kernighan-Lin (KL) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 10

Cost D(v) of moving a node v

D(v) = |Ec(v)| – |Enc(v)| ,

where
Ec(v) is the set of v’s incident edges that are cut by the
cut line, and
Enc(v) is the set of v’s incident edges that are not cut by
the cut line.

High costs (D > 0) indicate that the node
should move, while low costs (D < 0) indicate
that the node should stay within the same
partition.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 7:
D(7) = 2-1=1

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 11

Gain of swapping a pair of nodes a und b

∆g = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

The gain ∆g indicates how useful the swap between two
nodes will be

The larger ∆g, the more the total cut cost will be reduced

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 12

Gain of swapping a pair of nodes a und b

∆g = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 7:
D(7) = 2-1=1

∆g (3,7) = D(3) + D(7) - 2* c(a,b) = 2 + 1 – 2 = 1

=> Swapping nodes 3 and 7 would reduce the cut size by 1

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 13

Gain of swapping a pair of nodes a und b

∆g = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 5:
D(5) = 2-1=1

∆g (3,5) = D(3) + D(5) - 2* c(a,b) = 2 + 1 – 0 = 3

=> Swapping nodes 3 and 5 would reduce the cut size by 3

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 14

Gain of swapping a pair of nodes a und b

The goal is to find a pair of nodes a and b to exchange such that ∆g is
maximized and swap them.

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 15

Maximum positive gain Gm of a pass

The maximum positive gain Gm corresponds to the best prefix of m swaps
within the swap sequence of a given pass.

These m swaps lead to the partition with the minimum cut cost
encountered during the pass.

Gm is computed as the sum of Δg values over the first m swaps of the
pass, with m chosen such that Gm is maximized.

∑
=

=
m

i
im gG

1

∆

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 16

Step 0:
– V = 2n nodes
– {A, B} is an initial arbitrary partitioning
Step 1:
– i = 1
– Compute D(v) for all nodes v∈V
Step 2:
– Choose ai and bi such that ∆gi = D(ai) + D(bi) – 2 * c(aibi) is maximized
– Swap and fix ai and bi
Step 3:
– If all nodes are fixed, go to Step 4. Otherwise
– Compute and update D values for all nodes that are connected to ai and bi and are not fixed.
– i = i + 1
– Go to Step 2
Step 4:
– Find the move sequence 1...m (1 ≤ m ≤ i), such that ∑=

=
m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 5. Otherwise, END
Step 5:
– Execute m swaps, reset remaining nodes
– Go to Step 1

2.4.1 Kernighan-Lin (KL) Algorithm – One pass

Kernighan-Lin Algorithm

Step 0:

· V = 2n nodes

· {A, B} is an initial arbitrary partitioning

Step 1:

· i = 1

· Compute D(v) for all nodes v(V

Step 2:

· Choose ai and bi such that (gi = D(ai) + D(bi) – 2 * c(aibi) is maximized

· Swap and fix ai and bi

Step 3:

· If all nodes are fixed, go to Step 4. Otherwise

· Compute and update D values for all nodes that are connected to ai and bi and are not fixed.

· i = i + 1

· Go to Step 2

Step 4:

· Find the move sequence 1...m (1 (m (i), such that

[image: image1.wmf]å

=

=

m

i

i

m

g

G

1

Δ

 is maximized

· If Gm > 0, go to Step 5. Otherwise, END

Step 5:

· Execute m swaps, reset remaining nodes

· Go to Step 1

_1192362427.unknown

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 17

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 18

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Costs D(v) of each node:

Nodes that lead to
maximum gain

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 19

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

Nodes that lead to
maximum gain

Gain in the current pass

Costs D(v) of each node:

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 20

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

Nodes that lead to
maximum gain

Gain in the current pass

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 21

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 22

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 23

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

∆g2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+∆g2 =8

Nodes that lead to
maximum gain

Gain in the current pass

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 24

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

Cut cost: 1
Not fixed:
1,2,7,8

2

5

6

3

1

4

7

8

Cut cost: 7
Not fixed:
2,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

∆g2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+∆g2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

∆g3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +∆g3 = 2 Gain in the current pass

Nodes that lead to
maximum gain

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 25

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
–

Cut cost: 6
Not fixed:
1,2,4,6,7,8

Cut cost: 1
Not fixed:
1,2,7,8

Cut cost: 7
Not fixed:
2,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

∆g2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+∆g2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

∆g3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +∆g3 = 2

D(2) = -1 D(8)=-1

∆g4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +∆g4 = 0

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 2

02
2

Sp
rin

ge
r V

er
la

g

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 26

Maximum positive gain Gm = 8 with m = 2.

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

∆g2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+∆g2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

∆g3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +∆g3 = 2

D(2) = -1 D(8)=-1

∆g4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +∆g4 = 0

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 27

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

∆g1 = 2+1-0 = 3
Swap (3,5)
G1 = ∆g1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

∆g2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+∆g2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

∆g3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +∆g3 = 2

D(2) = -1 D(8)=-1

∆g4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +∆g4 = 0

Since Gm > 0, the first m = 2 swaps
(3,5) and (4,6) are executed.

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Example

Since Gm > 0, more passes are needed until
Gm ≤ 0.

Maximum positive gain Gm = 8 with m = 2.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 28

2.4.2 Extensions of the Kernighan-Lin (KL) Algorithm

• Unequal partition sizes

− Apply the KL algorithm with only min(|A|,|B|) pairs swapped

• Unequal node weights

− Try to rescale weights to integers, e.g., as multiples
of the greatest common divisor of all node weights

− Maintain area balance or allow a one-move deviation from balance

• k-way partitioning (generating k partitions)

− Apply the KL two-way partitioning algorithm to all possible pairs of partitions

− Recursive partitioning (convenient when k is a power of two)

− Direct k-way extensions exist

28

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 29

• Single cells are moved independently instead of swapping pairs of cells ---
cannot and do not need to maintain exact partition balance

• The area of each individual cell is taken into account

• Applicable to partitions of unequal size
and in the presence of initially fixed cells

• Cut costs are extended to include hypergraphs

• nets with 2+ pins

• While the KL algorithm aims to minimize cut costs based on edges,
the FM algorithm minimizes cut costs based on nets

• Nodes and subgraphs are referred to as cells and blocks, respectively

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 30

Given: a hypergraph G(V,H) with nodes and weighted hyperedges
partition size constraints

Goal: to assign all nodes to disjoint partitions,
so as to minimize the total cost (weight) of all cut nets
while satisfying partition size constraints

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 31

Gain ∆g(c) for cell c

∆g(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected
to c but not connected to any other cells within c’s
partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets
connected to c.

The higher the gain ∆g(c), the higher is the
priority to move the cell c to the other partition.

Cell 2: FS(2) = 0 TE(2) = 1 ∆g(2) = -1

1

3

4

2

5

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 32

Gain ∆g(c) for cell c

∆g(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected
to c but not connected to any other cells within c’s
partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets
connected to c.

Cell 1: FS(1) = 2 TE(1) = 1 ∆g(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 ∆g(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 ∆g(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 ∆g(4) = 0

Cell 5: FS(5) = 1 TE(5) = 0 ∆g(5) = 1

1

3

4

2

5

a
b

c
d

e

1

3

4

2

5

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 33

Maximum positive gain Gm of a pass

The maximum positive gain Gm is the cumulative cell gain of m moves
that produce a minimum cut cost.

Gm is determined by the maximum sum of cell gains ∆g over a prefix of
m moves in a pass

∑
=

=
m

i
im gG

1

∆

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 34

Ratio factor

The ratio factor is the relative balance between the two partitions
with respect to cell area

It is used to prevent all cells from clustering into one partition.

The ratio factor r is defined as

where area(A) and area(B) are the total respective areas of partitions A and B

)()(
)(

BareaAarea
Aarear

+
=

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 35

Balance criterion

The balance criterion enforces the ratio factor.

To ensure feasibility, the maximum cell area areamax(V)
must be taken into account.

A partitioning of V into two partitions A and B is said to be balanced if

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)]

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 36

Base cell

A base cell is a cell c that has the greatest cell gain ∆g(c) among all free cells,
and whose move does not violate the balance criterion.

Cell 1: FS(1) = 2 TE(1) = 1 ∆g(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 ∆g(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 ∆g(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 ∆g(4) = 0

Base cell

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 37

Step 0: Compute the balance criterion
Step 1: Compute the cell gain ∆g1 of each cell
Step 2: i = 1
– Choose base cell c1 that has maximal gain ∆g1 , move this cell
Step 3:
– Fix the base cell ci
– Update all cells’ gains that are connected to critical nets via the base cell ci
Step 4:
– If all cells are fixed, go to Step 5. If not:
– Choose next base cell ci with maximal gain ∆gi and move this cell
– i = i + 1, go to Step 3
Step 5:
– Determine the best move sequence c1, c2, .., cm (1 ≤ m ≤ i) , so that ∑ =

=
m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 6. Otherwise, END
Step 6:

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - One pass

Fiduccia-Mattheyses Algorithm

Step 0: Compute the balance criterion

Step 1: Compute the cell gain (g1 of each cell

Step 2: i = 1

· Choose base cell c1 that has maximal gain (g1 , move this cell

Step 3:

· Fix the base cell ci

· Update all cells’ gains that are connected to critical nets via the base cell ci

Step 4:

· If all cells are fixed, go to Step 5. If not:

· Choose next base cell ci with maximal gain (gi and move this cell

· i = i + 1, go to Step 3

Step 5:

· Determine the best move sequence c1, c2, .., cm (1 (m (i) , so that

[image: image1.wmf]å

=

=

m

i

i

m

g

G

1

Δ

 is maximized

· If Gm > 0, go to Step 6. Otherwise, END

Step 6:

· Execute m moves, reset all fixed nodes

· Start with a new pass, go to Step 1

_1197856102.unknown

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 38

1

3

4

2

5

A B

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

Step 0: Compute the balance criterion

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)]

0,375 * 16 – 5 = 1 ≤ area(A) ≤ 11 = 0,375 * 16 +5.

Given:
Ratio factor r = 0,375
area(Cell_1) = 2
area(Cell_2) = 4
area(Cell_3) = 1
area(Cell_4) = 4
area(Cell_5) = 5.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 39

1

3

4

2

5

A B

a
b

c
d

e

Step 1: Compute the gains of each cell

Cell 1: FS(Cell_1) = 2 TE(Cell_1) = 1 ∆g(Cell_1) = 1
Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 ∆g(Cell_2) = -1
Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 ∆g(Cell_3) = 0
Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 ∆g(Cell_4) = 0
Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 ∆g(Cell_5) = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 40

1

3

4

2

5

A B

a
b

c
d

e
Cell1: FS(Cell_1) = 2 TE(Cell_1) = 1 ∆g(Cell_1) = 1
Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 ∆g(Cell_2) = -1
Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 ∆g(Cell_3) = 0
Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 ∆g(Cell_4) = 0
Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 ∆g(Cell_5) = 1

Step 2: Select the base cell

Possible base cells are Cell 1 and Cell 5
Balance criterion after moving Cell 1: area(A) = area(Cell_2) = 4
Balance criterion after moving Cell 5: area(A) = area(Cell_1) + area(Cell_2) + area(Cell_5) = 11
Both moves respect the balance criterion, but Cell 1 is selected, moved,
and fixed as a result of the tie-breaking criterion.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 41

1

3

4

2

5

A B

a
b

c
d

e

Step 3: Fix base cell, update ∆g values

Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 ∆g(Cell_2) = 2
Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 ∆g(Cell_3) = -1
Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 ∆g(Cell_4) = -2
Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 ∆g(Cell_5) = -1

After Iteration i = 1: Partition A1 = 2, Partition B1 = 1,3,4,5, with fixed cell 1.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 42

1

3

4

2

5

A B

a
b

c
d

e
Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 ∆g(Cell_2) = 2
Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 ∆g(Cell_3) = -1
Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 ∆g(Cell_4) = -2
Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 ∆g(Cell_5) = -1

Iteration i = 2

Cell 2 has maximum gain ∆g2 = 2, area(A) = 0, balance criterion is violated.
Cell 3 has next maximum gain ∆g2 = -1, area(A) = 5, balance criterion is met.
Cell 5 has next maximum gain ∆g2= -1, area(A) = 9, balance criterion is met.

Move cell 3, updated partitions: A2 = {2,3}, B2 = {1,4,5}, with fixed cells {1,3}

Iteration i = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 43

Cell 2: ∆g(Cell_2) = 1
Cell 4: ∆g(Cell_4) = 0
Cell 5: ∆g(Cell_5) = -1

Iteration i = 3

Cell 2 has maximum gain ∆g3 = 1, area(A) = 1, balance criterion is met.

Move cell 2, updated partitions: A3 = {3}, B3 = {1,2,4,5}, with fixed cells {1,2,3}

1

3

4

2

5

A

Ba b

c
d

e

Iteration i = 2

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 44

Cell 4: ∆g(Cell_4) = 0
Cell 5: ∆g(Cell_5) = -1

Iteration i = 4

Cell 4 has maximum gain ∆g4 = 0, area(A) = 5, balance criterion is met.

Move cell 4, updated partitions: A4 = {3,4}, B3 = {1,2,5}, with fixed cells {1,2,3,4}

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 3

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 45

Cell 5: ∆g(Cell_5) = -1

Iteration i = 5

Cell 5 has maximum gain ∆g5 = -1, area(A) = 10, balance criterion is met.

Move cell 5, updated partitions: A4 = {3,4,5}, B3 = {1,2}, all cells {1,2,3,4,5} fixed.

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 4

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 46

Step 5: Find best move sequence c1 … cm

G1 = ∆g1 = 1
G2 = ∆g1 + ∆g2 = 0
G3 = ∆g1 + ∆g2 + ∆g3 = 1
G4 = ∆g1 + ∆g2 + ∆g3 + ∆g4 = 1
G5 = ∆g1 + ∆g2 + ∆g3 + ∆g4 + ∆g5 = 0.

Maximum positive cumulative gain 1
1

=∆=∑
=

m

i
im gG

found in iterations 1, 3 and 4.

The move prefix m = 4 is selected due to the better balance ratio (area(A) = 5);
the four cells 1, 2, 3 and 4 are then moved.

Result of Pass 1: Current partitions: A = {3,4}, B = {1,2,5}, cut cost reduced from 3 to 2.

1

3

4

2

5

B A

a b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 47

Runtime difference between KL & FM

• Runtime of partitioning algorithms

− KL is sensitive to the number of nodes and edges

− FM is sensitive to the number of nodes and nets (hyperedges)

• Asymptotic complexity of partitioning algorithms

− KL has cubic time complexity per pass

− FM has linear time complexity per pass

47

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 48

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 49

2.5.1 Clustering

49

• To simplify the problem, groups of tightly-connected nodes can be clustered,
absorbing connections between these nodes

• Size of each cluster is often limited so as to prevent degenerate clustering,
i.e. a single large cluster dominates other clusters

• Refinement should satisfy balance criteria

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 50

2.5.1 Clustering

a

b c

d

e

a,b,c

d

e

a

b

d

c,e

Initital graph Possible clustering hierarchies of the graph

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 51

2.5.2 Multilevel Partitioning

©
 2

02
2

Sp
rin

ge
r V

er
la

g

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 52

2.6 System Partitioning onto Multiple FPGAs

FPGA FPGA FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA
RAM Logic Logic

Reconfigurable system with multiple
FPGA and FPIC devices

Mapping of a typical system architecture
onto multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

LM
H

Li
en

ig
 53

Summary of Chapter 2

• Circuit netlists can be represented by graphs

• Partitioning a graph means assigning nodes to disjoint partitions
− Total size of each partition (number/area of nodes) is limited
− Objective: minimize the number connections between partitions

• Basic partitioning algorithms
− Move-based, move are organized into passes
− KL swaps pairs of nodes from different partitions
− FM re-assigns one node at a time
− FM is faster, usually more successful

• Multilevel partitioning
− Clustering
− FM partitioning
− Refinement (also uses FM partitioning)

• Application: system partitioning into FPGAs
− Each FPGA is represented by a partition

	Foliennummer 1
	Chapter 2 – Netlist and System Partitioning
	2.1	Introduction
	2.1	Introduction
	2.2	Terminology
	2.3	Optimization Goals
	2.3	Optimization Goals
	Chapter 2 – Netlist and System Partitioning
	2.4.1 Kernighan-Lin (KL) Algorithm
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – Terminology
	2.4.1 Kernighan-Lin (KL) Algorithm – One pass
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.1 Kernighan-Lin (KL) Algorithm – Example
	2.4.2 Extensions of the Kernighan-Lin (KL) Algorithm
	2.4.3 	Fiduccia-Mattheyses (FM) Algorithm
	2.4.3 	Fiduccia-Mattheyses (FM) Algorithm
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Terminology
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm - One pass
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	2.4.3	Fiduccia-Mattheyses (FM) Algorithm – Example
	Runtime difference between KL & FM
	Chapter 2 – Netlist and System Partitioning
	2.5.1	Clustering
	2.5.1	Clustering	
	2.5.2	Multilevel Partitioning	
	2.6	System Partitioning onto Multiple FPGAs	
	Summary of Chapter 2

