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• IC layout must satisfy geometric constraints, electrical constraints,
power & thermal constraints as well as timing constraints
− Setup (long-path) constraints
− Hold (short-path) constraints

• Chip designers must complete timing closure

− Optimization process that meets timing constraints 

− Integrates point optimizations discussed in previous chapters, e.g., 
placement and routing, with specialized methods to improve circuit performance  

8.1 Introduction
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Components of timing closure covered in this lecture:

• Timing-driven placement (Sec. 8.3) minimizes signal delays 
when assigning locations to circuit elements

• Timing-driven routing (Sec. 8.4) minimizes signal delays 
when selecting routing topologies and specific routes

• Physical synthesis (Sec. 8.5) improves timing by changing the netlist
− Sizing transistors or gates: increasing the width:length ratio of transistors 

to decrease the delay or increase the drive strength of a gate
− Inserting buffers into nets to decrease propagation delays
− Restructuring the circuit along its critical paths

• Performance-driven physical design flow (Sec. 8.6)

8.1 Introduction
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• Timing optimization engines must estimate circuit delays quickly and accurately 
to improve circuit timing

• Timing optimizers adjust propagation delays through circuit components, 
with the primary goal of satisfying timing constraints, including

− Setup (long-path) constraints, which specify the amount of time a data input signal 
should be stable (steady) before the clock edge for each storage element 
(e.g., flip-flop or latch)

− Hold-time (short-path) constraints, which specify the amount of time a data input 
signal should be stable after the clock edge at each storage element

8.1 Introduction

skewsetupcombDelaycycle tttt ++≥ skewholdcombDelay ttt +≥
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• Timing closure is the process of satisfying timing constraints 
through layout optimizations and netlist modifications 

• Industry jargon: “the design has closed timing” 

8.1 Introduction
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Sequential circuit, “unrolled” in time
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• Main delay concerns in sequential circuits

− Gate delays are due to gate transitions

− Wire delays are due to signal propagation along wires

− Clock skew is due to the difference in time the sequential elements activate

• Need to quickly estimate sequential circuit timing

− Perform static timing analysis (STA)

− Assume clock skew is negligible, postpone until after clock network synthesis

8.2 Timing Analysis and Performance Constraints
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• STA: assume worst-case scenario where every gate transitions

• Given combinational circuit, represent as directed acyclic graph (DAG)

− Every edge (node) has weight = wire (gate) delay

• Compute the slack = RAT – AAT for each node

− RAT is the required arrival time, latest time signal can transition

− AAT is the actual arrival time

− By convention, AAT is defined at the output of every node

⇒ Negative slack at any output means the circuit does not meet timing

⇒ Positive slack at all outputs means the circuit meets timing

8.2.1 Static Timing Analysis
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Combinational circuit as DAG
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Compute AATs at each node:

where FI(v) is the fanin nodes, and t(u,v) is the delay between u and v

A 0.6
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Compute RATs at each node:

where FO(v) are the fanout nodes, and t(u,v) is the delay between u and v
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Compute slacks at each node:

)()()( vAATvRATvslack −=
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• Establish timing budgets for nets

− Gate and wire delays must be optimized during timing driven layout design

− Wire delays depend on wire lengths

− Wire lengths are not known until after placement and routing

• Delay budgeting with the zero-slack algorithm

− Let vi be the logic gates

− Let ei be the nets

− Let DELAY(v) and DELAY(e) be the delay of the gate and net, respectively

− Timing budget TB(v)  of a gate corresponds to DELAY(v) + DELAY(e)

8.2.2 Delay Budgeting with the Zero-Slack Algorithm
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Input: timing graph G(V,E)
Output: timing budgets TB for each v ∈ V
1. do
2. (AAT,RAT,slack) = STA(G)
3. foreach (vi ∈ V)
4. TB[vi] = DELAY(vi) + DELAY(ei)
5. slackmin = ∞
6. foreach (v ∈ V)
7. if ((slack[v] < slackmin) and (slack[v] > 0))
8. slackmin = slack[v]
9. vmin = v
10. if (slackmin ≠ ∞)
11. path = vmin

12. ADD_TO_FRONT(path,BACKWARD_PATH(vmin,G))
13. ADD_TO_BACK(path,FORWARD_PATH(vmin,G))
14. s = slackmin / |path|
15. for (i = 1 to |path|)
16. node = path[i] // evenly distribute
17. TB[node] = TB[node] + s // slack along path
18. while (slackmin ≠ ∞)

8.2.2 Delay Budgeting with the Zero-Slack Algorithm
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Forward Path Search (FORWARD_PATH(vmin,G))

Input: node vmin with minimum slack slackmin, timing graph G

Output: maximal downstream path path from vmin such that no node v ∈ V affects 
the slack of path

1. path = vmin

2. do

3. flag = false

4. node = LAST_ELEMENT(path)

5. foreach (fanout node fo of node)

6. if ((RAT[fo] == RAT[node] + TB[fo]) and (AAT[fo] == AAT[node] + TB[fo]))

7. ADD_TO_BACK(path,fo)

8. flag = true

9. break

10. while (flag == true)

11. REMOVE_FIRST_ELEMENT(path) // remove vmin

8.2.2 Delay Budgeting with the Zero-Slack Algorithm
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Backward Path Search (BACKWARD_PATH(vmin,G))

Input: node vmin with minimum slack slackmin, timing graph G

Output: maximal upstream path path from vmin such that no node v ∈ V affects the 
slack of path

1. path = vmin

2. do

3. flag = false

4. node = FIRST_ELEMENT(path)

5. foreach (fanin node fi of node)

6. if ((RAT[fi] == RAT[node] – TB[fi]) and (AAT[fi] == AAT[node] – TB[fi]))

7. ADD_TO_FRONT(path,fi)

8. flag = true

9. break

10. while (flag == true)

11. REMOVE_LAST_ELEMENT(path) // remove vmin

8.2.2 Delay Budgeting with the Zero-Slack Algorithm
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<0,5,5>

<1,4,5>

8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

2

4

3

6

0

I1
I2

I3

I4

O1

O2

[0]

[0]

<3,4,7> [0]

<7,4,11> [0]

<1,6,7> [0]

<3,5,8> [0]
<6,5,11> [0]

<13,4,17> [0]

<6,8,14> [0]

O1: <13,4,17>

O2: <6,8,14>
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<1,4,5>

8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum nonzero slack

3 0

I1
I2

I3

I4

O1

O2

[0]

[0]

<3,4,7> [0]

<7,4,11> [0]

<1,6,7> [0]

<3,5,8> [0]
<6,5,11> [0]

<13,4,17> [0]

<6,8,14> [0]

2

4 6

O1: <13,4,17>

O2: <6,8,14>
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8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum slack

• Distribute the slacks and update the timing budgets

3 0

I1
I2

I3

I4

O1

O2

[1]

[0]

<3,0,4> [1]

<9,0,9> [1]

<1,4,5> [0]

<3,4,7> [0]
<6,4,10> [0]

<16,0,16> [1]

<6,8,14> [0]

2

4 6

O1: <17,0,17>

O2: <6,8,14>
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<0,0,0>

<1,0,1>

8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum slack

• Distribute the slacks and update the timing budgets

3 0

I1
I2

I3

I4

O1

O2

[1]

[2]

<4,0,4> [1]

<9,0,9> [1]

<1,4,5> [0]

<3,4,7> [0]
<6,4,10> [0]

<16,0,16> [1]

<6,8,14> [0]

2

4 6

O1: <17,0,17>

O2: <6,8,14>
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<0,0,0>

<1,0,1>

8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum slack

• Distribute the slacks and update the timing budgets

3 0

I1
I2

I3

I4

O1

O2

[1]

[2]

<4,0,4> [1]

<9,0,9> [1]

<1,2,3> [2]

<3,2,5> [0]
<6,2,8> [2]

<16,0,16> [1]

<6,8,14> [0]

2

4 6

O1: <16,0,16>

O2: <6,8,14>
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<0,0,0>
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8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum slack

• Distribute the slacks and update the timing budgets

3 0

I1
I2

I3

I4

O1

O2

[1]

[2]

<4,0,4> [1]

<9,0,9> [1]

<1,0,1> [3]

<3,1,4> [0]
<7,0,7> [3]

<16,0,16> [1]

<10,4,14> [0]

2

4 6

O1: <17,0,17>

O2: <10,4,14>
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8.2.2 Delay Budgeting with the Zero-Slack Algorithm Example

• Example: Use the zero-slack algorithm to distribute slack

• Format: <AAT, Slack, RAT>, [timing budget]

• Find the path with the minimum slack

• Distribute the slacks and update the timing budgets

3 0

I1
I2

I3

I4

O1

O2

[1]

[2]

<4,0,4> [1]

<9,0,9> [1]

<1,0,1> [3]

<3,0,3> [1]
<7,0,7> [3]

<16,0,16> [1]

<10,4,14> [4]

2

4 6

O1: <17,0,17>

O2: <10,4,14>
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8.3 Timing-Driven Placement
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• Timing-driven placement optimizes circuit delay 
to satisfy timing constraints

• Let T be the set of all timing endpoints

• Constraint satisfaction is measured by worst negative slack (WNS)

• Or total negative slack (TNS)

• Classifications: net-based, path-based, integrated

( ))τ(min
τ

slackWNS
Τ∈

=

∑
<Τ∈

=
0)τ(,τ

)τ(
slack

slackTNS

8.3 Timing-Driven Placement
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• Net weights are added to each net – placer optimizes weighted wirelength

• Static net weights: computed before placement (never changes)

− Discrete net weights: where ω1 > 0, ω2 > 0, and ω2 > ω1

− Continuous net weights: where t is the longest path delay 
and α is a criticality exponent 

− Based on net sensitivity to TNS and slack





≤
>

=
0 if  ω
0 if  ω

2

1

slack
slack

w

α

1 





 −=

t
slackw

TNS
w

SLACK
wtargeto sβsslackslackww ⋅+⋅−+= )(α

8.3.1 Net-Based Techniques
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• Dynamic net weights: (re)computed during placement

− Estimate slack at every iteration:

where ΔL is the change in wirelength

− Update net criticality:

− Update net weight:

• Variations include updating every j iterations, different relations 
between criticality and net weight

Lsslackslack DELAY
Lkk ∆⋅−= −1

( )







 +
=

−

−

1

1

υ
2
1

1υ
2
1

υ
k

k
k

if among the top 3% of critical nets

otherwise

( )kkk ww υ11 +⋅= −

8.3.1 Net-Based Techniques
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• Construct a set of constraints for timing-driven placement

− Physical constraints define locations of cells

− Timing constraints define slack requirements

• Optimize an optimization objective

− Improving worst negative slack (WNS)

− Improving total negative slack (TNS)

− Improving a combination of both WNS and TNS

8.3.2 Embedding STA into Linear Programs for Placement
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• For physical constraints, let:

− xv and yv be the center of cell v ∈ V

− Ve be the set of cells connected to net e ∈ E

− left(e), right(e), bottom(e), and top(e) respectively be the coordinates 
of the left, right, bottom, and top boundaries of e’s bounding box

− δx(v,e) and δy(v,e) be pin offsets from xv and yv for v’s pin connected to e

8.3.2 Embedding STA into Linear Programs for Placement
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• Then, for all v ∈ Ve:

• Define e’s half-perimeter wirelength (HPWL):

),(δ)(

),(δ)(
),(δ)(
),(δ)(

evyetop

evyebottom
evxeright
evxeleft

yv

yv

xv

xv

+≥

+≤
+≥
+≤

)()()()()( ebottometopelefterighteL −+−=

8.3.2 Embedding STA into Linear Programs for Placement
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• For timing constraints, let

− tGATE(vi,vo) be the gate delay from an input pin vi to the output pin vo for cell v

− tNET(e,uo,vi) be net e’s delay from cell u’s output pin uo to cell v’s input pin vi

− AAT(vj) be the arrival time on pin j of cell v

8.3.2 Embedding STA into Linear Programs for Placement
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• For every input pin vi of cell v :

• For every output pin vo of cell v :

• For every pin τp in a sequential cell τ:

• Ensure that every slack(τp) ≤ 0

),()()( ioNEToi vutuAATvAAT +=

),()()( oiGATEio vvtvAATvAAT +≥

)τ()τ()τ( ppp AATRATslack −≤

8.3.2 Embedding STA into Linear Programs for Placement
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• Optimize for total negative slack:

• Optimize for worst negative slack:

• Optimize а linear combination of multiple parameters:

∑
Τ∈∈ τ),τ(τ

)τ(:max
Pins

p
p

slack

WNS:max

∑
∈

⋅−
Ee

WNSeL α)(:min

8.3.2 Embedding STA into Linear Programs for Placement
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8.4 Timing-Driven Routing
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• Timing-driven routing seeks to minimize:

− Maximum sink delay: delay from the source to any sink in a net

− Total wirelength: routed length of the net

• For a signal net net, let

− s0 be the source node

− sinks = {s1, … ,sn} be the sinks

− G = (V,E) be a corresponding weighted graph where:

− V = {v0,v1, … ,vn} represents the source and sink nodes of net, and

− the weight of an edge e(vi,vj) ∈ E represents the routing cost between vi and vj

8.4 Timing-Driven Routing
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• For any spanning tree T over G, let:

− radius(T) be the length of the longest source-sink path in T

− cost(T) be the total edge weight of T

• Trade off between “shallow” and “light” trees

• “Shallow” trees have minimum radius

− Shortest-paths tree

− Constructed by Dijkstra’s Algorithm

• “Light” trees have minimum cost

− Minimum spanning tree (MST)

− Constructed by Prim’s Algorithm

8.4 Timing-Driven Routing
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radius(T) = 8
cost(T) = 20

“Shallow”
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radius(T) = 13
cost(T) = 13

“Light”

s0

6

5

2

3

radius(T) = 11
cost(T) = 16

Tradeoff between 
shallow and light

8.4 Timing-Driven Routing
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• Trades off radius for cost by setting upper bounds on both

• In the bounded-radius, bounded-cost (BRBC) algorithm, let:

− TS be the shortest-paths tree

− TM be the minimum spanning tree

• TBRBC is the tree constructed with parameter ε that satisfies:

• When ε = 0, TBRBC has minimum radius

• When ε = ∞, TBRBC has minimum cost

)()ε1()( SBRBC TradiusTradius ⋅+≤
and

)(
ε
21)( MBRBC TcostTcost ⋅





 +≤

8.4.1 The Bounded-Radius, Bounded-Cost Algorithm



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 8: Timing Closure

©
 K

LM
H

Li
en

ig42

• Prim-Dijkstra Tradeoff based on Prim’s algorithm and Dijkstra’s algorithm

• From the set of sinks S, iteratively add sink s based on different cost function

− Prim’s algorithm cost function:

− Dijkstra’s algorithm cost function:

− Prim-Dijkstra Tradeoff cost function:

• γ is a constant between 0 and 1

),( ji sscost

),(),( 0 jii sscostsscost +

),(),(γ 0 jii sscostsscost +⋅

8.4.2 Prim-Dijkstra Tradeoff
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radius(T) = 19
cost(T) = 35

γ = 0.25

radius(T) = 15
cost(T) = 39

γ = 0.75

8.4.2 Prim-Dijkstra Tradeoff
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• Iteratively forms a tree by adding sinks, and optimizes for critical sink(s)

• In the critical-sink routing tree (CSRT) problem, minimize:

where α(i) are sink criticalities for sinks si, and t(s0,si) is the delay from s0 to si

∑
=

⋅
n

i
issti

1
0 ),()(α

8.4.3 Minimization of Source-to-Sink Delay
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• In the critical-sink Steiner tree problem, construct a 
minimum-cost Steiner tree T for all sinks except for the most critical sink sc

• Add in the critical sink by:

− H0: a single wire from sc to s0

− H1: the shortest possible wire that can join sc to T, so long as the path 
from s0 to sc is the shortest possible total length

− HBest: try all shortest connections from sc to edges in T and from sc to s0. 
Perform timing analysis on each of these trees and pick the one 
with the lowest delay at sc

8.4.3 Minimization of Source-to-Sink Delay
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8.5 Physical Synthesis
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• Physical synthesis is a collection of timing optimizations to fix negative slack

• Consists of creating timing budgets and performing timing corrections

• Timing budgets include:
− allocating target delays along paths or nets
− often during placement and routing stages
− can also be during timing correction operations

• Timing corrections include:
− gate sizing
− buffer insertion
− netlist restructuring

8.5 Physical Synthesis
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• Let a gate v have 3 sizes A, B, C, where:

• Gate with a larger size has lower output resistance

• When load capacitances are large:

• Gate with a smaller size has higher output resistance

• When load capacitances are small:

)()()( ABC vtvtvt <<

)()()( ABC vsizevsizevsize >>

)()()( ABC vtvtvt >>

8.5.1 Gate Sizing



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 8: Timing Closure

©
 K

LM
H

Li
en

ig49

24

5

10

15

20

25

0.5

30

35

40

D
el

ay
 (p

s)

Load Capacitance (fF)
1.0 1.5 2.0 2.5 3.0

40

35

30

25

20

15

18
21 24

27
30

33

23 26 27 28

C

B

A

8.5.1 Gate Sizing

• Let a gate v have 3 sizes A, B, C, where: )()()( ABC vsizevsizevsize >>
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b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f)  = 0.5

v

b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f)  = 0.5

t(vA) = 40

vA b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f)  = 0.5

t(vC) = 28

vC

8.5.1 Gate Sizing
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• Buffer: a series of two serially-connected inverters

• Improve delays by

− speeding up the circuit or serving as delay elements

− changing transition times

− shielding capacitive load

• Drawbacks:

− Increased area usage

− Increased power consumption

8.5.2 Buffering
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d
e
f
g
h

C(e) = 1
C(d) = 1

C(f) = 1
C(g) = 1
C(h) = 1

b
a

vB b
a

d
e

f
g

h

C(e) = 1
C(d) = 1

C(f)  = 1
C(g) = 1
C(h) = 1

vB
y

C(vB) = 5 fF

t(vB) = 45 ps

C(vB) = 3 fF

t(vB) = 33 ps

C(y) = 3 fF

t(y) = t(vB) + t(y) = 66 ps

8.5.2 Buffering
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• Netlist restructuring only changes existing gates, does not change functionality

• Changes include

− Cloning: duplicating gates

− Redesign of fanin or fanout tree: changing the topology of gates

− Swapping communicative pins: changing the connections

− Gate decomposition: e.g., changing AND-OR to NAND-NAND

− Boolean restructuring: e.g., applying Boolean laws to change circuit gates

• Can also do reverse transformations of above, e.g., downsizing, merging

8.5.3 Netlist Restructuring
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• Cloning can reduce fanout capacitance

• and reduce downstream capacitance
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8.5.3 Netlist Restructuring
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Redesigning the fanin tree can change AATs

(1)

(1)

(1)

a <4>
b <3>

c <1>
d <0>

f <6>

(1)
(1)

(1)a <4>
b <3>
c <1>
d <0>

f <5>

8.5.3 Netlist Restructuring



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 8: Timing Closure

©
 K

LM
H

Li
en

ig56

Redesigning fanout trees can change delays on specific paths

path1

path2

(1)

y1 (1)

y2 (1)

(1)

path1

path2

y2 (1)

(1) (1)

8.5.3 Netlist Restructuring
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Swapping commutative pins can change the final delay

(1)
(1)

(2)
(1)

a <0>

b <1>

c <2>

f <5> (1)
(1)

(2)
(1)

a <0>

b <1>

c <2>
f <3>

8.5.3 Netlist Restructuring
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Gate decomposition can change the general structure of the circuit

8.5.3 Netlist Restructuring
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8.5.3 Netlist Restructuring

Boolean restructuring uses laws or properties, 
e.g., distributive law, to change circuit topology

(a + b)(a + c) = a + bc

(1)a <4>
b <1>

c <2>
(1)

(1)

(1)

(1)

x <6>

y <6>

x(a,b,c) = (a + b)(a + c)

y(a,b,c) = (a + c)(b + c)

(1)

(1)

(1)

(1)

x <5>

y <6>

a <4>

b <1>
c <2>

x(a,b,c) = a + bc

y(a,b,c) = ab + c
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VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 8: Timing Closure

©
 K

LM
H

Li
en

ig61

8.6 Performance-Driven Design Flow

Baseline Physical Design Flow

1. Floorplanning, I/O placement, power planning

2. Logic synthesis and technology mapping

3. Global placement and sequential element legalization

4. Clock network synthesis

5. Global routing and layer assignment

6. Congestion-driven detailed placement and legalization

7. Detailed routing

8. Design for manufacturing

9. Physical verification

10.Mask optimization and generation
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8.6 Performance-Driven Design Flow
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8.6 Performance-Driven Design Flow

Global Placement Example
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8.6 Performance-Driven Design Flow

Clock Network Synthesis Example
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8.6 Performance-Driven Design Flow

Global Routing Congestion Example
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8.6 Performance-Driven Design Flow

Logic Synthesis and
Technology Mapping Power Planning

I/O Placement

Chip Planning

Performance-Driven Block Shaping, Sizing
and Placement

Single Global Net Routes
and Buffering

fails

passes

RTL
Timing Estimation

With Optional Net Weights

Trial Synthesis and 
Floorplanning

Performance-Driven

Block-Level 
Delay Budgeting

Block-level or Top-level Global Placement

Chip Planning and Logic Design

(see full flow chart in Figure 8.26)
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8.6 Performance-Driven Design Flow

Delay Estimation
Using Buffers

Buffer Insertion
Virtual Buffering

Layer AssignmentOR

fails

Obstacle-Avoiding Single 
Global Net Topologies

Physical Buffering

passes with 
fixable violations

Static 
Timing Analysis

Global Placement

With Optional Net Weights

Block-level or Top-level Global Placement

Physical Synthesis

(see full flow chart in Figure 8.26)
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8.6 Performance-Driven Design Flow

Timing-Driven 
Restructuring

Gate Sizing

Timing Correction

fails

Boolean Restructuring 
and Pin Swapping

Redesign of Fanin 
and Fanout Trees

Static 
Timing Analysis

passes
Routing

AND

Physical Synthesis

(see full flow chart in Figure 8.26)
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8.6 Performance-Driven Design Flow

Clock Network Synthesis

Timing-driven

Legalization + Congestion-
Driven Detailed Placement

Static 
Timing AnalysisTiming-Driven Routing

(Re-)Buffering and
Timing Correction Detailed Routing

Global Routing

With Layer Assignment

Routing

Sign-off

fails

passes

Legalization of 
Sequential Elements

2.5D or 3D 
Parasitic Extraction

(see full flow chart in Figure 8.26)
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8.6 Performance-Driven Design Flow

Mask Generation

Design Rule Checking

Layout vs. Schematic

Antenna Effects

Electrical Rule Checking

Sign-off

Manufacturability,
Electrical, Reliability 

Verification
Static Timing Analysis

ECO Placement  and Routing
fails

fails

passes

passes

(see full flow chart in Figure 8.26)
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Summary of Chapter 8 – Timing Constraints and Timing Analysis

• Circuit delay is measured on signal paths
− From primary inputs to sequential elements; from sequentials to primary outputs
− From sequentials to sequentials

• Components of path delay
− Gate delays: over-estimated by worst-case transition per gate

(to ensure fast Static Timing Analysis)
− Wire delays: depend on wire length and (for nets with >2 pins) topology

• Timing constraints
− Actual arrival times (AATs) at primary inputs and output pins of sequentials
− Required arrival times (RATs) at primary outputs and input pins of sequentials

• Static timing analysis
− Two linear-time traversals compute AATs and RATs for each gate (and net)
− At each timing point: slack = RAT-AAT
− Negative slack = timing violation; critical nets/gates are those with negative slack

• Time budgeting: divides prescribed circuit delay into net delay bounds
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Summary of Chapter 8 – Timing-Driven Placement

• Gate/cell locations affect wire lengths, which affect net delays

• Timing-driven placement optimizes gate/cell locations to improve timing
− Interacts with timing analysis to identify critical nets, then biases placement opt.
− Must keep total wirelength low too, otherwise routing will fail
− Timing optimization may increase routing congestion

• Placement by net weighting
− The least invasive technique for timing-driven placement
− Performs tentative placement, then changes net weights based on timing analysis

• Placement by net budgeting
− Allocates delay bounds for each net; translates delay bounds into length bounds
− Performs placement subject to length constraints for individual nets

• Placement based on linear programming
− Placement is cast as a system of equations and inequalities
− Timing analysis and optimization are incorporated using additional inequalities
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Summary of Chapter 8 – Timing-Driven Routing

• Timing-driven routing has several aspects
− Individual nets: trading longer wires for shorter source-to-sink paths
− Coupling capacitance and signal integrity: parallel wires act as capacitors

and can slow-down/speed-up signal transitions 
− Full-netlist optimization: prioritize the nets that should be optimized first

• Individual net optimization
− One extreme: route each source-to-sink path independently (high wirelength)
− Another extreme: use a Minimum Spanning Tree (low wirenegth, high delay)
− Tunable tradeoff: a hybrid of Prim and Dijkstra algorithms

• Coupling capacitance and signal integrity
− Parallel wires are only worth attention when they transition at the same time
− Identify critical nets, push neighboring wires further away to limit crosstalk

• Full-netlist optimization
− Run trial routing, then run timing analysis to identify critical nets
− Then adjust accordingly, repeat until convergence
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Summary of Chapter 8 – Physical Synthesis

• Traditionally, place-and-route have been performed after the netlist is known

• However, fixing gate sizes and net topologies early
does not account for placement-aware timing analysis
− Gate locations and net routes are not available

• Physical synthesis uses information from trial placement to modify the netlist

• Net buffering: splits a net into smaller (approx. equal length) segments
− A long net has high capacitance, the driver may be too weak

• Gate/buffer sizing: increases driver strength & physical size of a gate
− Large gates have higher input pin capacitance, but smaller driver resistance
− Larger gates can drive larger fanouts, longer nets; faster transitions
− Large gates require more space, larger upstream drivers

• Gate cloning: splits large fanouts
− Cloned gates can be placed separately, unlike with a single larger gate
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