®

Check for
updates

9.1 Machine Learning in Physical Design
9.1.1 Introduction

In the present late-CMOS era, IC physical design faces three intertwined challenges:
cost, quality, and predictability. Cost corresponds to engineering effort, compute
effort, and schedule. Quality corresponds to power, performance, and area (PPA)
competitive metrics, along with other criteria such as reliability and yield which also
determine cost. Predictability corresponds to the reliability of the design schedule,
e.g., whether there will be unforeseen floorplan iterations, or whether detailed
routing or timing closure flow stages will have larger than anticipated runtimes.
The quality of results (QoR) must also be predictable. Each of these three challenges
provides a corresponding lever for scaling. In other words, reduction of design cost,
improvement of design quality, and reduction of design schedule are all forms of
design-based equivalent scaling [7] that expand the availability of leading-edge
technology to designers and their IC products. Today, the IC industry looks to
machine learning (ML) to provide such benefits across EDA tools, flows, and design
methodologies.

In this Sect. 9.2, we first review the promise and challenges for ML in IC physical
design, and then illustrate benefits to schedule and quality of results, as demonstrated
in recent publications. Among canonical ML applications in physical design is the
removal of unnecessary design and modeling margins through learning-based corre-
lation mechanisms. Another example is achieving faster design convergence through
predictors of downstream flow outcomes. In addition to applying ML to individual
physical design tasks, physical design methodologies can be adapted to benefit from
ML techniques and to make these techniques successful. We point out available
surveys on ML in physical design, and review ML-based methods for tasks
addressed in the preceding chapters. We also attempt to extrapolate recent progress
and forecast improvements that appear likely in the future.

269

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing
Closure, Springer 2022, https://doi.org/10.1007/978-3-030-96415-3_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96415-3_9&domain=pdf

270 9 Appendix

9.1.2 ML: Promise and Challenges in Physical Design

To motivate specific applications of ML in physical design, we first review the
rationale for applying ML techniques and describe their common limitations in the
context of physical design. High-performance ML techniques were developed to
make use of large amounts of data, e.g., find correlations between signals, solve
approximate classification tasks, and compute numerical predictions with a good
degree of accuracy. In particular, deep learning excels at combining large amounts of
data in structured ways (feature identification) to make predictions. Generative ML
techniques are also available, but have historically struggled with combinatorial
optimization. In contrast, past physical design R&D focused on optimization
problems with serious efforts made to scale to large data sets. Predicting post-
optimization quality metrics has always been a challenge. This complementarity in
areas of strength is key to understanding recent and emerging applications of ML
methods to physical design.
To develop uses of ML in physical design, one typically:

— Chooses impactful physical design tasks that play to the strengths of ML
techniques and help amplify existing physical design tools

— Ensures that adequate and sufficient data are available to train and evaluate ML
models

— Clarifies optimization objectives and ML-centric loss functions, as well as the
tolerance for mistakes in specific tasks

— Defines a runtime regime compatible with the ML techniques involved

In the following, we illustrate how these principles are reduced to application.

9.1.3 Canonical ML Applications
Several ML uses in physical design have become canonical in the past decade.

Improving Analysis Correlation Analysis miscorrelations arise when multiple
tools return different results for the same analysis task (parasitic extraction, static
timing analysis (STA), etc.) on the same input data. Figure 9.1 shows that better
accuracy usually requires more computation, making miscorrelations likely between
fast estimators and accurate estimators. For example, “sign-off” timing analysis is
too expensive for use within tight optimization loops.

Miscorrelation leads to guard bands and/or pessimism in the design flow. For
example, if the place-and-route (P&R) tool’s timing report determines that an
endpoint has positive worst setup slack, while the “golden,” sign-off STA tool
determines that the same endpoint has negative worst slack, an iteration (ECO fixing
step) will be required. On the other hand, if the P&R tool applies pessimism to guard
band its miscorrelation to the sign-off tool, this will cause unnecessary sizing,



9.1 Machine Learning in Physical Design 271

Fig. 9.1 Accuracy-cost

trade-off in analysis Accuracy
0/ b e e o e e e e e e e e e e o = = —_——
100% e A -0
+ML@®
+MLe
+MLlLe
(100-x)%f = = = = ® Cost / Runtime

shielding, or VT-swapping operations that come at the cost of chip area, power
efficiency, and design schedule.

Modeling and Prediction of Tools and Outcomes Convergent, high-quality
design requires accurate modeling and prediction of downstream flow steps and
outcomes. Predictive models (e.g., of wirelength, congestion, timing) serve as
objectives or guides for optimizations. They can also help prevent “doomed runs,”
thus saving valuable design resources. Without predictive models, the IC physical
design process can only “predict by doing,” which is akin to predicting a tree’s
height by watching it grow for 20 years. Ultimately, ML can make physical design
faster and more efficient via a “stack” of models that reaches up to the architecture
and high-level design layers of chip design.

Several ML directions complement modeling and prediction efforts. Feature
identification identifies the structural attributes of design problems—such as size,
fanout, utilization, or clock frequency—that determine flow outcomes. Clustering of
circuit netlists, often after embedding into vector spaces, helps to identify “natural
structure” that can be preserved in layout solutions while also reducing the com-
plexity of partitioning, floorplanning, and placement problems. Developing syn-
thetic designs that are realistic from the standpoint of physical design optimizations
can improve the robustness of ML models. More broadly, tool and flow predictions
will increasingly span multiple design steps: the analogy is that we must predict what
happens at the end of a longer and longer rope when the rope is wiggled.

Other Applications ML methods are also applied within physical design
algorithms, tools, and flows in the following two ways: (1) Reinforcement learning
and model-guided optimization can apply to small-scale optimizations, such as
sizing in timing closure or incremental place-and-route to repair DRC violations.
(2) Distributed or federated learning and optimization, as well as adaptive sampling
strategies, can apply at the tool and flow levels, especially with the availability of
cloud computing resources. This includes evolutionary methods and hyperparameter
optimization (“autotuning”).



272 9 Appendix

Physical Design Methodologies Can Leverage Machine Learning Physical
design methodologies can leverage machine learning by using more accurate
predictions to reduce iterations and by adopting ML-powered tools, but they also
need to provide sufficient data, metrics, and criteria for success to support ML
techniques. In particular, the number of large modern IC designs available for
training ML models to any one developer is limited, and new designs sometimes
depart from old designs in component use, style, and overall structure. Tasks dealing
with polygonal layouts are better suited to address this data challenge, but the
general approach is to train ML models on designs and/or layouts that are represen-
tative of future inputs, with or without controlled data augmentation. In using this
approach, one must be careful to avoid data leakage, i.e., not to train ML models on
problem instances too similar to those used in evaluation. Aside from misleading
evaluation, such missteps may lead to overfitting, where performance on new inputs
lags behind that on previously seen inputs. Another potential disconnect may occur
between task-specific metrics and formal ML objectives. To ensure a better match,
one can leverage available flexibility in formal ML objectives via hyperparameter
tuning, but in some cases better objectives can be extrapolated from feedback, e.g.,
via reinforcement learning. Given that ML-based methods produce some fraction of
less-than-ideal results, one must be clear on how such results can be tolerated and
how good results are leveraged. Yet another challenge for methodologies in applying
ML techniques is justifying the necessary runtime for a given context. ML
techniques vary in their runtimes, but can often be sped up by early termination,
data sampling or clustering, as well as hardware acceleration.

ML for IC physical design can also be made more efficient by (1) standardized
tool metrics format and (2) data augmentation. Standardized metrics format reduces
unnecessary efforts to build ad hoc approaches to design, tool, and flow data
collection. Moreover, it also facilitates sharing of ML models and reproduction of
experiments [13]. In addition, the lack of data for ML training due to the limited
supply of open IC designs can be resolved by data augmentation. Data augmentation
can improve the generality of ML models by covering outliers from ‘“unseen”
designs.

9.1.4 The State of ML for Physical Design

The remainder of this Sect. 9.1 reviews promising uses of ML, mapped to chapter
topics in this book. Additionally, five works that give a broader sense of the scope
and velocity of ML for physical design are the following:

* Yu et al. [3] survey common ML and pattern matching techniques, along with
applications in physical design and verification such as lithography hotspot
detection, datapath placement, and clock optimization.



9.1 Machine Learning in Physical Design 273

» Kahng [1, 2] reviews challenges and opportunities for machine learning, along
with concrete existence proofs, for application of machine learning in IC physical
design.

e Huang et al. [4] give a comprehensive review of existing ML for EDA studies,
organized following the EDA hierarchy; this review includes numerous works in
the realm of physical design.

e Pandey [5] describes how ML techniques enable the development of next-
generation EDA tools with substantial gains in performance and ease of use.

* Rapp et al. [6] present a comprehensive categorization of how ML may be used
for design-time and runtime optimizations and exploration strategies in IC design.

Chapter 3: Chip Planning

Among the major stages of chip planning—floorplanning, pin assignment, and
power planning—ML has been most actively applied to the macro-block placement
problem in floorplanning. Floorplanning is typically formulated as minimization of a
combination of wirelength and area, with penalization of overlaps. Over the span of
decades, numerous works apply simulated annealing to slicing tree, sequence pair, or
B*-tree floorplan representations. More recently, deep Q-learning (DQN) is pro-
posed to select a candidate neighbor solution at each step during simulated
annealing. Mirhoseini et al. [18] pose macro-placement as a reinforcement learning
(RL) problem and train an agent (i.e., a policy network) to place the nodes of a chip
netlist onto a chip canvas. In each iteration of training, all of the macros of the chip
block are sequentially placed by the RL agent, after which the standard cells are
placed by a force-directed method.

For power planning, Chhabria et al. [11] apply ML to create a power delivery
network (PDN) with region-wise uniform pitches based on a library of predesigned,
stitchable power grid templates. The methodology is applicable at both the floorplan
and placement stages of physical design. At the floorplan stage, an optimized PDN is
synthesized based on the early estimates of current and congestion, using a multi-
layer perceptron classifier. At the placement stage, an existing PDN is improved
based on more detailed congestion and current distributions, using a CNN. At either
stage, the neural network builds a safe-by-construction PDN that meets IR drop and
electromigration (EM) robustness requirements.

Chapter 4: Global and Detailed Placement

Recall that after chip planning, placement seeks to determine the locations of
standard cells or other logic elements within a given layout region while addressing
optimization objectives such as minimization of total half-perimeter wirelength. In
the placement realm, ML has been applied particularly to global placement.

Works that apply ML in the context of commercial EDA include PL-GNN [17], a
graph learning-based framework that provides placement guidance for commercial
placers by generating cell clusters based on logical affinity and manually defined
attributes of design instances. For a given netlist, the PL-GNN first performs
unsupervised node representation learning using graph neural networks (GNNs)
based on the initial features manually defined for each design instance, and then



274 9 Appendix

applies weighted K-means clustering to group instances into different clusters.
Agnesina et al. [8] use deep RL to automatically optimize runtime parameters of a
commercial placement tool, using a mixture of handcrafted topological features
along with graph embeddings generated using unsupervised graph neural networks
(GNNs). Compared to a state-of-the-art, multiarmed bandit-based tool autotuner, the
RL framework is able to consider input netlist features and accurately predict
wirelength for unseen netlists based on just one placement iteration.

The stochastic gradient descent optimization method, in conjunction with highly
capable hardware platforms for ML, has also led to placement advances. Notably,
Lin et al. [15] have developed a novel GPU-accelerated placement framework,
DREAMPIace, which casts the analytical placement problem equivalently to train-
ing a neural network.

Chapter 5: Global Routing

In the context of global routing, ML is used to supplement existing methods that
predict overflows and DRC hotspots based on placement information. Such
predictions must be accurate and fast, so that the global routing solution gives viable
guidance to the much more time-consuming detailed routing. A variety of ML
methods for the global routing stage of physical design have been proposed for
both FPGA and ASIC tools.

Due to the highly structured, inhomogeneous nature of FPGA physical layout
resources, ML to improve and accelerate FPGA physical design has seen strong
activity in recent years. Recently proposed congestion estimation methodologies for
FPGA placement include surrogate ML models using a number of alternative
classifiers, and conditional generative adversarial network (CGAN)-based modeling.

In the ASIC context, congestion and DRC predictors have used classical regres-
sion and image-based ML methods. Multivariate adaptive regression splines
(MARS) is an effective regression technique when the correlation between input
variables and output results has piecewise linear characteristics. ML applications in
the global routing stage also include CNN-based DRC hotspot prediction to forecast
DRC hotspots. For example, RouteNet [19] predicts the number of design rule
violations and detects DRC hotspots by using CNN and fully convolutional network
(FCN) models.

While most routing congestion predictors assume availability of placement infor-
mation, having a predicted congestion map earlier in physical design can help the
designer run routability-aware placement and reduce turnaround time. Methods at
the preplacement stage include graph attention network (GAT)-based routing
hotspot prediction, and wirelength estimation model selection through linear dis-
criminant analysis.

Chapter 6: Detailed Routing

Detailed routing is the most time-consuming of all phases of physical design. Hence,
even ML models with high-cost input data (e.g., obtained post-global routing) can
have utility if they can achieve accurate detailed routing predictions.



9.1 Machine Learning in Physical Design 275

The large amount of labeled data required for training of supervised learning is
considered as a barrier to apply ML to EDA. Gandhi et al. [12] propose a data-
independent reinforcement learning-based routing model (Alpha-PD-Router) to
route a circuit and correct short violations. Alpha-PD-Router uses a collaborative
min-max game framework and standard routing algorithms. The framework
considers two game players, a path search algorithm-based Router and a Cleaner,
which, respectively, discover and fix design rule violations. The players in turn find
and rip up the best net to fix the violation, and then reroute the net.

As noted above, ML-based predictions can also inform optimizations. Chan et al.
[10] propose a machine learning framework to optimize detailed routing DRC
violations. The framework includes a post-global routing DRC violation predictor
and a detailed placement optimizer that reduces detailed routing DRCs through
predictor-guided cell spreading. This framework is notable both for its predictions
(such as hotspot and quality of results) and for performing actual optimization based
on prediction data.

Chapter 7: Specialized Routing

On-chip clock distribution solutions are increasingly critical to achieving IC power,
area, and design quality goals due to the scaling of technology nodes. In parallel with
the improvement of classical algorithms, researchers have used ML to obtain better
results from existing tools, and to design new algorithms.

To model existing tools, an artificial neural network (ANN) can be used to
estimate the number of clock buffers, and can be applied to each clock gate as
well as the clock source in an ideal clock network [14]. The clock structure is then
constructed using such estimated clock buffers. A minimized number of buffers can
be found by binary search, where at each step the trained ANN is used to find clock
parameters for a target number of buffers.

Novel clock tree synthesis (CTS) algorithms based on machine learning include
GAN-CTS [16], which uses a conditional generative adversarial network and rein-
forcement learning to predict and optimize clock tree synthesis outcomes.

Chapter 8: Timing Closure
The physical design of an integrated circuit must satisfy not only geometric
requirements, such as nonoverlapping cell placement or design rule correct routing,
but timing and other electrical constraints as well. Timing closure, the optimization
process that satisfies these constraints, is based on sign-off-accurate timing analysis
that is often slow and expensive. Thus, numerous ML approaches have aimed to
reduce the runtime burden of high-accuracy static timing analysis (STA) and shift
the accuracy-cost trade-off of Fig. 9.1.

All of these works can be classified into two categories: (1) predicting the timing
reports of runtime-expensive but accurate tools or models, based on the results of
inaccurate but fast tools or models, and (2) estimating the timing information at an



276 9 Appendix

early stage of the IC design flow. Examples in the first category include correcting
divergence between two arbitrary timing tools with respect to flip-flop setup time,
cell arc delay, wire delay, stage delay, and path slack at timing endpoints; mapping
the results of a tool-internal incremental STA engine to that of a sign-off STA tool;
predicting timing reports in signal integrity (cross talk-aware) mode, based on timing
reports from non-SI mode; predicting expensive path-based analysis (PBA) results
from relatively inexpensive graph-based analysis (GBA) results; and predicting the
timing analysis at unobserved corners from analysis results at observed corners.
Works in the second category mainly focus on estimating the post-placement or
post-routing timing information before placement or routing. For example, Barboza
et al. [9] propose an ML-based pre-routing timing prediction approach.

9.1.5 Future Developments

Recent and ongoing efforts have improved physical design methodologies with ML
techniques, particularly in analysis correlations as well as guiding and tuning
traditional optimization methods. Future wins can be gleaned from recent research
publications and are likely to be supported in several ways:

— Improved data efficiency, e.g., better feature selection, structural data augmenta-
tion, and data-efficient ML models

— Learning to learn, especially learning appropriate optimization objectives and
tuning available optimizers to special cases

— More judicious use of “heavier” ML techniques that previously required prohibi-
tive computational resources, including transformer for spatial data, graph neural
networks, and reinforcement learning

— Emerging ML techniques for solving combinatorial optimization problems

— Multistage ML techniques that employ lightweight methods for easier tasks and
heavier methods for harder tasks, all within an architecture that pursues a higher
level goal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing
Closure, Springer 2022, https://doi.org/10.1007/978-3-030-96415-3_9



