
8.6 Performance-Driven Design Flow

The previous sections have presented a broad range of algorithms and techniques
that can be used to improve the timing of modern digital circuit designs. This section
takes the next step, by combining these optimizations in a consistent performance-
driven physical design flow, which seeks to satisfy timing constraints, i.e., “close on
timing.” Due to the nature of performance optimizations, the order of optimizations
is important, and their interactions with conventional layout techniques are subject to
a number of subtle limitations. Evaluation steps, particularly STA, must be invoked
several times, and some optimizations, such as buffering, must often be redone
multiple times to facilitate a more accurate evaluation.

Baseline Physical Design Flow Recall that a typical design flow starts with chip
planning (Chap. 3), which includes I/O placement, floorplanning (Fig. 8.22), and
power planning. Trial synthesis provides the floorplanner with an estimate of the
total area needed by modules. Besides logic area, additional whitespace must be
allocated to account for buffers, routability, and gate sizing.

Then, logic synthesis and technology mapping produce a gate-level netlist from a
high-level specification, which is tailored to a specific technology library. Next,
global placement assigns locations to each movable object (Chap. 4). As illustrated
in Fig. 8.23, most of the cells are clustered in highly concentrated regions (colored
black). As the iterations progress, the cells are gradually spread across the chip, such
that they overlap less and less (colored light gray).

These locations, however, do not have to be aligned with cell rows or sites, and
slight cell overlap is allowed. To ensure that the overlap is small, it is common to
(1) establish a uniform grid, (2) compute the total area of objects in each grid square,
and (3) limit this total by the area available in the square.

After global placement, the sequential elements are legalized. Once the locations
of sequential elements are known, a clock network (Chap. 7) is generated. ASICs,
SoCs, and low-power (mobile) CPUs commonly use clock trees (Fig. 8.24), while
high-performance microprocessors incorporate structured and hand-optimized clock
distribution networks that may combine trees and meshes [25, 26].

8.6 Performance-Driven Design Flow 253

The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing
Closure, Springer 2022, https://doi.org/10.1007/978-3-030-96415-3_8

Main Applications

CPU
Memory

Baseband DSP
PHY

SecurityBaseband
MAC/Control

Embedded
Controller for

Dataplane
Processing

Protocol
Processing

gnissecorP
golanA

Audio

Codec

Audio
Pre/Post-

processing

Video

Pre/Post-
processing

Control + DSP

Video

Codec DSP
An

al
og

-to
-

dnalatigi
D

D
ig

ita
l-t

o-
An

al
og

C
on

ve
rt

er

Fig. 8.22 An example floorplan of a system-on-chip (SoC) design. Each major component is given
dimensions based on area estimates. The audio and video components are adjacent to each other,
given that their connections to other blocks and their performance constraints are similar

Fig. 8.23 The progression of cell spreading during global placement in a large, flat
(non-floorplanned) ASIC design with fixed macro blocks. Darker shades indicate greater cell
overlap while lighter shades indicate smaller cell overlap

254 8 Timing Closure

The locations of globally placed cells are first temporarily rounded to a uniform
grid, and then these rounded locations are connected during global routing (Chap. 5)
and layer assignment, where each route is assigned to a specific metal layer. The
routes indicate areas of wiring congestion (Fig. 8.25). This information is used to
guide congestion-driven detailed placement and legalization of combinational
elements (Chap. 4).

While detailed placement conventionally comes before global routing, the reverse
order can reduce overall congestion and wirelength [23]. Note that EDA flows
typically require a legal placement before global routing. In this case, legalization
will be performed after global placement. The global routes of signal nets are then
assigned to physical routing tracks during detailed routing (Chap. 6).

The layout generated during the place-and-route stage is subjected to reliability,
manufacturability, and electrical verification. A subsequent layout post-processing
step inserts amendments and additions to the chip layout and might apply resolution
enhancement techniques (RET) [34]. Afterwards, each standard cell and each route
are represented by collections of rectangles in a format suitable for generating optical

Fig. 8.24 Buffered clock tree in a small CPU design. The clock source is in the lower left corner.
Crosses (�) indicate sinks, and boxes (□) indicate buffers. Each diagonal segment represents a
horizontal plus a vertical wire (L-shape), the choice of which can be based on routing congestion

8.6 Performance-Driven Design Flow 255

lithography masks for chip fabrication. With this, the physical layout is converted
into data for mask production (mask generation).

This baseline PD flow is illustrated in Fig. 8.26 with white boxes. Extending the
baseline design flow, contemporary industrial flows are typically built around static
timing analysis and seek to minimize the amount of change required to close on
timing. Some flows start timing-driven optimizations as early as the chip planning
stage, while others do not account for timing until detailed placement to ensure
accuracy of timing results. This section discusses the timing-driven flow illustrated
in Fig. 8.26 with colored boxes. Advanced methods for physical synthesis are found
in [3].

Chip Planning and Logic Design Starting with a high-level design, performance-
driven chip planning generates the I/O placement of the pins and rectangular blocks
for each circuit module while accounting for block-level timing, and the power
supply network. Then, logic synthesis and technology mapping produce a netlist
based on delay budgets.

Performance-Driven Chip Planning Once the locations and shapes of the blocks are
determined, global routes are generated for each top-level net, and buffers are
inserted to better estimate timing [2]. Since chip planning occurs before global
placement or global routing, there is no detailed knowledge of where the logic
cells will be placed within each block or how they will be connected. Therefore,
buffer insertion makes optimistic assumptions.

Fig. 8.25 Progression of congestion maps through iterations of global routing. The light-colored
areas are those that do not have congestion; dark-colored peaks indicate congested regions. Initially,
several dense clusters of wires create edges that are far over capacity. After iterations of rip-up and
reroute, the route topologies are changed, alleviating the most congested areas. Though more
regions can become congested, the maximum congestion is reduced

256 8 Timing Closure

Delay Estimation
Using Buffers

Buffer Insertion
Virtual Buffering

Layer AssignmentOR

Timing-Driven
Restructuring

Gate Sizing

Timing Correction

Clock Network Synthesis

Timing-driven

Legalization + Congestion-
Driven Detailed Placement

Logic Synthesis and
Technology Mapping Power Planning

I/O Placement

fails

fails

Chip Planning

Performance-Driven Block Shaping, Sizing
and Placement

Single Global Net Routes
and Buffering

fails

passes

Obstacle-Avoiding Single
Global Net Topologies

Physical Buffering

Boolean Restructuring
and Pin Swapping

Redesign of Fanin
and Fanout Trees

Static
Timing Analysis

Static
Timing Analysis

RTL
Timing Estimation

passes with
fixable violations

With Optional Net Weights

Static
Timing Analysis

Global Placement

With Optional Net Weights

Timing-Driven Routing

(Re-)Buffering and
Timing Correction Detailed Routing

Baseline PD Flow (Chaps. 3-7)
Performance-driven PD Flow
(Chap. 8)
Design Steps Beyond PD

Mask Generation

Design Rule Checking

Global Routing

With Layer Assignment

Trial Synthesis and
Floorplanning

Performance-Driven

Layout vs. Schematic

Antenna Effects

Electrical Rule Checking

Block-Level
Delay Budgeting

passes

Block-level or Top-level Global Placement

Chip Planning and Logic Design

Physical Synthesis

Routing

Sign-off

fails

passes

AND

Legalization of
Sequential Elements

Manufacturability,
Electrical, Reliability

Verification
Static Timing Analysis

ECO Placement and Routing
fails

fails

passes

passes

2.5D or 3D
Parasitic Extraction

Fig. 8.26 Integrating optimizations covered in Chaps. 3–8 into a performance-driven design flow.
Some tools bundle several optimization steps, which changes the appearance of the flow to users
and often alters the user interface. Alternatives to this flow are discussed in this section

8.6 Performance-Driven Design Flow 257

After buffering, STA checks the design for timing errors. If there are a sufficient
number of violations, then the logic blocks must be re-floorplanned. In practice,
modifications to existing floorplans to meet timing are performed by experienced
designers with little to no automation. Once the design has satisfied or mostly met
timing constraints, the I/O pins can be placed, and power (VDD) and ground (GND)
supply rails can be routed around floorplan blocks.

Timing Budgeting After performance-driven floorplanning, delay budgeting sets
upper bounds on setup (long path) timing for each block. These constraints guide
logic synthesis and technology mapping to produce a performance-optimized gate-
level netlist, using standard cells from a given library.

Block-level or Top-level Global Placement Starting at global placement, timing-
driven optimizations can be performed at the block level, where each individual
block is optimized, or top level, where transformations are global, i.e., cross-block
boundaries, and all movable objects are optimized.5 Block-level approaches are
useful for designs that have many macro blocks or intellectual properties (IPs)
that have already been optimized and have specific shapes and sizes. Top-level
approaches are useful for designs that have more freedom or do not reuse previously
designed logic; a hierarchical methodology offers more parallelism and is more
common for large design teams.

Buffer Insertion To better estimate and improve timing, buffers are inserted to break
any extremely long or high fanout nets (Sect. 8.5.2). This can be done either
physically, where buffers are directly added to the placement, or virtually, where
the impact of buffering is included in delay models, but the netlist is not modified.

Physical Buffering Physical buffering [1] performs the full process of buffer inser-
tion by (1) generating obstacle-avoiding global net topologies for each net,
(2) estimating which metal layers the route uses, and (3) actually inserting buffers
(Fig. 8.27).

Virtual buffering [19], on the other hand, estimates the delay by modeling every
pin-to-pin connection as an optimally buffered line with linear delay as

tLD netð Þ ¼ L netð Þ � R Bð Þ � C wð Þ þ R wð Þ � C Bð Þ þ
ffi
2 � R Bð Þ � C Bð Þ � R wð Þ � C wð Þ

p� �

where net is the net, L(net) is the total length of net, R(B) and C(B) are the respective
intrinsic resistance and capacitance of the buffer, and R(w) and C(w) are the
respective wire resistance and capacitance. Though no buffers are added to the
netlist, they are assumed for timing purposes. When timing information becomes

5In hierarchical design flows, different designers concurrently perform top-level placement and
block-level placement.

258 8 Timing Closure

more accurate, subsequent re-buffering steps often remove any existing buffers and
reinsert them from scratch. In this context, virtual buffering saves effort while
preserving the accuracy of timing analysis. Physical buffering can avoid unnecessary
upsizing of drivers and is more accurate than virtual buffering, but is also more time-
consuming.

Once buffering is complete, the design is checked for timing violations using
static timing analysis (STA) (Sect. 8.2.1). Unless timing is met, the design returns to
buffering, global placement, or, in some cases, logic synthesis. When timing
constraints are mostly met, the design moves on to timing correction, which includes
gate sizing (Sect. 8.5.1) and timing-driven netlist restructuring (Sect. 8.5.3). Subse-
quently, another timing check is performed using STA.

Physical Synthesis After buffer insertion, physical synthesis applies several timing
correction techniques (Sect. 8.5) such as operations that modify the pin ordering or
the netlist at the gate level, to improve delay on critical paths.

Timing Correction Methods such as gate sizing increase (decrease) the size of a
physical gate to speed up (slow down) the circuit. Other techniques such as redesign
of fan-in and fanout trees, cloning, and pin swapping reduce timing by rebalancing
existing logic to reduce load capacitance for timing-critical nets. Transformations
such as gate decomposition and Boolean restructuring modify logic locally to
improve timing by merging or splitting logic nodes from different signals. After
physical synthesis, another timing check is performed. If it fails, another pass of
timing correction attempts to fix timing violations.

Routing After physical synthesis, all combinational and sequential elements in the
design are connected during global and clock routing, respectively. First, the
sequential elements of the design, e.g., flip-flop and latches, are legalized
(Chap. 4, Sect. 4.4). Then, clock network synthesis generates the clock tree or
mesh to connect all sequential elements to the clock source. Modern clock networks

(a) (b) (c)

Fig. 8.27 Physical buffering for timing estimation. (a) A five-pin net is routed with a minimum
Steiner tree topology that does not avoid a routing obstacle (shown in orange). (b) The net routed
with an obstacle-avoiding Steiner tree topology. (c) The buffered topology offers a relatively
accurate delay estimation

8.6 Performance-Driven Design Flow 259

require a number of large clock buffers6; performing clock network design before
detailed placement allows these buffers to be placed appropriately. Given the clock
network, the design can be checked for hold-time (short path) constraints, since the
clock skews are now known, whereas only setup (long path) constraints could be
checked before.

Layer Assignment After clock network synthesis, global routing assigns global
route topologies to connect the combinational elements. Then, layer assignment
matches each global route to a specific metal layer. This step improves the accuracy
of delay estimation because it allows the use of appropriate resistance-capacitance
(RC) parasitics for each net. Note that clock routing is performed before signal net
routing when the two share the same metal layers—clock routes take precedence and
should not detour around signal nets.

Timing-Driven Detailed Placement The results of global routing and layer assign-
ment provide accurate estimates of wire congestion, which is then used by a
congestion-driven detailed placer [8, 30]. The cells are (1) spread to remove overlap
among objects and decrease routing congestion, (2) snapped to standard cell rows
and legal cell sites, and then (3) optimized by swaps, shifts, and other local changes.
To incorporate timing optimizations, either perform (1) non-timing-driven legaliza-
tion followed by timing-driven detailed placement or (2) perform timing-driven
legalization followed by non-timing-driven detailed placement. After detailed place-
ment, another timing check is performed. If timing fails, the design could be globally
rerouted or, in severe cases, globally replaced.

To give higher priority to the clock network, the sequential elements can be
legalized first, and then followed by global and detailed routing. With this approach,
signal nets must route around the clock network. This is advantageous for large-scale
designs, as clock trees are increasingly becoming a performance bottleneck. A
variant flow, such as the industrial flow described in [23], first fully legalizes the
locations of all cells, and then performs detailed placement to recover wirelength.

Another variant performs detailed placement before clock network synthesis, and
then is followed by legalization and several optimization steps.7 After the clock
network has been synthesized, another pass of setup optimization is performed. Hold
violations may be addressed at this time or, optionally, after routing and initial STA.

Timing-Driven Routing After detailed placement, clock network synthesis, and
post-clock network synthesis optimization, the timing-driven routing phase aims to
fix the remaining timing violations. Algorithms discussed in Sect. 8.4 include
generating minimum-cost, minimum-radius trees for critical nets (Sects. 8.4.1,
8.4.2), and minimizing the source-to-sink delay of critical sinks (Sect. 8.4.3).

6These buffers are legalized immediately when added to the clock network.
7These include post-clock network synthesis optimizations, post-global routing optimizations, and
post-detailed routing optimizations.

260 8 Timing Closure

If there are still outstanding timing violations, further optimizations such as
re-buffering and late timing corrections are applied. An alternative is to have
designers manually tune or fix the design by relaxing some design constraints,
using additional logic libraries, or exploiting design structure neglected by
automated tools. After this time-consuming process, another timing check is
performed. If timing is met, then the design is sent to detailed routing, where each
signal net is assigned to specific routing tracks. Typically, incremental STA-driven
Engineering Change Orders (ECOs) are applied to fix timing violations after
detailed placement; this is followed by ECO placement and routing. Then, 2.5D or
3D parasitic extraction determines the electromagnetic impact on timing based on
the routes’ shapes and lengths, and other technology-dependent parameters.

Sign-off The last few steps of the design flow validate the layout and timing, as well
as fix any outstanding errors. They also ensure manufacturability and finally convert
a physical layout into data for mask production.

If a timing check fails, ECO minimally modifies the placement and routing such
that the violation is fixed and no new errors are introduced. Since the changes made
are very local, the algorithms for ECO placement and ECO routing differ from the
traditional place and route techniques discussed in Chaps. 4–7.

After completing timing closure, manufacturability, reliability, and electrical
verification ensure that the design can be successfully fabricated and will function
correctly under various environmental conditions. The four main components are
equally important and can be performed in parallel to improve runtime.

– Design rule checking (DRC) ensures that the placed-and-routed layout meets all
technology-specified design rules, e.g., minimum wire spacing and width.

– Layout vs. schematic (LVS) checking ensures that the placed-and-routed layout
matches the original netlist.

– Antenna checks seek to detect undesirable antenna effects, which may damage a
transistor during plasma etching steps of manufacturing by collecting excess
charge on metal wires that are connected to transistor gates [34]. This can occur
when a route consists of multiple metal layers and a charge is induced on a metal
layer during fabrication.

– Electric rule checking (ERC) finds all potentially dangerous electric connections,
such as floating inputs and shorted outputs.

Following the abovementioned verification tasks, further layout post-processing
steps are performed [34]. Here, amendments and additions to the chip layout data are
implemented, such as test patterns and alignment marks [34]. Furthermore, resolu-
tion enhancement techniques (RET) might be applied to counter manufacturing and
optical effects caused by extremely small feature sizes.

Finally, optical lithography masks are generated for manufacturing.

8.6 Performance-Driven Design Flow 261

