Index

0–9
3D-integration technology, 6

A
Activation energy (Al, Cu), 26
Activation energy (categories), 15
Amorphous structure, 24
Analog design (EM-aware), 65
Analytical methods, 46
Antenna rule checking, 64
Application-scaling factor, 82
Architectural design (VLSI), 63
Atomic flux (simulation), 52
Average current, 71

B
Bamboo effect, 101
Bamboo structure, 24
Barrier, 28
Barrier (material), 134
Black’s equation, 18
Blech length (effect), 104
Blech length (outlook), 152
Blocking grain, 26
Bulk diffusion, 20

C
Carbon Nano Fibres (CNFs), 136
Carbon Nano Tubes (CNTs), 136
Cheesing (wire), 102
Chemical diffusion, 14, 36
Chemical-mechanical planarization (CMP), 27
Circuit design (VLSI), 63
Clock network synthesis, 63
Concentrated element methods, 46
Constraint-correct/driven design, 155

D
Damascene technology, 27
Decompaction (layout), 93
Design flow, 62
application-robust, 80
constraint-driven, 155
EM-aware (analog), 66
EM-aware (digital), 69
overview of main steps, 62
pattern generator, 154
Design Rule Check (DRC), 64
Dielectric cap, 28
Dielectric (material), 132
Differentiation (EM, TM, SM), 43
Diffusion coefficient, 25
Diffusion formula, 25
Diffusion processes, 20
Digital design (EM-aware), 67
double via, 121
dual-damascene technology, 27
Duty factor/cycle, 30

E
Effect (EM-inhibiting), 100
Effective conditions, 80
Electrical Rule Checking (ERC), 64

Copper (interconnect), 3
Critical length effect, 104
Current density, 6
Current-density simulation, 92
Current-density verification, 86
Current types
average, 71
peak, 71
root-mean-square (RMS), 71
Electrolytic electromigration, 17
Electromigration, 14
EM-robust elements (outlook), 153
Equivalent current value, 71
Extraction (parasitic), 64

F
Fabrication (VLSI), 64
Field-Effect Transistors (FET), 2
Finite Difference Method (FDM), 48
Finite Element Method (FEM), 47
Finite Volume Method (FVM), 48
Floorplanning, 63
Frequency-dependency (EM), 30, 128
Functional design (VLSI), 63

G
Grain boundary diffusion, 20
Graphene layers/nanoribbons, 136

H
Heat equation, 25
Hillock, 15

I
Inmortal wire (Blech length), 104
Interaction (EM, TM, SM), 40
Interconnect (development), 3
Interconnect material (EM), 131
International Technology Roadmap (ITRS), 2

J
Joule heating, 17

K
Keep-out zones (TSV), 45

L
Layout adjustment (current), 93
Layout Versus Schematic (LVS), 64
Length effect, 104
Line depletion, 15
Linked segments (of a wire), 114
Logic design (VLSI), 63
Lumped element methods, 46

M
Material migration, 14
Measure (EM prevention), 100
Mechanical stress (simulation), 54
Mechanical stress/tension, 33
Median time to failure (EM), 18
Meshed geometry methods, 47
Metal liner, 28
Mission profile, 79
Mobility changes (transistor), 45
Monocrystalline structure, 24
Moore’s Law, 1
Multiple via, 121

N
Near-bamboo structure, 24
Net classes, 130

P
Packaging (VLSI), 64
Partitioning, 63
Pattern generator (outlook), 153
Peak current, 71
Physical design (VLSI), 63
Physical verification (VLSI), 63
Placement, 63
Polycrystalline structure, 24
Power dissipation (power loss), 21
Quasi-continuous methods, 46

R
Reference conditions, 80
Reservoir (effect), 118
RMS current, 71
Routing, 63

S
Segment current, 75
Segment lengths (outlook), 152
Segment (of a wire), 105
Self-healing, 30, 128
Sink (reservoir), 118
Skin effect/depth, 32
Source (reservoir), 118
Steiner point, 65
Stress migration, 35, 37
Support polygons, 93
Surface diffusion, 20
Temperature scaling factor, 89
Terminal currents, 71
Thermal migration, 35, 36
Thermal via/wire, 95
Thermomigration, 36
Through-silicon via (TSV), 5
Timing closure, 63
Triple point, 26

T
Mission profile, 79
Mobility changes (transistor), 45
Monocrystalline structure, 24
Moore’s Law, 1
Multiple via, 121

N
Near-bamboo structure, 24
Net classes, 130

P
Packaging (VLSI), 64
Partitioning, 63
Pattern generator (outlook), 153
Peak current, 71
Physical design (VLSI), 63
Physical verification (VLSI), 63
Placement, 63
Polycrystalline structure, 24
Power dissipation (power loss), 21
Quasi-continuous methods, 46

R
Reference conditions, 80
Reservoir (effect), 118
RMS current, 71
Routing, 63

S
Segment current, 75
Segment lengths (outlook), 152
Segment (of a wire), 105
Self-healing, 30, 128
Sink (reservoir), 118
Skin effect/depth, 32
Source (reservoir), 118
Steiner point, 65
Stress migration, 35, 37
Support polygons, 93
Surface diffusion, 20
Temperature scaling factor, 89
Terminal currents, 71
Thermal migration, 35, 36
Thermal via/wire, 95
Thermomigration, 36
Through-silicon via (TSV), 5
Timing closure, 63
Triple point, 26
Y
Via array (current distribution), 125
Via-below/above configuration, 116
Via depletion, 15
Via (double, multiple), 121
Via sizing (current), 88
Void, 15
Void growth (simulation), 55

W
Wet electromigration, 17
Whisker, 15
Wire planning, 78
Wire sizing (current), 88
Wire slotting, 102