Index

A
Acceptors, 10, 52
Alignment marks, 38
Analog design gap, 20
Antenna effect, 286
Antenna-rule check, 204
Area routing, 185
Assertion-Based Verification (ABV), 198

B
Back annotation, 173
Back-End-of-Line (BEOL), 82
Band gap, 8
BCD, 16
BICMOS, 16
Blind via (PCB), 4
Bottom-up design style, 145
Breakdown voltage, 218
Buried via (PCB), 4

C
Calculated layer, 115
Capacitors, 227
Carrier substrate (PCB), 3
Cell generator, 233
Channel-stop implant, 268
Channel stopper, 269
Charged-Device Model (CDM), 278
Chemical-Mechanical Polishing (CMP), 67
Circuit design, 22, 130
Circuit diagram, 87, 169
Circuit schematic, 87
Circuit topology, 25
Clock planning, 179
Clock tree synthesis, 131
CMOS process steps, 73
Compaction, 187
Conduction band, 8
Congestion-driven placement, 182
Conics, 93
Constraint
design-methodology, 150
electrical, 149
functional, 149
 technological, 149
Contact holes (IC), 13
Contacts (IC), 13
Crosstalk, 275
Current mirror, 238
Czochralski process, 33

D
Damascene technique, 67
Deep Trench Isolation (DTI), 59
Defect electrons, 9
Depletion region. See space-charge region
Derived layer, 107
Design freedom, 153
Design gap, 20
Design-methodology constraints, 150
Design models, 133
Design Rule Check (DRC), 202
Design style, 139
Detailed routing, 184
Developer (PCB), 3
Device, 85
Differential pair, 238
Differential-pair routing, 183, 274

© Springer Nature Switzerland AG 2020
J. Lienig and J. Scheible, Fundamentals of Layout Design for Electronic Circuits,
https://doi.org/10.1007/978-3-030-39284-0
Diffusion, 52
Diffusion layer. See doping layer
Diffusion resistors, 224
Dishing, 104
Donors, 10, 52
Donuts, 92
Doping, 10, 52
Doping layer, 56
Drawn layer, 92
Dual-Damascene process, 69
Dummy error, 196
Dummy fill, 104

E
Electrical constraints, 149
Electrical Rule Check (ERC), 204
Electromagnetic Compatibility (EMC), 192
Electromigration (EM), 291
Electronic Design Automation (EDA), 20
Electrostatic Discharge (ESD), 276
EMC-compliant layout, 192
Epitaxy, 11, 58
Equivalence checking, 198
ESD design window, 277
ESD event (chip), 276
ESD protection circuit, 276
Extract, extraction file, 205

F
Fabricated layer, 92
False error, 196
Field-Effect Transistor (FET), 73
Field-Effect Transistor (MOS-FET), 220
Field-Programmable Gate Array (FPGA), 143
Floorplan, floorplanning, 175
Folding (transistors), 222
Footprint library (PCB), 124
Footprint (PCB), 190
Formal verification, 198
FPGA (design), 143
Fracturing, 110
Front-End-Of-Line (FEOL), 78
Full-custom design, 140
Functional constraints, 149
Functional design, 130, 168
Functional verification, 199

G
Gajski-Kuhn Y-Chart, 136
Galvanic isolation, 218
Gate array (design), 142
Gcell, 184
Geometrical design rules, 111
Global routing, 184
Guard ring, 260, 263, 266

H
Hard block, 175
Hardware Description Language (HDL), 166
Heteroepitaxy, 58, 61
Hole conduction, 9
Holes, 9
Homoepitaxy, 58
Hot carriers, 270
Hot electrons, 270
Human-Body Model (HBM), 278

I
Identification letter (schematic), 170
Instance, 86
Instantiation (device), 169
Ion implantation, 54
IPTAT circuit, 238

J
Jumper, 289
Junction Isolation (JI), 217

K
Keepout area (PCB), 191
Keep-out zone (TSV), 301

L
Landpattern (PCB), 190
Latchup, 264
Layer, 24
calculated, 115
derived, 107
diffusion, 56
doping, 56
drawn, 92
fabricated, 92
logical, 107, 108
physical, 107
Layout design, 23
Layout generator, 234
Layout post processing, 102, 208
Layout Versus Schematic (LVS), 205
Leaker, 289
Legalization (placement), 180
Library, 119
 footprint (PCB), 124
 macro cell, 123
 model (PCB), 125
 pad cell, 123
 standard cell, 121
 symbol (PCB), 123
Lightly Doped Drain (LDD), 271
Line losses, 272
Local Oxidation of Silicon (LOCOS), 49
Logical layer, 107, 108
Logic design, 130
Logic synthesis, 168
Low Temperature Co-fired Ceramics (LTCC), 5
Lumped elements, 86

M
Machine Model (MM), 278
Macro cell (design), 142
Macro (cell) library, 123
Manufacturing documentation (PCB), 193
Mask (PCB), 3
Matching, 237
Matching concepts, 254
Meet-in-the-middle design style, 145
Mixed-signal IC, 158
Model-based OPC, 44
Model checking, 198
Model library (PCB), 125
Module generator, 234
Moore’s law, 19
MOS-FET, 220

N
N-doped, 10, 52
Net, 84
Netlist, 87, 173
Node, 84
NPN transistor, 230

O
Optical Proximity Correction (OPC), 43, 110, 209
Oversizing, 100
Oxidation, 46
Oxide, 45

P
Pad, 117
Pad cell library, 123
Parasitic effects, 257
Parasitic Extraction (PEX), 207
Parasitics, 257
Partitioning, partition, 175
PCell, 120, 234
P-doped, 10, 52
Photolithography, 34
Photomask, 36
Photoresist, 34
Physical design, 23
Physical layer, 107
Physical synthesis, 169
Physical verification, 132
Pin, 84
Pin assignment, 178
Pinning, 118
Placement, 180
Plasma-Induced Damage (PID), 287
PNP transistor, 232
Poly resistors, 226
Port, 84
Power supply (floorplanning), 177
Printed Circuit Board (PCB), 2
Process Design Kit (PDK), 119
Process nodes, 17

R
RC element, 273
RC optimization, 274
Reactive Ion Etching (RIE), 48
Register Transfer Level (RTL), 166
Resist, 34
Resist mask, 35
Resistor head, 226
Resistors, 224
Resolution Enhancement Techniques (RET), 110, 209
Reticle, 37
Reticle layout, 105
Rip-up and reroute, 186
Robustness (layout, design rule), 111
Routing, 183
Routing layers, 63
Rule-based OPC, 44

S
Schematic, 169
Schematic entry, 169, 189
Schematic symbols, 172
Semiconductor, 8
Shallow Trench Isolation (STI), 59
Shapes, 91
Sheet resistance, 214
Shrinking, 18
Shunt path, 276
Signal distortions, 273
Silicon dioxide (SiO₂), 33, 45
Silicon (Si), 33
Simulation, 199
Simulation Program with Integrated Circuit Emphasis (SPICE), 90
Sinker, 217
Sizing, 100
Smart power IC, 16
Soft block, 175
Space-charge region, 218
Specification, 21, 129
Standard-cell design, 140
Standard cell library, 121
Standard cells, 141
Static Timing Analysis (STA), 201
Stick diagram, 187
Stimuli (simulation), 199
Stress Migration (SM), 293
Subcircuit, 85
Substrate currents, 258
Substrate debiasing, 258
Sub-wavelength lithography, 43
Surface-Mount(ed) Device (SMD), 4
Surface-Mount Technology (SMT), 4
Symbolic compaction, 187
Symbolic design entry, 169
Symbolic layout design, 187
Symbol library (PCB), 123
System specification, 129

T
Tank (well), 217
Technological constraints, 149
Technology nodes, 17
Thermal Migration (TM), 292
Thermal via, 300
Thermal wire, 300
Thick-field threshold, 268

Thick-film technology, 5
Thin-film technology, 5
Through contact (IC), 13
Through-Hole Device (THD), 4
Through-Hole Technology (THT), 4
Through-hole via (PCB), 4
Time constant (RC element), 273
Timing closure, 131, 202
Timing-driven placement, 182, 202
Timing-driven routing, 202
Timing verification, 200
Top-down design style, 145
Tub (well), 217

U
Undercut, 48
Undersizing, 100

V
Valence band, 8
Valence electrons, 8
Validation (vs verification), 147
Verilog, 166
Verilog-AMS, 166
VHDL-AMS, 166
VHSIC Hardware Description Language (VHDL), 166
Via, 13
Via doubling, 186
Via minimization, 186
Via (PCB), 4
Voltage-dependent spacing rules, 219

W
Well, 216

Y
Y-chart, 136

Z
Zone melting, 33