
Simulation-Based Design Methodology for Heterogeneous

Systems at Package-Level Utilizing XML and XSLT

Robert Fischbacha,b, Andy Heiniga, and Jens Lienigb

aFraunhofer Institute for Integrated Circuits, Division Engineering of Adaptive Systems, Dresden, Germany
bTU Dresden, Institute of Electromechanical and Electronic Design, Dresden, Germany

Abstract

System-in-Package is an appealing alternative compared to the integration on a PCB or in a chip. A big variety of different
packaging solutions (including 2.5/3D integration) makes it difficult to choose the most appropriate solution for a given
specification. Simulation-based design flows gain importance, but lack the straightforward access to actual design data.
We propose a new description format as well as a corresponding methodology to manage and process assembly and
packaging design data. Based on established software concepts (XML/XSLT), our Assembly Description Format (ADF)
integrates well into existing design environments and features a high flexibility to consider distinct design aspects.

1 Introduction

The growing number of heterogeneous components inte-
grated into single system nodes is driven by applications
like the Internet of Things (e.g., multi sensor integration),
autonomous driving (e.g., data fusion), and cyber-physical
systems (e.g., bio-signal processing). To successfully com-
pete on these markets, increasing functionality, shrinking
dimensions, and/or higher computational performance are
essential. Thus, a tight integration of sensors, analog, and
digital circuits is needed.
Historically, the required complexity was integrated into
chips and assembled on a circuit board. Recently, a trend
towards wafer- and package-level integration can be ob-
served, as these approaches offer multiple advantages [1].
For example, high pin-count components require finer in-
terconnect structures compared to PCB, and different semi-
conductor technologies can be combined economically on
package-level.
However, package-level integration lacks common design
knowledge and proven design methodologies, which are a
prerequisite to handle challenges like chip/package/board
co-design as well as the big variety in packaging options.
With advanced system integration, such as interposer-
based 2.5/3D integration, cost estimations become more
relevant (compared to the costs of classical packages, like
Dual In-line (DIP) or Quad Flat Packages (QFP)).
The development of integrated systems on package-level
typically requires co-design flows able to combine het-
erogeneous EDA (Electronic Design Automation) software
tools to address the different steps on chip-, package-, and
board-level. The few number of available publications
detailing the co-design flow usually originate from larger
semiconductor companies, such as Intel, IBM, or Infineon.
A sophisticated interaction between the multiple software
tools and file formats of different EDA vendors (e.g., Ca-
dence, Synopsys, Mentor) is the common message [2, 3, 4].

Typical design steps are: top-level netlist handling, com-
ponent management (e.g., footprints, symbols, substrate
assignment), co-optimization, and co-verification. Cur-
rent academic research related to package-level system de-
sign mainly focuses on physical design algorithms, such as
2.5/3D floorplanning, routing, and placement [5, 6].
Understandable but unfortunate, every company fosters
its own individual tool landscape and corresponding co-
design flows, as they comprise a company’s valuable ex-
pertise. A flexible generic approach to chip/package/board
co-design, which could be adopted by smaller companies,
hardly emerges in this environment. Furthermore, the elec-
tronics industry would greatly benefit from new design
tools (e.g., for package-level design-space-exploration,
knowledge-based system engineering). Hence, our pa-
per presents a methodology to model heterogeneous 3D-
integrated systems on package-level and to automatically
derive data required for additional design flow steps, such
as simulation.
With the increasing relevance of simulation-based design
approaches, such a methodology can be applied to explore
designs without time-consuming prototypes and design cy-
cles. This enables the so far missing comparisons of mul-
tiple packaging variants. Sub-models with different levels
of detail allow choosing between fast explorations and vali-
dated sign-off investigations (e.g., design rule checks). The
formal system model also enables the export of manufac-
turing data [7].
The presented methodology is based on the established
software technology XML/XSLT, which makes it possible
to use mature editors, transformation engines, and scheme
validation tools. The XML/XSLT origin facilitates an inte-
gration into modern end-user software as many software-
development concepts integrate well with XML data.
After the description of the design example used through-
out the paper in Section 1.1, Section 2 explains the As-
sembly Description Format (ADF) (with a focus on 3D ge-

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach66

Professor Lienig
Schreibmaschinentext

Please quote as: R. Fischbach, A. Heinig, J. Lienig "Simulation-Based Design Methodology for Heterogeneous Systems at Package-Level Utilizing XML and XSLT," GMM-Fachbericht 274, Reliability by Design Conf. (ZuE 2017), VDE Verlag, ISBN 978-3-8007-4444-2, pp. 66-73, Sept. 2017.

Figure 1 Design example: biomedical SiP (LCC pack-
age) with a wire-bonded stack of two bare dies.

ometries) developed to represent 3D-integrated systems on
package-level as well as the basic concepts of XSLT. Sec-

tion 3 contains the transformation steps from input data
processing, over applying package model modifications,
towards the export into simulation. The integration of the
presented methodology into existing design flows is illus-
trated in Section 4. Finally, Section 5 summarizes this pa-
per and provides an outlook to future work.

1.1 Design example

Figure 1 shows a picture of the package which is used
as a design example throughout this paper. The depicted
package type is a Leadless Chip Carrier with 52 termi-
nals (LCC52). This LCC houses a biomedical System-
in-Package (SiP) which integrates two bare dies with ad-
ditional components, such as decoupling capacitors. The
LCC was designed as a modular component for the usage
within a larger biosignal sensing platform.
For the modeling in this paper we will focus on the die
stack in the middle of the LCC package, where two bare
dies are wire-bonded onto the package substrate. The
first die (bottom) is a Texas Instruments (TI) ADS1299;
a low-noise, 8-channel, 24-bit analog-to-digital converter
(ADC) for electromyography (EMG), electrocardiography
(ECG), and extracranial electroencephalogram (EEG) ap-
plications. The second die (top) is a Microchip (former
Atmel) ATmega256RFR2; a System-on-Chip (SoC) com-
bining a 16 MHz, 256 kilobyte flash, 8-bit microcontroller,
and a 2.4GHz RF transceiver. The electrical connections
between the die pads and the bond fingers located on the
package substrate are established by thermosonic bonding
using 25 μm gold bond wires.

1.2 Tool setup

The transformation steps described in Section 3 were
tested under Linux and Windows. Based on Java SE 8
Update 121, we applied Xalan-Java Version 2.7.1 to pro-
cess the XML/XSLT files on both platforms [8]. Xalan-
Java is open source and contains basic XSLT extensions
(EXSLT), such as trigonometric functions used for the ge-
ometrical transformations within our methodology (e.g., to
apply rotations to components). The editing of XML and
XSLT files can be accomplished with every standard text
editor. In addition, schema validation and stylesheet de-
bugging are valuable features provided by dedicated XML

tools or plugins. As described in Section 3.3, the CAD data
was generated using the open source CAD platform Open
Cascade [9]. Finally, the created design data was tested in
COMSOL Multiphysics version 5.1 [10].

2 XML/XSLT fundamentals

This section explains the basics of the Assembly Descrip-
tion Format (ADF), which evolved from our early XML-
based hierarchical description of 3D systems and SiP [11].
XML stands for Extensible Markup Language and enables
a structured representation of hierarchical data, which is
both human- and machine-readable [12]. The wide dis-
tribution of XML and the comprehensive ecosystem (e.g.,
tooling, related languages) makes it a good choice for data
exchange and domain specific languages.
A flexible description of a package is only one aspect re-
quired in a design flow, the transition steps towards the de-
sired package layout is another. To modify a model repre-
sented in ADF, Extensible Stylesheet Language Transfor-
mations (XSLT) are applied. XSLT is a Turing-complete
XML-based language and belongs to a family of W3C rec-
ommendations for defining XML document transforma-
tions [13]. A condensed summary of the basic concepts
used throughout this paper can be found below.

2.1 XML-based description of packages us-

ing the Assembly Description Format

The current implementation of ADF and the correspond-
ing software tools mainly focus on the geometric represen-
tation of integrated systems on package-level. Neverthe-
less, ADF is extensible with language elements to describe
various additional aspects of the assembly process in gen-
eral (e.g., electrical connectivity, assembly rules, process
steps). With this flexibility it is an appropriate solution to
implement Assembly Design Kits (ADK). The ADK con-
cept targets to be of comparable importance in the packag-
ing and assembly field as the Process Design Kit (PDK) is
for chip design [7].
In ADF, the geometric representation is based on the con-
cept of Constructive Solid Geometry (CSG). In CSG com-
plex solids are built from primitive basic elements and
their combination using Boolean operations [14]. Table 1

lists the geometric elements of ADF and the correspond-
ing attributes. The root of an ADF file is the library el-
ement containing documentation (author, documentation,
history) and module elements. A module is the central ele-
ment to define a single component and can be instantiated
in other modules to create a hierarchical structure. Within
a module, the CSG-like geometry description is initiated
with the first occurrence of a compound or unite element,
respectively. The grouping (compound), Boolean topolog-
ical operations (unite, intersect, and cut), as well as the
transformations (translate and rotate) are non-primitives
and can be nested without restrictions. Non-primitives can
also contain the primitive elements (cuboid, sphere, cylin-
der, include), which create basic geometric solids or in-

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach67

Table 1 Excerpt of basic geometrical elements of the XML-based Assembly Description Format.

Element Attributes Description

library name, version root element, contains author, documentation, history, and module
module name defines a component containing a single unite or compound element
compound defines a loosely combined set of elements (e.g., used for grouping)
unite (geometrically) fuses the contained elements into a single element
intersect (geometrically) intersects the contained elements into a single element
cut (geometrically) cuts the second and following elements from the first
translate x, y, z shifts the contained elements along the given vector
rotate x, y, z rotates the contained elements around the x-, y-, and z-axis
cuboid name, length, width, height defines a primitive cuboid, origin at its center
sphere name, radius defines a primitive sphere, origin at its center
cylinder name, radius, length defines a primitive cylinder, origin at the center of its base
include name, module instantiates a previously defined module

stantiate more complex geometries previously defined in
other modules, respectively.
Please note that Table 1 is only a snapshot of the current
ADF, as it is continuously extended by additional elements
(e.g., half spaces, shape sweeping). Despite the low num-
ber of different elements, the ADF is able to model sophis-
ticated geometries due to the underlying CSG concept. Be-
yond the plain CSG concept, we plan to integrate control
structures known from programming languages (e.g., con-
ditionals, loops) to enable a more efficient modeling (e.g.,
to create arrays of components).
Listing 1 gives a basic example of an ADF file. This non-
hierarchical example comprises only a single “Top” mod-
ule to compound two cuboids (a “substrate” and a “die”)
and three balls. The translation elements cause the correct
positioning of the five primitive solids.

2.2 XSLT concepts used in this paper

XSLT defines elements to describe the transformation of
an XML input file. The central element is the template. It
is used to match a specified path in the input document or to
define a reusable “sub-routine”, respectively. Once a tem-
plate matches, further logic elements (well-known from
typical programming languages, e.g., if, for-each, vari-
able) are used to define a transformation. Expressions in
these elements are used to manipulate data and can contain
XPath syntax to navigate inside the XML document tree.
To illustrate the usage of XSLT to modify a given ADF rep-
resentation, we will extend the previous example by adding
pad structures to the die and the substrate. Listing 2 shows
the short XSLT which implements this task. On line 8 be-
gins a “copy”-template which recursively matches every-
thing and outputs a copy of the current match. If this file
would not define further templates, the output of the trans-
formation would be a copy of the input file.

Listing 1 Basic ADF example representing the geome-
tries shown in Figure 2 (left).
1 ����� ���	
��
����� �����
��
���������
2 ��
�����
3 ����	
���� !""��	�

	�#��$���#�����"�������
4 ����	!�
���� !""��	�

	�#��$���#�����"�����
5 ���	
��
�%��&��'��'� ����
����� ����
6 ��$����� �������#
	������(�$����	������ �"�$�����
7 ����$������
���)��� �� �"���$������
���

8 ��!���$�� ����
��� ��
9 ��!��� �$���

10 ��!�$��
� ����
�	$�	������ ������
�%����
11 *
���
�%���� ��
���
�+���"�
12 ��!����	���� �
��� �
��� ,
�%&'��
13 ��!����	���� �
��-��� �
��� ,
����
14 ��!	 ���� ����
�����.�� ���
$	
�&'�"�
15 �"�!����	�����
16 ��!	 ���� ����
�����.%� ���
$	
�&'�"�
17 ��!����	���� �
�-��� �
��� ,
����
18 ��!	 ���� ����
�����.-� ���
$	
�&'�"�
19 �"�!����	�����
20 �"�!����	�����
21 ��!����	���� �
��� �
��� ,
�+'���
22 ��!�$��
� ����
��
�� ������
������
23 *
���
������ ��
���
�%���"�
24 �"�!����	�����
25 �"�!��� �$���
26 �"�!���$���
27 �"�
������

Listing 2 XSLT file to extend the basic ADF example
from Listing 1 with die and substrate pads.
1 ����� ���	
��
����� �����
��
���������
2 ��	�!	����	����
3 ����	!�	�
���� !""***�*-����"�///"012"����	#����
4 ����	
���� !""��	�

	�#��$���#�����"�������
5 ����	!�
���� !""��	�

	�#��$���#�����"�����
6 ���	
��
������
7 ��	�!�$� $� ������
�����
�����
���	�"�
8 ��	�!��� ���� �����
�" 3 (4 3 ����56��
9 ��	�!�� ��

10 ��	�!� ������ ����	 	�����
�4 3 (4 3 ����56�"�
11 �"�	�!�� ��
12 �"�	�!��� �����
13 ��	�!��� ����
14 �����
�""�!	 ����7	����	�*
��5(����8 9����.96:��
15 ��	�!���
���� ����
�
�����
16 	�����
�	$�	��
����#���5(����8 9����.96�"�
17 ��!$�
���
18 ��!����	���� �
��� �
��� ,
�;(���
$	 � '<��
19 ��!�$��
� ����
�;������59�
�. ��.98 =
����6<�
20 ������
��'�� *
���
��'�� ��
���
����"�
21 �"�!����	�����
22 ��	�!�� ��
23 ��	�!� ������ ����	
24 	�����
�4 3 (4 3 ����56�"�
25 �"�	�!�� ��
26 ��!����	���� �
��� �
��� ,
�;' � (���
$	<��
27 ��!�$��
�
28 ����
�;������59	$�	�����. ��.98 =
����6<�
29 ������
��'�� *
���
��'�� ��
���
����"�
30 �"�!����	�����
31 �"�!$�
���
32 �"�	�!��� �����
33 �"�	�!	����	�����

Line 13 starts the second template defined in this file. As
soon as a more specific match is defined, the XSLT proces-
sor will prefer it. Here, the template matches every sphere

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach68

Figure 2 Geometric visualization of the transformation.
ADF example without pads (left, compare Listing 1) and
with pads (right, compare Listing 3).

element where the attribute “name” contains a string start-
ing with “ball_”. Applied to the input file, the second tem-
plate matches the sphere elements on lines 14, 16, and 18
in Listing 1.
Next, a variable named “index” is defined to extract the
index number encoded in the name attribute of the sphere
elements. Within an XSLT expression the @-sign is used
to access element attribute values and the $-sign is used to
access variables. “starts-with()” is one of many available
XPath functions that can be used within XSLT expressions.
As a result, this variable will contain the value 1, 2, or 3,
depending on the actual element currently matched.
The following additional ADF elements are send to the
output file to add the aforementioned pad structures. The
first translate element shifts the inserted die pad (new
cuboid element) upwards. Subsequently, the original
sphere element is copied to the output before a second
translate and cuboid element create the substrate pad.
Xalan-Java is used to apply the XSLT file (Listing 2) to
the ADF example (Listing 1). With the Java CLASSPATH
correctly set, this command line call will perform the trans-
formation:

���� �������	
����
�����
�����	���

��� �����
����

���� �����
��������������

���� ��������������
����

The result of the transformation is shown in Listing 3 and
Figure 2 (right) which exhibit the added pads.

Listing 3 Result (excerpt) of the transformation in List-
ing 2 applied to the basic ADF example in Listing 1.
1 ��������	
��	�
���
�
2 ���������
��
3 ���������
��	�
��������	
 �	
����
����

4 ������
����
 �	�����
���
��
5 ������
����	 ��
�
 ��
�
 ��
� !
�
6 ������
����	 ��
"#��
 ��
�
 ��
�
�
7 ����
��	�
8 ������
����	 ��
 �
 ��
�
 ��
�
�
9 ��������� �	�����
$�
 ������
$!�

10 �	
����
$!�

��	�
��	%���%$
��
11 �������
����	�
12 ������	�	
��	�
����%$
 �������
 !
��
13 ������
����	 ��
" �
 ��
�
 ��
�
�
14 ��������� �	�����
$�
 ������
$!�

15 �	
����
$!�

��	�
��������	%���%$
��
16 �������
����	�
17 �����
��	�
18 �������
����	�

3 Transformation steps

The ability to alter a package represented in ADF is the
prerequisite to use it within a design process. After im-
porting the input data to ADF, we will show how to apply

modifications to the package model. Finally, the data is ex-
ported into a CAD format to be readable by established 3rd
party tools, such as the COMSOL simulation environment.
Applying non-robust or partial transformations can result
in invalid physical configurations. ADF is not limited in
this regard to maintain a high flexibility. However, input
data validation and the verification of the resulting data
helps mitigating this issue. Validation on CSG based ge-
ometries is well investigated and for example easily al-
lows to test against collisions or overlaps. Comparable
to Design Rule Checks (DRC) in IC design flows, design
rules can also be applied to the 3D geometries modeled by
ADF [15].
The order of the transformations described next is relevant
and dictated by the design flow at a higher level. Neverthe-
less, this is not a general limitation of ADF. Carefully im-
plemented transformations can be applied multiple times
during a design flow sequence during different steps (e.g.,
refinement of placeholder structures).

3.1 Processing of input data

With the focus on the die stack, our design example shown
in Figure 1 comes with the following specifications.

die geometries comprise the die’s dimensions and orien-
tation within the stack as well as the positions of the
die pads; this information is typically extracted from
data sheets

bond finger geometries comprise the position and the di-
mensions of the bond fingers located on the substrate;
these geometries are based on design rules provided
by an assembly house

electrical connectivity comprises the required signal
mapping from the die pads towards specific bond fin-
gers; this information is usually derived from a higher
level (e.g. package-level) netlist

3.1.1 Data preparation

In general, the input data is available in textual or tabular
form (very common are txt-, csv- (comma-separated val-
ues), or spreadsheet-files). A translation into XML is nec-
essary to use this data inside our suggested XML/XSLT-
based methodology. This step is straightforward and can
be achieved in various ways. For example, short scripts can
be used to put the required values into an XML structure,
common spreadsheet file formats (e.g., xslx) are already
XML, and many established design tools allow a script-
based output of internal data into user specified file for-
mats. The definition of an XML input format even features
additional advantages, such as the possibility to define a
schema used for syntax validation and a good support by
third party tools. The result of the prepared input data is
shown in Listings 4, 5, and 61

1Electrical connectivity is discussed in Section 3.2.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach69

Listing 4 Input XML description of the die stack. Length
units are given in μm and angles in degrees.
1 ����� ���	
��
�������
2 ��
�	���� ��
������
�����������
3 ��
� ����
��������������� �
�
�!"��� #
�
�$"���
4 %
�
����� %&''	��
����� (��)
�
�*��
5 (��+
�
�*�� (��,�	�
��
��	
���-�.
(-(��	�����/�
6 ��
� ����
��0��11� �
�
������ #
�
���"��
7 %
�
����� %&''	��
�!���
8 �����
��
�21�� (��)
�
�"��
9 (��+
�
�"�� (��,�	�
��
��	
���-�.
(-(��	�����/�

10 �	34	����� ����
�566-734	������ �
�
�"$���
11 #
�
�"���� %
�
�!��� %&''	��
���
12 4���'
����,�	�
��
��	
���-4���'
���������/�
13 �/�
�	�����

Listing 5 Input XML with bond finger dimensions and
positions located on the substrate (excerpt).
1 �4���'
����	�
2 �4���'
���� ����
�'
����-�� �����.
�����
3 8
��.
��$�� �
�2$"����� #
�$������/�
4 �4���'
���� ����
�'
����-�� �����.
�����
5 8
��.
��$�� �
�2$"����� #
�$$$����/�
6 �9�� ��� ���
7 �4���'
���� ����
�'
����-��"� �����.
��$��
8 8
��.
����� �
�2$������ #
�!������/�
9 �/4���'
����	�

Listing 6 Input XML to describe the pad positions of
both stacked dies (excerpt).
1 ��
�(��	�
2 ��
�(�� �
�
��������������� ����
��-,��:� 6�: 0;��
3 �
�2�$����� #
����*���/�
4 ��
�(�� �
�
��������������� ����
��-,�$:� 6$: 0;!�
5 �
�2�$����� #
��$*$���/�
6 �9�� ��� ���
7 ��
�(�� �
�
��0��11� ����
��-0<"<�
8 �
�2�$"���� #
�2��1����/�
9 ��
�(�� �
�
��0��11� ����
��-0<",�

10 �
�2������� #
�2��1����/�
11 �9�� ��� ���
12 �/�
�(��	�

3.1.2 Input data transformation

With the input data properly prepared, a first transforma-
tion is needed to read the required information into the
ADF. Listing 7 shows an excerpt of the applied XSLT.
Three templates are shown. The first template on line 1
matches the root element of the chip stack file (cf. List-
ing 4), the second template matches a specific chip within
this chip stack, and the third template matches the corre-
sponding die pads taken from the die pads file (cf. List-
ing 6). This combination of several input files is possi-
ble by using the XPath function “document()” on line 32,
which offers a high flexibility to integrate multiple data
sources into the ADF. The if elements on lines 24 and 42
demonstrate the possibility to conditionally branch within
the XSLT file, for example, depending on a parameter
passed into the template.

Listing 7 Excerpt of the XSLT file used to import the
design data of the several XML input files into an ADF
representation.
1 ��	�:���(���� ����.
�/�.
(������
2 ��
4���#
3 ����	
�.��(://��	�

	�'��3�.�'�����/�������
4 ����	:�
�.��(://��	�

	�'��3�.�'�����/�����
5 ����
�0<,=��>�7 ����(��� ���	
��
����*2��2�!��
6 ��3�.��� ��4����'
	�.4��.?�32���	������ �/�3�.���
7 ����3������
��� ��	� ��	
�� �/���3������
���
8 ��	�:�((�#2���(����	�

Figure 3 Graphical visualization of the imported die
stack (left: top view, right: axonometric view).

9 ��	�:8
�.2(���� ����
�������������3��-�����
��
10 �/�	�:8
�.2(�����
11 �/�	�:�((�#2���(����	�
12 ��:���3�� ����
���(��
13 ��:���(�3���
14 ��	�:�((�#2���(����	�
15 ��	�:8
�.2(���� ����
����������

�	�����-����-�����
��
16 �/�	�:8
�.2(�����
17 �/�	�:�((�#2���(����	�
18 �/�:���(�3���
19 �/�:���3���
20 �/�
4���#�
21 �/�	�:���(�����
22 ��	�:���(���� ����.
��.
(��
23 ��	�:(���� ����
���������/�
24 ��	�:
' ��	�
�@�������
 A���3��-�����
��A��
25 ��:���3�� ����
�B?����C��
26 ��:���(�3���
27 ��:����	���� �
��� #
��� %
�B?%
� �
� �C��
28 ��:�34�
� ����
��
�� �����.
�B?�
�C�
29 8
��.
�B?#
�C� .�
�.�
�B?%
�C�/�
30 �/�:����	�����
31 ��:����	���� �
��� #
��� %
�B?%
�C��
32 ��	�:�((�#2���(����	 	�����
����3����D?(��,�	�
��E/

�
�(��	/�
�(��F?�
�
�3�����DE/?����G��
33 ��	�:8
�.2(���� ����
�(��)
��
34 	�����
�?(��)
��/�
35 ��	�:8
�.2(���� ����
�(��+
��
36 	�����
�?(��+
��/�
37 �/�	�:�((�#2���(����	�
38 �/�:����	�����
39 �/�:���(�3���
40 �/�:���3���
41 �/�	�:
'�
42 ��	�:
' ��	�
�@�������
 A
�	�����-����-�����
��A��
43 ��:����	���� �
��� #
��� %
�B?%&''	��C��
44 ��	�:�.��	��
45 ��	�:8.�� ��	�
�?�����
����
46 ��:������ �
��� #
��� %
�B?�����
��C��
47 ��:
���3�� ���3��
�B?����C�
48 ����
�B?����C-0�	��/�
49 �/�:�������
50 �/�	�:8.���
51 ��	�:��.��8
	��
52 ��:
���3�� ���3��
�B?����C�
53 ����
�B?����C-0�	��/�
54 �/�	�:��.��8
	��
55 �/�	�:�.��	��
56 �/�:����	�����
57 �/�	�:
'�
58 �/�	�:���(�����
59 ��	�:���(���� ����.
��
�(����
60 ��	�:(���� ����
�(��)
��/�
61 ��	�:(���� ����
�(��+
��/�
62 ��:����	���� �
�B?�C� #
�B?#C� %
������
63 ��:�34�
� ����
��
�(��-B?����C�
64 �����.
�B@(��)
�C� 8
��.
�B@(��+
�C�
65 .�
�.�
���/�
66 �/�:����	�����
67 �/�	�:���(�����

The script combines the provided information of the three
input XML files to generate a geometric representation of
the die stack. The visualization of the resulting ADF file is
shown in Figure 3.
The processing of the input data as well as the following
transformation steps will be put into context in Section 4.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach70

d/8

(d/8,h1+h2)(0,h1+h2)

h1

h2

(0,h2)

d

(0,0) (d,0)

=90°

Figure 4 Simplified bond wire model in accordance with
the EIA/JEDEC bond wire modeling standard [16]. The
model parameters are: h1 - the height between the bond
pad and the top of the loop, h2 - the height between the
bond pad and the lead, and d - the total distance the wire
covers in the horizontal plane.

3.2 Applying package model modifications

Now, that an ADF representation of the substrate and the
dies exists, the initial package model evolves towards a
manufacturable design. Depending on the intended pur-
pose of the package model, various validated sub-models
can be applied. For example, one sub-model could be val-
idated for thermal simulation and another for the export
of manufacturing data under the consideration of given as-
sembly rules. This approach can concern all assembly and
design aspects, such as the molding of bare dies or actual
substrate metal layers.
In our example, we will consider the electrical connectiv-
ity between the die pads and the bond fingers by adding
wire bonds to the die stack as described in Section 1.1.
The required signal mapping is part of the design netlist
and (just like the geometrical specification in the previous
section) was transformed into a suitable XML format (see
Listing 8). Each mapping element within this file defines
a connection between a specific die pad and a bond finger.

Listing 8 Input XML file representing the electrical con-
nectivity mapping between the die pads and the bond fin-
gers (excerpt).
1 ���������	
2 ��������
������
��������
3
����
������
��� ���
������������
����	
4 ��������
������
��������
5
����
������
��� ���
������������
����	
6 ���� ��� ��	
7 ��������
������
����������� ���
8
����
������
��� ���
������������
�!��	
9 ��������
������
����������� ���

10
����
������
��� ���
������������
����	
11 ���� ��� ��	
12 ����������	

3.2.1 Bond wire models

Depending on the required model accuracy, different bond
wire models are available [15]. We focus on the EIA/-
JEDEC bond wire modeling standard which includes two
models with different complexities [16].
Figure 4 shows the simplified bond wire model used in our
example. It only needs three parameters to represent a bond
wire. Additionally, the standard also defines a preferred

model, which considers two additional parameters in order
to reduce the deviation from the exact bond wire trajectory.

3.2.2 Insertion of bond wires

In our design, the bond wires always start at a die pad and
end on a bond finger. The correct mapping is taken from
the aforementioned mapping file (see Listing 8). Listing 9

demonstrates how a simplified bond wire can be inserted
via an XSLT transformation applied to the ADF represen-
tation of the package design.

Listing 9 Excerpt of the XSLT file used to insert a sim-
plified bond wire into the package design.
1 �"�#$%���#�%� ����
�&�����%�'���#�(������
�	
2 �"�#$����� ����
�������	
3 �"�#$����� ����
�"���	
4 �"�#$����� ����
�)���	
5 �"�#$����� ����
�*���	
6 �"�#$����� ����
�"���	
7 �"�#$����� ����
�)���	
8 �"�#$����� ����
�*���	
9 �"�#$����� ����
�#���+���+%� ��#�,%
���-.-��	

10 �"�#$����� ����
�
����%��� ��#�,%
���.-��	
11 �"�#$/�����#� ����
���
����
12 ��#�,%
�0
����%��
�/ ���	
13 �"�#$/�����#� ����
�+�� ��#�,%
�0#���+���+%��	
14 �"�#$/�����#� ����
�+�� ��#�,%
�0*� 1 0*���	
15 �"�#$/�����#� ����
�
� ��#�,%
���%+$�2�%3��%+$��4��30"� 1

0"�5 �6 7 ��%+$��4��30)� 1 0)�5 �66 7 0�����%��	
16 �"�#$/�����#� ����
����!8���

��#�,%
���%+$�2�%3��%+$��4��30
 1 0

�/ 95 �6 7
��%+$��4��30+� 7 0+�5 �66��	

17 �"�#$/�����#� ����
����!���� ��#�,%
��9- : ��%+$�%���30+�
7 0+�5 0
 1 0

�/ 96
�/ ��%+$,���%��%3;��;5 ��6��	

18 �"�#$/�����#� ����
���%�%���� ��#�,%
��9- :
��%+$�%���30)� 1 0)�5 0"� 1 0"�6
�/
��%+$,���%��%3;��;5 ��6��	

19 ��$%����#�%� "
�<0"�=�)
�<0)�=� *
�<0*�=�	
20 ��$��%�%� "
�-�)
�-� *
�<0��%�%���=�	
21 ���� ������� 	 ��	
22 ��$,)#��
�� ����
�<,��,�%30����5;>������%>�;6=�
23 +���+%
�<0+�=� ��
���
�<0��
���=��	
24 ���� �������
 ��	
25 ��$%����#�%� "
�-�)
�-� *
�<0+�=�	
26 ��$��%�%� "
�-�)
��-� *
�-�	
27 ��$��+���
28 ����
�<,��,�%30����5 ;>��+���>�>�;6=�
29 ��
���
�<0��
���=��	
30 ��$,)#��
��
31 ����
�<,��,�%30����5 ;>������%>�;6=�
32 +���+%
�<0

�/ 9=�
33 ��
���
�<0��
���=��	
34 ���$��%�%�	
35 ���$%����#�%�	
36 ���� ������� � ��	
37 ��$%����#�%� "
�<0

�/ 9=�)
�-� *
�<0+�=�	
38 ��$��%�%� "
�-�)
�<0���!��� 7 �-=� *
�-�	
39 ��$��+���
40 ����
�<,��,�%30����5 ;>��+���>�>!;6=�
41 ��
���
�<0��
���=��	
42 ��$,)#��
��
43 ����
�<,��,�%30����5 ;>������%>!;6=�
44 +���+%
�<0���!8��=�
45 ��
���
�<0��
���=��	
46 ���$��%�%�	
47 ���$%����#�%�	
48 ���$��%�%�	
49 ���$%����#�%�	
50 ��"�#$%���#�%�	

The corresponding template is called with parameters for
the naming, the start and end position, and (optionally) the
loop height as well as the wire bond diameter. Lines 13-15
contain the calculation of h1, h2, and d (according to the
EIA/JEDEC model). The remaining statements generate
the actual ADF elements for the three bond wire segments
using the XSLT math extension. The result of the bond
wire insertion is visible in Figure 5.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach71

Figure 5 Thermal simulation of the wire-bonded die
stack with COMSOL.

3.3 Export to simulation

A meaningful simulation requires a realistic setup and a
sufficiently detailed model of the object. This includes is-
sues like the proper setting of boundary conditions in the
simulation environment, the availability of validated mate-
rial properties, and exact but manageable object geometries
(i.e., the object can be meshed and simulated in reasonable
time). Some of our previous works already address these
challenges [17, 18]. The work in this paper focuses on the
(automatic) geometry generation based on real layouts by
combining existing data from design tools, files, and spec-
ifications.
In order to provide the package geometry in a CAD file
format supported by simulation tools, we chose an indirect
export as follows. First, we applied an XSL transformation
from ADF into a script for Open Cascade. Second, we run
this script file in Open Cascade to generate a suitable CAD
file (e.g., STEP). Another (less flexible) option would have
been to directly write a STEP file via XSLT.

Listing 10 Excerpt of the XSLT file used to transform
an ADF representation into an Open Cascade script to
generate a CAD format file.
1 ��������	��
����
������� ��
����������
2 �������
	����
������������������
3 ������� ���������������
����
�
�������
� �

� �	�!�"!�#�"!$ � �������$ ��
���������
����
�
�������
� � � �	�!�"!�#�"!$ �
���
	���
�$��

4 �����%�������
5 ����������������	���
 &'()*+,-�. /��0����$���
6 �����%�������
7 ����������������	���
 '123�. /��0����$���
8 �����%�������
9 ����������������	���
 4()�. /��0����$���

10 ������		�����
	�����
11 ����������
�
�������
� � � �	�!�"!���
12 �����%������� ��
�����	�
13 ���������������� �	5�. ��������
����
�
�������
� �

� �	�!�#�"!$. �5"�$���
14 �����%�������
15 ����������������,�0(���
��� (4123�./��0����$���
16 �����%�������
17 ����������������42

6��	� (�./��	./��0����$���
18 �����%�������
19 ����������������7����6��	 (�. �89���:�. /��	.

�;���	89���:�. /��0����$���
20 ���������
21 ��������
	�����
22 �������
	����
���������	������
23 �����	���
 ��
���	�����5��
����
24 �����%������� ��
�����
��
25 ���������������/	�����5��
�.�5�	����5�.���
�$���
26 �����%�������
27 ����������������	�	���� �./��
�.� �.���
���./��0����$���
28 ��������
	�����

Listing 10 shows an excerpt of the output transformation
file. It demonstrates two new aspects. First, an XSLT can
output to a plain text file, too (see line 1). Second, this
output is typically realized by writing out values (using the
value-of element). Line 19 contains the actual command,
which finally triggers the writing of the STEP file. Set up
correctly, Open Cascade executes the generated script with
the following command:

���� �� ��	
����
�
��

As a result, the desired CAD file is generated, which can
be imported into a simulation environment like COMSOL.
Figure 5 shows the result of the thermal simulation applied
to the wire-bonded die stack. Depending on the simulation
requirements, the ADF-based methodology enables the se-
lection of adjusted sub-models (e.g., simulation speed vs.
accuracy). The material properties and boundary condi-
tions used in the simulation are similar to those described
in [18]. Typically, the construction and constraining of de-
tailed simulation models requires a lot of experience and
is a time-consuming task. If the corresponding simula-
tion parameters and constraints are available, application-
specific configuration scripts (e.g., material property or
boundary condition settings for COMSOL) can be gener-
ated easily by an additional transformation. The method-
ology presented in this paper drastically reduces the sim-
ulation preparation time by using the XML-based ADF in
combination with XSL transformations.

4 Design flow integration

This section brings together the different steps of the ADF
methodology explained so far (i.e., input data processing,
package design representation, model modifications, out-
put data preparation, and interfacing with third party tools).
The flowchart in Figure 6 illustrates the flow. We used a
scripting language (in our case Python) to "glue" the single
steps into a flow, which is a common approach.
At the beginning, manual or tool-generated design data
is transfered into an ADF representation. Three different
paths are possible: design data is entered or exported di-
rectly in ADF, a suitable XSLT converts the input data from
an intermediate XML to ADF, or an additional preceding
step processes non-XML input data to XML first. Next,
bond wires are inserted. The consideration of different ac-
curacy levels (as described in Section 3.2) can be achieved
in multiple ways (e.g., by passing variables into the XSLT
processor, additional configuration files in XML, or corre-
sponding configuration attributes or elements inside the in-
put XML). In our example, a variable within the flow script
is used to decide which sub-transformation is applied. Be-
fore the simulation is conducted, the STEP files are gener-
ated as described in the previous section.
The shaded process steps in Figure 6 are based on ADF.
The internal structure is depicted in the flow chart com-
ment box on the right side. If carefully designed (e.g., with
clear and robust interfaces), many steps can be combined
to form a problem-specific flow. The implementation of
ADF using XML/XSLT technology is appealing due to its
high flexibility.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach72

Figure 6 Example design flow to export a package model to simulation.

The presented flow enables automated simulation runs
where a designer can quickly configure and investigate dif-
ferent package and assembly variants. A library of trans-
formations with clearly defined interfaces can be used to
describe and concatenate single design steps on an abstract
level, such as "import from component list", "add wire-
bonds", and "export to STEP". To create or extend exist-
ing (packaging) design flows, only an XSLT processor is
required (with platform independent and open source solu-
tions available).

5 Summary and outlook

In this paper we presented a methodology to support the
design of heterogeneous systems on package-level. The
central aspect is the XML-based Assembly Description
Format (ADF) and its modification using XSL transforma-
tions. ADF is able to consider geometries, electrical con-
nectivity, material properties, simulation constraints, pack-
aging rules, and further data related to package-level de-
sign. Furthermore, design steps and assembly processes
can be modeled as well. Thus, ADF addresses require-
ments of a central design data base as well as of an un-
derlying platform to implement an Assembly Design Kit
(ADK) [7]. The applied software technologies are widely
used and mature. This makes our approach also suitable
for cloud-based design environments.
A stack of two wire-bonded bare dies in a LCC package
served as design example. After a short introduction to
ADF, we described several aspects of the design process
(i.e., input processing, model transformations, data export).
The integration with a simulation environment is only one
possible application scenario.
The presented methodology can also be used to enable
a sophisticated verification on package-level as described
in [19]. Another important aspect in package-design is
the export of manufacturing data [7]. Additionally, eco-
nomical issues, such as supply chains and related assembly
costs, can be incorporated. ADF enables the development
of tools to explore and handle the big variety in packaging
technologies. A long term goal is to allow the description
of components not only in the electronic, but also in the
mechanical, optical, and biochemical domain.

Acknowledgment

This work is supported by the BMBF within the project SiPoB3D. It was
partially funded by the ECSEL Joint Undertaking under grant agreement
No 737465 (named MICROPRINCE). The Joint Undertaking receives
support from the European Union’s Horizon 2020 research and innova-
tion program and Germany, Belgium, Ireland.

References

[1] R. Fischbach, J. Lienig, and T. Meister, “From 3D circuit technolo-
gies and data structures to interconnect prediction,” in Proc. 11th
Int’l Workshop on Syst. Level Interconnect Prediction, SLIP ’09,
(New York, NY, USA), pp. 77–84, ACM, 2009.

[2] A. K. Varma, A. Glaser, and P. D. Franzon, “CAD flows for chip-
package coverification,” IEEE Transactions on Advanced Packag-
ing, vol. 28, pp. 96–101, Feb. 2005.

[3] T. Brandtner, “Chip-package codesign flow for mixed-signal SiP de-
signs,” IEEE Design Test of Computers, vol. 23, pp. 196–202, May
2006.

[4] G. Brist and J. Park, “A novel approach to IC, package and board
co-optimization,” in Sixteenth International Symposium on Quality
Electronic Design, pp. 512–518, March 2015.

[5] R. Ravichandran, J. Minz, M. Pathak, S. Easwar, and S. K. Lim,
“Physical layout automation for system-on-packages,” in Proc. 54th
Electr. Components and Technology Conference, vol. 1, pp. 41–48
Vol.1, June 2004.

[6] J. M. Minz, E. Wong, M. Pathak, and S. K. Lim, “Placement and
routing for 3-d system-on-package designs,” Trans. on Components
and Packaging Technologies, vol. 29, pp. 644–657, Sept. 2006.

[7] A. Heinig and R. Fischbach, “Enabling automatic system design op-
timization through assembly design kits,” in 2015 International 3D
Systems Integration Conference (3DIC), pp. TS8.31.1–TS8.31.5,
Aug. 2015.

[8] Apache Xalan-Java. ����������	
�����

������	�����.
[9] Open Cascade. �����������
��
�������

����.

[10] COMSOL. �����������
�����	
���.
[11] S. Wolf, A. Heinig, and U. Knöchel, “XML-based hierarchical de-

scription of 3D systems and SIP,” IEEE Design Test, vol. 30, pp. 59–
69, June 2013.

[12] W3C, “Extensible Markup Language (XML).” �����������
��

��������.

[13] W3C, “The Extensible Stylesheet Language Family (XSL).”
�����������
��
�������	
�����.

[14] S. Ghali, Introduction to Geometric Computing, ch. Constructive
Solid Geometry, pp. 277–283. London: Springer London, 2008.

[15] R. Fischbach, M. Dittrich, and A. Heinig, “Effizienter Design
Rule Check von 3D Systemaufbauten mit einer hierarchischen
XML-basierten Modellierungssprache,” in Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen, MBMV, Germany, pp. 183–192, 2014.

[16] EIA/JEDEC, “Bond wire modeling standard.” ����������

�
�
�
�������
���
���	����	
��������
���
���, June
1997. EIA/JESD59.

[17] A. Heinig, R. Fischbach, and M. Dittrich, “Thermal analysis and op-
timization of 2.5D and 3D integrated systems with Wide I/O mem-
ory,” in 14th Intersociety Conf. on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm), pp. 86–91, May 2014.

[18] A. Heinig, D. Papaioannou, and R. Fischbach, “Model abstrac-
tion of 3D-integrated/interposer-based high performance systems
for faster (thermal) simulation,” in 15th Intersociety Conf. on
Thermal and Thermomechanical Phenomena in Electronic Systems
(ITherm), pp. 230–237, May 2016.

[19] R. Fischbach, A. Heinig, and P. Schneider, “Design rule check and
layout versus schematic for 3D integration and advanced packag-
ing,” in International 3D Systems Integration Conference (3DIC),
pp. 1–7, Dec. 2014.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf 18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH Berlin Offenbach73

