Investigating Modern Layout Representations
for Improved 3D Design Automation

Robert Fischbach
fischbach@ieee.org

Jens Lienig
jens@ieee.org

Johann Knechtel
knechtel@ifte.de

Dresden University of Technology
Institute of Electromechanical and Electronic Design
www.ifte.de, Dresden, Germany

ABSTRACT

The current trend towards 3D integration requires new lay-
out representations specifically designed to take 3D-specific
constraints into account and to facilitate efficient design al-
gorithms. We observe that it is difficult to compare and
evaluate these layout-specific data structures. In this paper,
we first present a detailed investigation of modern layout
representations while analyzing their solution space and their
characteristics, such as redundancy and reachability. Our
investigation reveals their potential for 3D applications but
also shows open challenges to be considered for (future) rep-
resentations. Thus, we also provide guidelines for designing
efficient layout representations. Finally, we release our in-
vestigation methodology as open-source tool, thus providing
interested researchers with the opportunity to conduct rea-
sonable evaluations on their own.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—Layout; E.1
[Data]: Data Structures; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms

General Terms
Algorithms, Design, Theory

Keywords
3D design, 3D layout representations, data structures, physi-
cal design

1. INTRODUCTION

Physical design automation of electronic systems is based
on an abstract model of the corresponding design problem
which is computationally represented as a data structure.
These layout representations store information about layout
elements and, if designed properly, provide helpful features
(operations), such as direct access to adjacent elements.

Design optimization is performed in the realm of the data
structure’s solution space by applying (stochastic) optimiza-
tion algorithms. Efficient algorithms require a solution space
that minimizes redundancy, excludes invalid solutions, and
includes best solutions. Importantly, an efficient layout rep-
resentation must also allow fast execution of operations, such
as the exchange of modules (i.e., functionally grouped sub-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLSVLSI’11, May 2—4, 2011, Lausanne, Switzerland.

Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

© ACM2011. This is the author's version of the work.
personal use. Not for redistribution. The definitive
Symposium on VLS| (GLSVLSI'11), Lausanne, Switzerland,

version

circuits), transformation from the abstract representation to
the real geometry, and consideration of layout constraints.

Various efficient layout representations have been presented
for physical design of conventional (2D) integrated circuits
(e.g., [19]). However, the current trend towards 3D inte-
gration creates a multitude of new design challenges. This
process requires new and efficient layout representations that
take into account the characteristics of nanoscale 3D designs.
Layout representations that support efficient consideration
of vertical constraints, e.g., inter-layer thermal relationships,
are especially important, yet lacking in today’s design sys-
tems. A summary of current 3D integration technologies and
related layout representations is given in [8].

The first 3D physical design flows utilized traditional,
proven layout representations, for instance, one slicing tree
per active device layer. However, the disadvantage of these
approaches is that the tight linking between layers is ne-
glected and, for example, successful thermal-driven design
is often not achieved. In order to exploit the potential of
modern 3D integration technologies, contemporary 3D layout
representations must fully support vertical constraints.

In this paper, we first present a detailed overview of modern
3D layout representations with regard to their main charac-
teristics (Sec. 2 and 3). Rigorous evaluation and comparison
of these layout representations is one of our key contribu-
tions in this paper. Here, we present a novel evaluation
methodology based on the most important characteristics
of the respective layout representation, such as redundancy
and reachability of different solutions. Second, we discuss
experimental results, revealing the applicability of modern
layout representations with regard to cost minimization and
reachability (Sec. 4). Third, we summarize our observations
and provide guidelines for the development and application
of (future) 3D layout representations (Sec. 5). Furthermore,
our evaluation tool and its source code are online available
as open-source [1].

2. LAYOUT REPRESENTATIONS

Runtime complexity and the size of the solution space
are common criteria in publications that investigate various
layout representations. However, a detailed comparison based
only on these two (main) criteria is insufficient for application-
specific decisions. Additional criteria are required to compare
several layout representations in depth.

Chan et al. [4] investigated the importance of floorplan
representations for physical design. They pointed out that
cost evaluation is the most time-consuming computation
during optimization, diminishing the relevance of efficient
permutation and transformation operations. Consequently,
this highlights the importance of cost-evaluation-related cri-
teria such as flexibility, size of solution space, and a possible
correlation with given objectives.

It is posted here by permission
was published in Proceedings
May 2-4, 2011, pp. 337-342.

of ACMfor your

2011 Great Lakes

337

Professor Lienig
Schreibmaschinentext
© ACM 2011. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings 2011 Great Lakes
Symposium on VLSI (GLSVLSI'11), Lausanne, Switzerland, May 2-4, 2011, pp. 337-342.

Table 1: Overview of common 3D layout representations. The number of modules is denoted as n, the number

of layers as [, and unavailable data as n.g..

Layout Representation Pub. Complexity Solution Space Main Characteristics
Sequence Triple [Quintuple] [18] 2000 O(n?) O((n)?) [O((n)®)] Three [five] sequences (locii)
Bounded-Sliceline Grid Array [7] 2001 O(n?) depends on grid Multiple Bounded-Sliceline Grids
Multi-layer Slicing Tree Structure [2] 2004 O(n) O((n! 23" /n*-5)h) Multiple Slicing Trees
Multi-layer Sequence Pair [14] 2004 O(nloglogn) O((n!)%') Multiple Sequence Pairs
Combined Bucket and 2D Array [6] 2004 n.g. n.g. Array of Transitive Closure Graphs and bucket structure
3D Sub-Transitive Closure Graph [21] 2004 O(n?) O((n)?) Three transitive graphs
T-Tree [20] 2004 O(n?) O(n! 337 /221 p1-5) Ternary tree; nodes: modules, branches: neighbor information
3D Bounded-Sliceplane Grid [17] 2005 O(n?) depends on grid 3D grid structure
3D Corner Block List [12] 2005 O(n) O(n! 3n~1 24n—4) Sequence of modules, list of orientations, list of tri-branches
3D Slicing Tree [5] 2005 O(n) O(n! 2°™ /n'-%) Binary tree; inner nodes: slices, leaves: modules
Sequence Quadruple [10] 2006 O(n?) o((nh)*) Four sequences (locii)
O-Sequence [13] 2006 O(n) n.g. Sequence of modules and symbols
Layered Transitive Closure Graph [11] 2006 O(n?) o((n)?hH Two Transitive Closure Graphs and layer information
Double Tree and Sequence [9] 2007 O(n?) O(n! n?(n=1)) Two rooted trees (x(y)-tree), sequence (z-order)
Labeled Tree and Dual Sequences [15] 2008 O(n*3 logn) O((nh)? n™ 1) Sequence of modules, number sequence and tree
Twin Quaternary Tree [16] 2009 O(n) O((4n)!?/(3n + 1)!%) Two quaternary trees; nodes: modules, branches: neighbor relations

In Tables 1 and 2, we list several criteria (and review
their fulfillment by several layout representations) that are
important to evaluate the practical relevance of modern 3D
layout representations. Among others, this informations is
helpful in selecting the most suitable layout representation
dependent on application-specific constraints and operations.

Sections 2.1 - 2.8 describe the used evaluation criteria of
Tables 1 and 2 in detail.

2.1 Runtime Complexity

Discussing runtime complexity of layout representations
requires to determine the complexity of operations depend-
ing on the number of modules. In general, permutation
and transformation operations are considered in such inves-
tigations. Despite its importance (see [4]), cost evaluation
is mostly neglected. Consequently, cost evaluation with a
competitive runtime complexity is required in such investiga-
tions. Layout representations with inherent cost-correlating
properties would enable runtime reduction compared to a
data-structure-independent evaluation.

In general, the comparison of runtime complexities strongly
depends on the problem size. For small problem sizes, conclu-
sions can be inaccurate. Nevertheless, it is a useful character-
istic to rate scalability. In summary, the usage of practically
relevant problem sizes (as given in most benchmark sets) is
required for reasonable comparisons.

2.2 Size of the Solution Space

The size of the solution space refers to the number of
possible solutions encoded by a specific layout representation.

Rotations of modules are sometimes neglected in the re-
ported number of possible solutions. Depending on symmetry,
complexity is increased by a factor of up to 24™ (n being the
number of modules) if rotations are considered. Mirrored
modules would increase complexity further by a factor of
6". Please note that it is an application-specific decision if
rotated and/or mirrored modules should be considered for
the solution space size.

Considering the solution space size alone (or in combina-
tion with runtime complexity) is insufficient for a detailed
comparison of layout representations. Additional criteria,
such as the ones listed below, are required.

2.3 Level of Abstraction

Some layout representations directly model geometric rela-
tions between modules (similar to constraint graphs), others
use abstractions. The less abstract a layout representation,
the easier the implementation of both geometric constraints
and geometric operations. However, in such cases it is diffi-

338

cult to realize an evenly distributed search over the solution
space. As illustrated in Table 1, more abstract layout rep-
resentations provide a reduced number of possible solutions
(and limit the solution space to the most relevant solutions).

2.4 Layout Classification in Floorplanning

A common criterion for investigating 3D layout representa-
tions is the layout classification provided by 3D floorplanning.
It can be distinguished into several categories, which are
based on the corresponding floorplanning problem.

Slicing: Packing description by a recursive dissection of
a cuboid into two sub-cuboids. A well-known example for a
slicing layout representation is the 3D Slicing Tree [5].

Mosaic: Extension of T-junctions known from 2D mosaic
layout representations into the third dimension. Modules
with a common edge or surface form such a 3D T-junction
as described for the Twin Quaternary Tree [16]. A sufficient
amount of dummy modules enables the representation of
general packings.

Compacted: Arbitrary arrangement of modules which
are compacted to the left, bottom, and/or front.

General: Representation of all possible geometrical rela-
tions between modules. General layouts without any com-
paction are unusual for floorplanning representations but
may be necessary for other design problems.

2.5 Completeness and Redundancy

A layout representation is complete if all possible solutions
of a certain layout classification can be represented. For ex-
ample, the 3D Slicing Tree can represent all possible slicing
layouts, i.e., it is a complete slicing representation. However,
most of the compacted layout representations are incomplete
because completeness is often lost due to the transformation
from 2D to 3D (e.g., T-Tree [20]). One reason is that cyclic
packings (circular dependencies of relative positions) can
occur in 3D layouts. A sequential encoding prevents such cy-
cles. Complete and compacted 3D layout representations are
rare, Sequence Quintuple [18] is one example at the expense
of a very large solution space with many redundant solutions
(see Sec. 4). In general, the closer a layout representation
to completeness, the larger the solution space. However,
the solution space is usually correlated to redundancy, i.e.,
there are abstract solutions resulting in the same geometric
representation. A low fraction of redundancy and invalid
solutions reduces complexity.

It is an interesting question whether a complete solution
space is necessary. Some restricted layout representations,
i.e., slicing and mosaic representations, are complete with
regard to their layout classification, are redundancy-free, and

Table 2: Details on common 3D layout representations (to the best of our knowledge). The following charac-
teristics are reviewed. Abstraction (topological representation (TR), room dissection (RD)), spatial resolu-
tion (discrete (D), continuous (C)), layout classification (slicing (S), mosaic (M), compacted (C)), operations
(O), constraints (C), and features (F). Each characteristic may be not given (0), impossible (x), impossible

(unproven) (v), possible (v), or possible (unproven) (

).

& & & ©
2 3 & O«&%’b‘\ Y & &
o> & & NP GO N
K& & KR > T O NGRS N
S & R P & & Y0 L
L P o &S o PN S @ P N
WK e G KRN O 2 f & & & @ AT
N & &€ ¢ = S @V o O O RS \Q) S PP AN
@ S F o DT e T P 0 e e
> & %t & 2 RO IS N O KPS e S
S S EFLEE L NGO R I W P f
¥ RGO & o o oo CCCCK LK
Sequence Triple [18] TR C C x 0O O <sn-3 0 ¥V ¥ O O O v u]
Sequence Quintuple [18) TR C C v v O <sn—-5 0 ¥ & O O O (7.} [m]
Bounded-Sliceline Grid Array [7] TR D C 0 x v 00 o0wuv ¥ O
Multi-layer Slicing Tree Structure [2] RD D S miv] v @ v v O
Multi-layer Sequence Pair [14] TR D C v v v O v v v m]
Combined Bucket and 2D Array [6] TR D C 0O oo v v v oo v v oo e
3D Sub-Transitive Closure Graph [21] TR C C ¥ & O O v v v vV v OWvwoowvoaouewu
T-Tree 20 TR C C X v <4n-3 ¥ ¥V © O O v/ vV OO v oo
3D Bounded-Sliceplane Grid [17] TR C C 0O O 0O X v vV vV v v O 0 v o
3D Corner Block List [12] RD C M . | Ou @ 00O0O0DO0O0O®® oo
3D Slicing Tree [5] RD C S ¥ x O <iom-6 0O ¥V VU ¥V ¥ v OV ODOO v z 0O O
Sequence Quadruple [10] TR C C K 0O O <4n-4 0 VW ¥ O O O 7} O
O-Sequence [13] RD C M O v O o v @ 0O0OO0OO0OO0OOo0OOoO®VY e oao
Layered Transitive Closure Graph [11] TR D C 0O m | vz uz u v v Ooogewe O wu
Double Tree and Sequence [9] TR C C 0 x v v v v v OO0oo0oeoao
Labeled Tree and Dual Sequences [15] TR C C v v KX v 0OV 9w O OOoOOoOoooooeoaoao
Twin Quaternary Tree [16] TR C M v v] ¥ O O 0o o o ¥ O O

exclude invalid solutions. That is, a one-to-one correspon-
dence between abstract solutions and geometric packings
exists which could be valuable for specific applications. A
layout representation featuring a one-to-one correspondence
is not necessarily complete but guarantees valid solutions.
Practically relevant problem sets (in addition to standard
benchmarks) are required to further evaluate restricted layout
representations with regard to their industrial applicability.

2.6 Supported Operations (O)

Classical operations on modules (e.g., movement, exchange,
or rotation) are supported by almost all layout represen-
tations. However, 3D-specific operations like splitting or
merging modules are rarely supported.

Based on analyzing their impact on solution quality, dif-
ferentiating operations into global operations (higher impact)
and local operations (lower impact) is useful. Depending
on the balance between global and local operations, the
reachability (number of required operations to gain a specific
solution) may vary. High reachability often corresponds with
efficient optimization approaches with regard to speed and
quality (see Sec. 4).

2.7 Supported Constraints (C)

In addition to classical constraints, such as symmetry
or distance constraints, several new constraints must be ac-
counted for to fully benefit from 3D integration. For example,
modules in a 3D layout may occupy several layers. Hence,
this needs to be accounted for which is an inherent feature of
“real” 3D layout representations. On the other hand, using
a fixed number of layers and/or direct layer assignments of
modules is supported by layered layout representations, the
so-called 2.5D layout representations.

The comparison in Table 2 is limited to constraints that
are inherent in the reviewed layout representation.

2.8 Cost Evaluation Support

A cost function contains various cost terms, such as wire-
length and layout area, and is used to determine the quality of
a layout solution. Cost evaluation is typically the most time-

339

consuming operation during layout optimization. Complex
cost criteria such as temperature distributions are runtime-
intensive compared to geometrical ones (e.g., footprint area,
aspect ratio). Efficient layout representations should inher-
ently support cost evaluation. As illustrated in Table 2, some
layout representations already provide mesh-like information
as for example needed for thermal simulation (e.g., Combined
Bucket and 2D Array [6], Bounded-Sliceline Grid Array [7],
and 3D Bounded-Sliceplane Grid [17]). Efficient determi-
nation of neighbor/adjacency information between modules
without generating the complete packing is also valuable for
many design decisions. In any case, incremental cost evalua-
tion is preferred over global evaluation in each optimization
step (specifically in the inner loop of optimization).

A tremendous speedup is expected if a layout representa-
tion would reveal cost-correlating properties, such as topology
characteristics. Unfortunately, such correlations have not
been discovered yet.

3. SOLUTION SPACE INVESTIGATION

In general, the solution space is a set of all possible so-
lutions to a problem. For the 3D layout problem, this set
contains all valid layout configurations. These configurations
are associated with some costs and are modeled by using a
specific layout representation.

An investigation of any solution space with regard to
its most important characteristics, such as redundancy and
reachability of different solutions, provides important insights
into the related layout representation.

3.1 Requirements

The following requirements must be met in order to enable
sampling of the solution space of a layout representation.

Enumeration of solutions. Some layout representations
allow consecutive numbering of their abstract solutions. Thus,
every abstract solution can be unambiguously sorted.

In order to determine the number of possible solutions,
the layout representation is analyzed w.r.t. computability
of its different parts. For example, a 3D Slicing Tree uses a

All possible layouts
Abstract solution space
represented by
a data structure

Sy
v

/> Count

Solution X
Layout Y

Statistical

evaluation Costs of Y

of layouts

Costs

Figure 1: General data sampling approach. An ab-
stract solution X is transformed into the correspond-
ing layout Y. A statistical analysis of the generated
layout data can reveal a large variety of useful infor-
mation (e.g., cost distributions).

binary tree, variations of slicing operations (assigned to inner
nodes), permutations of modules (assigned to leaf nodes), and
rotation of modules. Hence, the computability of each part
is determined. The number of different topologies of a binary
tree is described by the Catalan Number C(m) = (2m)!/((m+
1)!m!), the number of variations of slicing operations (i.e.,
[X, Y, Z]) is 3™, the number of permutations of module
assignments is n!, and the number of rotations (six cuboid
rotations in 3D space) is 6™ (n being the number of modules
or leaf nodes, m = n — 1 being the number of inner nodes).
It is possible to generate an unique abstract solution for all
topologies of the solution space (3"~'6™(2n — 2)!/(n — 1)!,
details omitted due to limited space).

If a layout representation supports such an enumeration,
generating both randomly distributed solutions and the com-
plete solution space is trivial.

Randomly distributed solutions. The described enumer-
ation is difficult to achieve for layout representations where
certain solutions are invalid (e.g., due to constraints). At
the expense of runtime, appropriate recursive and iterative
approaches (e.g., backtracking in graph structures) still allow
to generate the complete solution space and to achieve an
evenly distributed sampling, respectively.

Cost evaluation. The subsequently described experiments
(Sec. 4) require a comparable implementation of the cost eval-
uation. This is achieved by omitting data-structure-specific
evaluation methods, thereby reducing the possible efficiency
in some cases. Thus, strongly implementation-dependent run-
time comparisons are omitted in our investigations. Hence,
we believe that the provided worst-case complexities (Table 1)
allow an objective runtime comparison between different lay-
out representations.

3.2 Data Sampling Methods

Next, we present our methods of sampling the solution
spaces. These methods allow an investigation of different
characteristics of the solution spaces as presented in Sec. 4.

Fig. 1 illustrates a general data-sampling approach. Com-
mon to all methods is the generation of an abstract solution
and its transformation into a real layout. The layout data is
then used to evaluate the solution, e.g., with regard to costs.

Complete sampling of the solution space enables an ex-
haustive investigation of all desired characteristics. Obvi-
ously, this approach is limited to small problem sizes and
is therefore not applicable for practically relevant bench-
marks. However, some properties, such as redundancy or
conformity, encourage a complete investigation of the so-
lution space. Depending on the solution space complexity,
complete sampling for problems with approximately 5 mod-

340

Cost‘ distribution for the ami33 benchmark

N
.°S 0.56 [Sequence Quintuple | |
Z @ O-Sequence
% [3D Slicing Tree
£ 0.3r I Sequence Triple ,
s Hl T-Tree
.5 . LA : :
3 i) N |
0.0 0.2 0.4 0.6 0.8 1.0

Normalized total cost

Figure 2: Distribution of total cost for the ami33
benchmark. Despite the strong benchmark depen-
dency, a qualitative comparison of layout represen-
tations is possible. Here, minimum-cost solutions of
a general stochastic optimization method are best
achievable using the T-Tree representation.

ules are feasible (e.g., Sequence Quintuple, 10us per solution
result in two months runtime). An exhaustive storage of all
solutions is also challenging due to the huge amount of data
(e.g., Sequence Quintuple, 5 modules, approx. 50 terabytes
depending on stored information).

Monte Carlo. If complete sampling is impractical, an
evenly distributed sampling (i.e., the so-called Monte Carlo
method) is considered to approximate the solution space. A
minimal number of samples is required to allow reasonable
predictions. Objective comparisons between layout represen-
tations with practically relevant problem sets are feasible,
even though not all characteristics can be investigated com-
prehensively (e.g., redundancy). Among others, the Monte
Carlo method reveals the potential of layout representations
to be used for stochastic optimization methods, like Simulated
Annealing, which are relevant for physical-design problems.

4. EXPERIMENTAL RESULTS

Our experiments are limited to specific 3D layout repre-
sentations that are promising for 3D designs. An extension
to further 3D layout representations is straightforward. Rep-
resentative MCNC benchmarks [3] are expanded to the third
dimension by applying a defined z-extension to all modules.

4.1 Cost Distributions

First, the distribution of the solutions with regard to their
respective costs is analyzed. This approach reveals charac-
teristics of a specific layout representation such as its appli-
cability to a stochastic optimization method. The Monte
Carlo method is applied in order to obtain the distribution
for typical sized benchmarks. Two different cost terms are
considered throughout the experiments, estimated wirelength
(HPWL) and bounding boz area. The latter describes the half
of the bounding box surface-area (considering all modules),
thus measures the packing density. The total cost equals the
mean of both cost terms.

One-dimensional histograms allow observing the distri-
bution of a single criterion, in our case total cost. In Fig. 2,
the layout representations Sequence Quintuple, O-Sequence,
3D Slicing Tree, Sequence Triple, and T-Tree are compared
with regard to the total-cost distribution for the ami33 bench-
mark. The parameters of these Gaussian-shaped curves are
benchmark-dependent but nevertheless allow an application-
specific rating of different layout representations. The T-
Tree is characterized by the most narrow cost-distribution
curve with lowest (mean) total cost. Hence, it provides a
good applicability for 3D stochastic optimization problems

Box-and-whisker plot of selected 3D layout representations

1.0
[Sequence Quintuple Il Sequence Triple
[O-Sequence Il T-Tree
© 08 |mmm 3D Slicing Tree
S
S 0.6t]
2
el
]
Bo.4t 1
©
£
]
Z0.2 |
0.0

abte xe‘rox Hp M198 arﬁi33 arﬁi49 plax‘/out
MCNC benchmark

Figure 3: Cost distributions of selected 3D layout
representations, applied to representative MCNC
benchmarks. Boxes range from lower to upper quar-
tile, with the corresponding median outlined. The
whiskers point out the 1st and the 99th percentile
respectively. The T-Tree appears to provide best
applicability for stochastic optimization methods.

— stochastically chosen solutions are characterized by low
(mean) costs, i.e., high solution quality.

In order to generalize this observation, we applied this
investigation to 7 MCNC benchmarks, ranging in size from
9 (apte) to 56 modules (playout). Fig. 3 illustrates different
layout representations and benchmarks with regard to nor-
malized total cost. Again, the T-Tree layout representation
appears to be best tailored for 3D stochastic optimization
methods (due to low total cost).

Two-dimensional histograms. Fig. 4 illustrates a solu-
tion space in detail. Contrary to Fig. 2, two cost terms are
visualized simultaneously. Additionally, we also depict the
influence of permutation operations (e.g., exchange, rotation,
shift). Here, the dark diamond represents a specific solution,
the white dots represent all reachable solutions using the
rotation operation only. This way, the impact of specific
operations on costs can be analyzed.

Based on this and similar investigations, operations can
be grouped into global and local operations. According to
our observations, an efficient stochastic optimization method
requires a balanced availability of global and local operations,
assuring good reachability of different solutions. Using a
certain operation to modify a solution results in a specific
cost difference. Statistically, this difference spreads over
a certain range, where a larger range indicates a global
operation. The 3D Slicing Tree offers the most balanced
availability of local and global operations when applied to
representative benchmarks. We observe that the T-Tree
(providing a promising cost distribution) should be combined
with more global operations in order to better utilize its
cost-distribution advantage when applied for 3D designs.

4.2 Complete Sampling Experiments
Investigations without stochastic variances are feasible
when sampling the complete solution space. For example,
the reachability of particular solutions, such as the global
optimum, can be verified. T'wo possibilities for complete-
solution-space investigations are described next.

Layout-representation components. An important char-
acteristic of a layout representation is the influence of its
intrinsic operations on the quality (cost) of the represented

T-Tree representing ami49

©
iN

© x
o ©
© =_
x o
o =}
o

0.3f =]
=2 2
.E b
2 .
3 >
S 0.2 =
5 =
9] ?
N Qo
=)
© ul
§ 0.1 a
o £
=2 =

0.2 0.3 0.4 0.5 0.6

Normalized estimated wirelength
Figure 4: The T-Tree solution space of the ami49
benchmark. Here, two cost terms (estimated wire-
length and bounding box area) are considered. Each
data point represents a solution. The color indicates
the quantity of solutions with identical costs. The
dark diamond represents a specific solution to illus-
trate the influence of its permutation on the solution
quality. Further solutions obtained using module ro-
tations are illustrated as white dots.

30 Solution space of a 3D Slicing Tree

x
©
d =
W e
g Opmmmampiesnichme— it O
c — — @
S == = = g
© 40 - 2
[} ©
2 2
© ©
[®)]
220 £
S o
& c
<

Module permutation count

Figure 5: Solution space of a 3D Slicing Tree rep-
resenting five (arbitrary) modules. The horizontal
”line structures” indicate that any variation of slic-
ing operations (y-axis) strongly influences estimated
wirelength while module permutations (z-axis) only
have limited impact.

3D layout structure. Fig. 5 uses data-structure-dependent
axes to illustrate the solution space of a 3D Slicing Tree.
Here, the impact on the estimated wirelength of the varia-
tion of slicing planes and of the permutation of modules can
be reviewed. This plotting method is strongly data-structure-
dependent; for some layout representations it is difficult to
generate useful permutations. However, if applicable, this
method can be used to investigate layout representations in
detail with regard to the influence of layout-representation
components and their modifications on the solution quality.
An important application is to find efficient cost correlations
between a layout and a layout representation — one of the
most time-consuming operations during layout optimization.

Redundancy. To enable efficient optimization strategies, a
solution space with minimal redundancy is required. Solu-
tions are rated redundant if identical geometrical relation-
ships exist between modules. If solution quality only is
considered, former identical solutions can become different
ones due to (changed) optimization objectives. Redundancy
investigations are limited since they require sampling the
complete solution space to provide reasonable conclusions.

Table 3: Redundancy and covering of the solution
space (for four modules). Due to the completeness of
Sequence Quintuple, the number of unique solutions
and thus the solution space size is known. All layout
representations include the global optimum but re-
veal different levels of redundancy and exploitation
of the solution space.

Representation Number of Redun- Unique Solution Unique
Solutions dancy* Solutions Space Solutions

(C.+Adj.) (C.+Adj.) (Adj. only)

Sequence Quintuple 127,401,984 4889 X 26,056 100 % 3,745
Sequence Triple 221,184 26X 8,345 32% 2,390
3D Slicing Tree 51,840 16X 3,211 12% 1,396
T-Tree 21,120 7X 2,837 11% 1,347

*compared to unique solutions w. r. t. costs and adjacency (C.+Adj.)

A small problem set with only four modules is illustrated
in Table 3. Here, all solutions of the layout representations
Sequence Triple, 3D Slicing Tree, and T-Tree are generated
and compared with the complete layout representation Se-
quence Quintuple. Redundancy is determined by transform-
ing each packing into the corresponding adjacency matrix
and comparing this matrix with already obtained solutions
(considering rotation and mirroring). As expected, Sequence
Quintuple generates a large number of solutions that cover
all possible unique solutions (in addition to many redundant
ones). Only 0.02% of all Sequence Quintuple solutions are
unique with regard to costs and adjacency relations, indicat-
ing a high rate of redundant solutions. None of the other
layout representations provides nearly as many different pack-
ings as Sequence Quintuple. For example, only a fraction
of all possible packings are considered by the 3D Slicing
Tree and the T-Tree. However, due to low redundancy and
inclusion of best solutions, the 3D Slicing Tree and the T-
Tree facilitate efficient realizations of stochastic optimization
methods best.

S. GUIDELINES & TOOL

Summarizing our investigations, we provide the following
conclusions that can be used as guidelines for development
and application of future 3D representations.

e Efficient 3D layout representations should enable in-
herent constraints and operations, while remaining as
abstract as possible.

e Layout representations should have a small solution
space with minimal redundancy that includes best so-
lutions.

e A balance between global and local operations, the pos-
sibility to transform any layout configuration into its
abstract representation, and an “easy” reachability be-
tween different solutions support efficient optimization
strategies (i.e., layout tools).

e Cost evaluation (to determine the solution quality)
during layout optimization is typically a very runtime-
intensive operation. Therefore, direct correlations be-
tween costs and layout-representation characteristics
are needed to reduce costs and enable incremental eval-
uation.

Our presented methodology is available for interested re-
searchers as open-source tool [1]. Hence, researchers will be
able to select the best layout representation for each appli-
cation and to replace individual layout representations with
more powerful implementations for improved 3D designs.

Please note that the presented methods are also appli-
cable to 2D layout representations (except for 3D specific
characteristics, such as vertical constraints and operations).
Thus, improving these representations is possible using our
methodology as well.

342

6. CONCLUSION

3D integration is helping to maintain the validity of Moore’s
law in today’s nano era. Numerous 3D layout representa-
tions have been developed recently to make 3D integration
accessible to design tools.

Our investigation reveals the untapped potential of several
frequently used 3D layout representations. On the other
hand, it also reveals open challenges for efficient 3D layout
representations and thus relevant obstacles to enable 3D
integration in general.

We believe that our investigation methodology, our obser-
vations, the resulting guidelines, and the open-source tool
(to enable easy analysis of layout representations) are major
contributions for the development of efficient 3D layout rep-
resentations. This work provides a solid base for developing
(new) representations that will allow future tools to take full
advantage of the extra dimension in 3D integrated circuits.

Acknowledgment. This work was supported by the Ger-
man Science Foundation (DFG, project 1401/1).

7. REFERENCES

[1] http://www.ifte.de/english/research/3d-design/.

[2] J. Berntsson and M. Tang. A slicing structure representation
for the multi-layer floorplan layout problem. Evo Workshops
2004, LNCS 3005, pp. 188-197, 2004.

F. Brglez. A D&T special report on ACM/SIGDA design
automation benchmarks: Catalyst or anathema? IEEE Design
& Test of Computers, 10(3):87-91, 1993.

H. H. Chan, S. N. Adya, and I. L. Markov. Are floorplan
representations important in digital design? ISPD ’05, pp.
129-136, 2005.

L. Cheng, L. Deng, and M. D. F. Wong. Floorplanning for 3-D
VLSI design. ASP-DAC 05, pp. 405-411, 2005.

J. Cong, J. Wei, and Y. Zhang. A thermal-driven floorplanning
algorithm for 3D ICs. ICCAD ’04, pp. 306-313, 2004.

Y. Deng and W. P. Maly. Interconnect characteristics of 2.5-D
system integration scheme. ISPD ’01, pp. 171-175, 2001.

R. Fischbach, J. Lienig, and T. Meister. From 3D circuit
technologies and data structures to interconnect prediction.
SLIP 09, pp. 77-84, 2009.

K. Fujiyoshi, H. Kawai, and K. Ishihara. DTS: A tree based
representation for 3D-block packing. ISCAS ’07, pp. 1045-1048,
2007.

Y. Kohira, C. Kodama, K. Fujiyoshi, and A. Takahashi.
Evaluation of 3D-packing representations for scheduling of
dynamically reconfigurable systems. ISCAS ’06, pp. 4487-4490,
2006.

J. H. Law, E. F. Young, and R. L. Ching. Block alignment in
3D floorplan using layered TCG. GLSVLSI 06, pp. 376-380,
2006.

Y. Ma, X. Hong, S. Dong, and C. Cheng. 3D CBL: An efficient
algorithm for general 3D packing problems. MWSCAS 05,
volume 2, pp. 1079-1082, 2005.

H. Ohta, T. Yamada, C. Kodama, and K. Fujiyosi. The
O-Sequence: Representation of 3D-floorplan dissected by
rectangular walls. PRIME ’06, pp. 317-320, 2006.

P. H. Shiu, R. Ravichandran, S. Easwar, and S. K. Lim.
Multi-layer floorplanning for reliable System-on-Package.
ISCAS, volume 5, pp. 69-72, 2004.

R. Wang, others, R. Wang, E. F. Young, Y. Zhu, F. C. Graham,
R. Graham, and C.-K. Cheng. 3-D floorplanning using Labeled
Tree and Dual Sequences. ISPD ’08, pp. 54-59, 2008.

R. Wang, E. F. Y. Young, and C.-K. Cheng. Representing
topological structures for 3-d floorplanning. ICCCAS ’09, pp.
1098-1102, 2009.

H. Yamagishi, H. Ninomiya, and H. Asai. Three dimensional
module packing by simulated annealing. CEC ’05, volume 2,
pp. 1069-1074, 2005.

H. Yamazaki, K. Sakanushi, S. Nakatake, and Y. Kajitani. The
3D-packing by meta data structure and packing heuristics.
IEICE ’00, E83-A(4):639-645, 2000.

B. Yao, H. Chen, C.-K. Cheng, and R. Graham. Revisiting
floorplan representations. ISPD ’01, pp. 138-143, 2001.

P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. Temporal
floorplanning using the T-Tree formulation. ICCAD ’04, pp.
300-305, 2004.

P.-H. Yuh, C.-L. Yang, Y.-W. Chang, and H.-L. Chen.
Temporal floorplanning using 3D-subTCG. ASP-DAC 04, pp.
725-730, 2004.

;3]

4]

5]
6]
(7]
8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

