
Hierarchical Propagation of Geometric Constraints
for Full-Custom Physical Design of ICs

Maximilian Mittag∗, Andreas Krinke†, Göran Jerke∗, Wolfgang Rosenstiel‡
∗Robert Bosch GmbH, Automotive Electronics, Reutlingen, Germany

Email: {maximilian.mittag, goeran.jerke}@de.bosch.com
†Dresden University of Technology, Germany

Email: andreas.krinke@ifte.de
‡University of Tübingen, Department of Computer Engineering, Germany

Email: rosenstiel@informatik.uni-tuebingen.de

Abstract—In industrial environments, full-custom layout de-
sign of analog and mixed-signal ICs is done hierarchically. In
order to increase design efficiency, cell layouts are reused in the
design hierarchy. Constraints forming relations between instances
in different hierarchical contexts are of critical importance. While
implementing a cell layout, these constraints have to be available
in the cell’s context. In this paper, a general definition of hierar-
chical constraints for a constraint-driven design flow is given.
Furthermore it is shown, how top-down declared constraints
can be propagated into another hierarchical context. Only by
propagation they become visible and verifiable for bottom-up
cell design. The feasibility of our proposed methodology is shown
by applying it to a modular Smart Power IC of the automotive
industry.

I. INTRODUCTION

The increasing complexity of IC layout together with short-

ening time-to-market schedules is tackled by layout synthesis

in the digital domain. The fact that custom analog and mixed

signal (AMS) IC layout design has not evolved as much as its

digital counterpart is mainly attributed to the circumstance,

that there are many more individual design requirements

(constraints) to be considered in the AMS domain. The reuse

of cell layouts is one of the approaches to meet tight time-to-

market schedules.

For reusing a cell, it is instantiated multiple times in

the design hierarchy. Each instantiation may pose constraints

on the design objects used to implement the cell’s layout.

These hierarchical constraints declared on instances impose

limitations in the solution space for the layout that are rooted

outside the cell itself. Conventional AMS design flows rely on

a bottom-up methodology for the implementation (see Fig. 1a).

A cell layout that is implemented ignoring these hierarchical

constraints may have to be modified later in the design

process when it becomes obvious that the constraints were

not met. The resulting design flow iteration across hierarchical

boundaries is time consuming and must be avoided.

This work has been partly funded by the German Federal Ministry of
Education and Research (BMBF) within the Research Project RESCAR 2.0
(project label 01 M 3195 B).

We propose to formalize these hierarchical constraints al-

lowing their declaration during a top-down design step. This

step happens before the layout implementation, as can be seen

in Fig. 1b). The implementation of a cell’s layout during

the bottom-up phase triggers the propagation of constraints

declared on instances of the cell in other hierarchy levels.

Only then they are visible and verifiable in that cell and design

iterations can be avoided.

A. Related Work in Constraint-Driven Physical Design

Constraint-driven design is a prerequisite on the path to

analog layout automation [2]. In pursuit of this goal, we

don’t want to achieve automatic optimization such as [3],

[4]. Besides the fact that hierarchy is not considered in these

optimizations, we rather want to give the layout designer full

control of how to achieve the specific optimization goals.

To declare constraints independently of the EDA tool, we

use some formalism of [2], [5] but a different methodology to

handle the constraints. Their proposed methodology can only

handle flat designs as hierarchy is not considered. Besides,

constraints are handled by design databases in a native way

[6], [7].

The design flow proposed by [1] relies on both, a uniformly

top-down schematic design phase and completely automated

layout generators on device and block level. Top-down layout

planning occurs only after finishing layouts on lower hierar-

chical levels. As opposed to device-level layout generators no

Fig. 1: a) Conventional bottom-up flow b) Enhanced flow
incorporating hierarchical constraints (adapted from [1])

Andreas
Schreibmaschinentext
Please cite as:
M. Mittag, A. Krinke, G. Jerke, W. Rosenstiel, "Hierarchical Propagation of Geometric Constraints for Full-Custom Physical Design of ICs" in Proc. Design, Automation and Test in Europe (DATE 2012), Dresden, pp. 1471-1474, March 2012.

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext



automated technologies are used on block level layouts for

industrial AMS circuits yet. This makes iterations over hier-

archical borders time consuming and error prone, as already

finished layouts have to be modified manually accounting for

layout constraints from higher hierarchical levels.

In [8] a constraint-driven design methodology is intro-

duced. Assignment of constraint instances to design objects

is discussed and three different types are identified: top-down,

bottom-up and a combined assignment type. All assignments

are done in a single design hierarchy tree and no solution is

provided on how to make hierarchical constraints available in

subtrees.

B. Contribution of this Work

The contribution is twofold: First, we give a formal defi-

nition of hierarchical and non-hierarchical design constraints

in Section II. This definition is generic such that constraints

resulting from other physical domains than geometry can

be expressed. It is extensible as it allows the expression of

arbitrary constraints between cell instances. Second, we define

how these constraints are handled in a hierarchical layout in

Section III. Constraints have to be available at the hierarchical

level the designer is implementing, no matter where they were

declared. The application of this methodology for ensuring

bondability by constraining bond pad placement is shown in

Section IV followed by a conclusion and outlook on further

research.

II. CONSTRAINT DEFINITION

Constraints used in AMS designs can be application and

technology specific [9] and must be representable in the design

system. Therefore, the constraints used in a design system have

to be extensible to meet application specific needs of the IC

to design. The definition proposed in this section is based on

[10]. As only set theory is used, the definition of arbitrary new

constraint types is possible.

Each of the constraint instances (subsequently constraint)

relate a set of design objects. This set is denoted as members
M of a constraint. The relation between the members is

described by a set of constraint parameters P of arbitrary

type (e.g. numbers, points, enumerations, etc.).

Every constraint can be assigned to a specific constraint type
t, which serves as a classification property. The parameters P
are the same for each instance of the constraint type while the

parameter values may differ. The type also defines which kind

of design objects the constraint relates. We denote the set of

all constraint types of a design system T .

To describe a constraint instance c these properties are

grouped into a tuple c = (t,M, P ) where t ∈ T . E.g.: a

‘maximum distance’ constraint c1 between e1 and e2 of 5μm
is described as c1 = (maxdist, {e1, e2}, {5μm}).

The state (fulfilled or violated) of a constraint instance is

determined by evaluating a constraint-type specific verification
function verift. This function has to be developed for each

constraint type t ∈ T . It takes a constraint instance as input

and returns either true or false indicating the constraint’s state:

Algorithm: verifmaxdist(constraint c = (maxdist,M, P ))
Returns: true, if the distance between all elements in M are smaller than or

equal to p ∈ P , false otherwise
1: for all (e1, e2) ∈ M ×M do
2: if distance(e1, e2) > p ∈ P then
3: return false //constraint violated
4: return true //constraint fulfilled

Fig. 2: verifmaxdist uses a geometric function distance() to
evaluate the state of the constraint instance

Fig. 3: a) Library (flat) view of a design and b) hierarchical
context of cell1 with the hierarchical levels Hcell1,1 to Hcell1,3

Constraint c = (t,M, P ) fulfilled ⇔ verift(c).
The function verift can contain arbitrary verification code

and ensures the extensibility to formulate application specific

constraint types. A verification function verifmaxdist for the

aforementioned example is shown in Fig. 2.

When implementing the layout of a cell, other cells are

instantiated (see Fig. 3a). This cell forms a design hierarchy

i.e. a hierarchical context, that is often represented by a

directed tree (see Fig. 3b). This tree can be represented in

set theory by a partially ordered set of instances where the

order is hierarchical instantiation. The leaf nodes of this tree

are elements of the process development kit library and/or

parametric layout generators (see cell3 in Fig. 3).

Constraints relating instances in the first hierarchy level of

one cell are local constraints, as they do not affect instances

further down the hierarchy (see C2 in Fig. 3). But in gen-

eral, constraints can form relationships between instances in

different contexts of the design. Their members are identified

using a list of instance names in the tree defined by the context

of the cell. We denote this subtree, where all members of a

constraint are instantiated the context of a constraint.

A constraint is called hierarchical, if one of the members

is not on the first hierarchical level (e.g. C1 as opposed

to C2 in Fig. 3). As these are declared where the member

instances are addressable, the constraint exists hierarchically

above the instances it affects. Hierarchical constraints have

to be available, i.e. visible and verifiable, in the context the

constrained instance will be implemented, which differs from

the context they were declared in. The process of making a

hierarchical constraint available in another context is referred

to as propagation and is defined in detail in the next section.

III. HIERARCHICAL CONSTRAINT HANDLING

In order to implement a cell, the constraints declared on any

of its instances must be available to the designer. To make

constraints visible and verifiable in a different hierarchical



Algorithm: propagate(contextH, constraint c = (t,M, P ))
Returns: void, constraint c is visible in all addressed contexts

1: for all m ∈ M do
2: for all H̄ in the Design do
3: if m ∈ H̄ and H �= H̄ then
4: create c̄ with parent c in H̄
5: set sibling property of m to c̄
6: call propagate(H̄ , c̄)

Fig. 4: Algorithm propagate recursively creates hierarchically
propagated sibling constraint in a different context H̄

Algorithm: verification delegate(context H̄,
constraint c̄ = (t,M, P ))

Returns: void, verification function of the originating constraint is called
1: for all m ∈ M do
2: H ← context of m’s parent
3: if H �= H̄ then
4: call verift with H and delegatet(H, H̄, c̄)

Fig. 5: Recursive delegation of verification of a propagated
constraint c̄

context, they are propagated through the design hierarchy.

The propagation is defined in the next subsection. Following

that the verification delegation of a propagated constraint is

described.

A. Hierarchical Constraint Propagation

A constraint c = (t,M, P ) declared within a cell cell1
relates the design elements M = m1,m2, ...,mn in the

context Hcell1 of this cell. If one of the cells of M is also

present in the context of another cell cell2, the constraint

will have to be propagated to a constraint c̄ = (t, M̄ , P̄ ) in

Hcell2. After propagating the constraint, it is visible during the

implementation of cell2.

The propagation algorithm that creates a sibling constraint

c̄ of the parental constraint c is shown in Fig. 4. Because the

origin of a propagated constraint is relevant for the layout

implementation, it has to be saved in the newly created

constraint, which can be seen in line 4. As every member

m ∈ M can cause a propagation, there has to be a sibling

property for each m, which is set in line 5. The two properties

provide a navigable connection between the two contexts,

which is needed for verification purposes.

B. Delegation: Verification of Propagated Constraints

To aid making a design decision, a constraint’s state has to

be visible in the current context. Therefore, the verification

function for the constraint has to be called. As the members

may not be visible and accessible in the propagated context,

the verification has to be delegated to the parent constraint in

the original context. The verification function is called in this

context and the result is fed back to the propagated constraint.

Only that way it is ensured that all necessary information for

the verification function is accessible.

The delegation as shown in Fig. 5 is not constraint-type

specific. This recursive algorithm will continue to delegate

the verification until the constraint instance, from which the

propagation was started, is reached.

The function delegatet, which is called in line 4, takes a

parental and sibling context as well as the sibling constraint

as input and returns the constraint in the parental context.

It is constraint-type specific as it changes the parameters P
and/or the members M of the sibling constraint depending on

the context of the parent. Similar to the verification function

verift itself, the delegatet function has to be defined when a

hierarchical constraint type is defined.

IV. EXPERIMENTS AND RESULTS

The introduced methodology of propagating constraints

through a design hierarchy was applied to an industrial Smart

Power IC. Due to high currents and voltages bond pads in

these ICs are placed irregularly on the chip area near to or on

top of the transistor arrays that form the power stages [11].

To build self-contained power stage blocks the pads were

instantiated in these block contexts, making the use of hier-

archical constraints an essential need. In Fig. 6 the simplified

layout of the IC is shown. The constraints resulting from

each block instance were propagated into the power stage

cell, before detailed placement was done. This ensured that

the placement of the bond pads was correct-by-construction

regarding bondability for each instantiation of the power stage

cell.

In the following, the implemented geometric constraint

types restricting bond pad placement are introduced. They are

implemented as Cadence Custom Constraints in the Virtuoso

Design Environment [7]:

• Relative bond path length over chip

• Absolute bond path length

• No crossover of bond paths

• Bond path angle between wire and chip border

For each constraint type a verification function was devel-

oped, using the proprietary tool-specific functional language

SKILL [12]. As all the implemented constraint types limit ge-

ometric placement, a single delegation function was sufficient

as shown in Fig. 7.

The correctness of the propagation and delegation functions

was validated by applying the methodology and comparing

reported errors to those of a proprietary package assembly

rule checker.

A. Propagation of Constraints to a Cell’s Context

To validate the propagation mechanism we compared the

number of propagated constraints in a hierarchical top-level

layout to the one in a flattened top-level layout. The top-level

layout contained the package, 82 instances of a bond pad and 8

Fig. 6: a) Layout of power stage instances in top cell.
b) Propagated constraints in power stage cell (from instance
1 = blue, from instance 2 = red)



Algorithm: delegategeom(contexts H̄ and H,
constraint c̄ = (t, M̄, P̄ ))

Returns: constraint c, that is transfered from context H̄ to H
1: c = (t,M, P̄ ) ← empty constraint with copy of P̄
2: trans ← transformation matrix from H̄ to H
3: for all m̄ ∈ M̄ do
4: if m̄ ∈ H then
5: m̄.position = trans ∗ m̄.position
6: M ← M ∪ m̄
7: return c

Fig. 7: Algorithm delegategeom returns a constraint c in which
the member coordinates of the propagated constraint c̄ are
transfered from context H̄ to H by coordinate transformation

TABLE I
SUMMARY OF DECLARED CONSTRAINTS

Number of constraint types 4
Constraint instances (flat top-level lay-
out)

584

Constraint instances (hierarchical layout) local 328
hierarchical 256

Propagated constraints in cell power-
stage per instance of cell bondpad

4·8 =32

Sum of propagated constraints in cell
powerstage

32·8 =256

instances of a power stage cell. The power stage cell contained

8 bond pads itself and was to be developed as one single layout

that could be reused for every instance in the top level context.

The final flat top layout contained 146 bond pads all together.

We used the flat layout to declare local constraints for the

bond pad placement. As each bond pad was attached to each

of the constraint types introduced in the previous subsection,

we had 584 constraint instances in a flat top-level layout. Of

these constraints 328 were declared on bond pad instantiations

in the top layout, while 256 constraints were declared on bond

pads resulting from power stage instantiations. This is shown

in the upper part of Table I.

Then we used the hierarchical layout and declared the same

total number of constraints on the bond pads. After applying

the propagation algorithm introduced in Fig. 4, we inspected

the power stage cell and discovered 256 constraints in that

context (see lower part of Table I). All relevant constraints

had been propagated from a hierarchical top level context to

the power stage cell context.

B. Verification Delegation to Top Context

To show the feasibility of the propagated constraints’ ver-

ification, we used a simple form of error injection. First we

moved bond pads in the top cell context. Then we flattened the

top layout and exported it to a proprietary package assembly

rule checker. We compared the reported results of the assembly

rule checker to the errors reported by the local constraints

defined on bond pads in the top context.

Then we moved bond pads in the power stage cell con-

text randomly. The constraint verification of the propagated

constraints could be run in that context. Delegation was used

to obtain the results immediately after bond pad movement.

To compare them to the reported errors by the assembly rule

checker the top layout had to be flattened after a context

switch.

The reported errors were the same no matter if generated

in the flattened top layout or the hierarchical one. This shows

that delegation is functioning properly.

V. CONCLUSION AND OUTLOOK

We introduced a formal definition of design constraints,

which form relations between cell instances in a hierarchical

design. Top-down declared hierarchical constraints are made

visible for bottom-up layout design by propagation: Creating

constraint siblings in a hierarchically lower context. The

verification within the context of a sibling is possible only

by delegation to the originating constraint. We validated the

proposed algorithms by implementing geometric placement

constraints for bond pads and applying them to both, a

hierarchical and a flat design to compare the reported errors

by hierarchical constraints to those of a proprietary package

assembly rule checker.

The benefits of the methodology were twofold: First, when

implementing the layout of a cell, the constraints imposed on

the bond pads (resulting from the multiple instantiations of

that cell in other contexts) were visible and verifiable in that

cell’s context. The cell layouts were correct-by-construction

regarding bondability. The time used for package assembly

rule checking on a flattened layout shortly before tape out

was reduced by about 20%.

Second, constraint violations became visible as soon as the

placement of any instance containing bond pads was changed

regardless of its hierarchical level. Normally these errors are

discovered only at the end of layout design when final package

assembly rule checks are done. The methods introduced in

this paper greatly assisted in keeping track of design closure

regarding bondability of the final chip layout.

Future research will focus on extending this methodology to

allow for more complex constraint types, which are functional

depending on other constraints.

REFERENCES

[1] G. Gielen and R. Rutenbar, “Computer-aided design of analog and
mixed-signal integrated circuits,” Proc. IEEE, pp. 1825 –1854, 2000.

[2] G. Jerke and J. Lienig, “Constraint-driven Design - The Next Step
Towards Analog Design Automation,” in Proc. of the Intl. Symp. on
Physical Design. ACM, 2009, pp. 75–82.

[3] A. Nassaj, J. Lienig, and G. Jerke, “A constraint-driven methodology for
placement of analog and mixed-signal integrated circuits,” in 15th IEEE
Intl. Conf. on Electronics, Circuits and Systems, 2008, pp. 770–773.

[4] A. Nassaj, J. Lienig, and G. Jerke, “A new methodology for constraint-
driven layout design of analog circuits,” in 16th IEEE Intl. Conf. on
Electronics, Circuits and Systems, 2009, pp. 996 –999.

[5] J. Freuer, G. Jerke, J. Gerlach, and W. Nebel, “On the verification of
high-order constraint compliance in IC design,” in Design, Automation
and Test in Europe, Proc. ACM, 2008, pp. 26–31.

[6] D. Mallis, D. Cottrell, E. Leavitt, and B. Pfeil, Si2 OpenAccess API
Tutorial, 9th ed. Silicon Integration Initiative, Inc., 2009, oA 2.2 DM4.

[7] Cadence Design Systems Inc., “Speeding design of custom silicon,”
http://w2.cadence.com/whitepapers/Virtuoso WP.pdf.

[8] G. Jerke, J. Lienig, and J. B. Freuer, “Constraint-driven design method-
ology: A path to analog design automation,” in Analog Layout Synthesis,
H. E. Graeb, Ed. Springer US, 2011, pp. 269–297.

[9] J. Scheible, “Constraint-driven Design - Eine Wegskizze zum analogen
Designflow der nächsten Generation,” MPC-Workshop, pp. 1–9, 2010.

[10] A. Müller and B. Walliser, “Constraint Management im Full-Custom-
Entwurfsablauf,” ITG FACHBERICHT, pp. 181–184, 2003.

[11] B. Murari, F. Bertotti, and G. Vignola, Smart Power ICs: Technologies
and Applications. Springer, 1995.

[12] T. Barnes, “Skill: a cad system extension language,” in Design Automa-
tion Conference, Proc., 1990, pp. 266 –271.




