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Abstract

Further automation of analog and mixed-signal integrated circuit design requires the consistent consideration of a growing
number of design constraints through all design stages. However, the verification of system-level constraints is only possible
towards the end of the design process when all necessary parameters are known. In this paper, we present a method
for constraint state prediction in the early stages of an analog IC design project. This allows constraint consideration
already during system-level design. By modeling yet unknown design parameters as random variables, the probability of a
constraint to be fulfilled can be estimated. Constraint sensitivity analysis is used to identify design parameters with the
most influence on a constraint’s state. Finally, design parameters are optimized to maximize the probability of fulfilling all

constraints.

1 Introduction

The very first step of every design process is to specify
all requirements known at the time. The same applies to
the design of analog and mixed-signal integrated circuits
(AMS ICs). In this case, the objective is to create a circuit
design that fulfills all requirements in the specification.
As a first step, this set of requirements is translated into
formal constraints that restrict the values of target design
parameters.

Right from the start, all phases of the design process should
consider these constraints to create a valid end result [1],
[2]. Hence, it is necessary to calculate a constraint’s state,
which in turn depends on the values of all its target design
parameters. However, these values are not known until
later stages. As a consequence, constraint verification and
consideration are not possible until these later stages are
finished.

Early stages, such as system-level design, have an enormous
impact on the quality of the result because corresponding
design decisions influence all following design steps. In
order to enable constraint consideration in these early stages,
we propose a method for constraint state prediction. The
key is to model yet unknown design parameters as random
variables. Afterwards, a constraint’s probability of being
fulfilled can be calculated. This allows well-informed
decisions in early stages despite unknown exact design
parameter values.

In addition, our constraint sensitivity analysis ranks de-
sign parameters with regard to their impact on constraint
states. This allows early identification of critical design
parameters requiring particular attention later on. Finally, a
novel method for design parameter optimization generates
suggestions for design parameter values that maximize the
probability of constraints being fulfilled.

After presenting related work in Section 2, we explain
our constraint modeling approach in Section 3. Section 4
describes the method of predictive constraint verification,
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while Sections 5 and 6 give details on constraint sensitivity
analysis and optimization. After presenting experimental
results in Section 7, the paper ends with a summary and
conclusion.

2  Related Work

Our work combines procedures from two main areas:
(a) sampling of multidimensional distributions, and (b) sen-
sitivity analysis.

The simplest method for sampling of multidimensional
distributions is random sampling, where new samples are
generated while ignoring all previous samples. Stratified
sampling improves this approach by allowing to divide the
value range in so-called stratas from which the samples are
generated. This allows fine-grained control of the level of
detail with which each range should be sampled. [3]

Latin Hypercube sampling is a compromise between (sim-
ple) random sampling and stratified sampling. It divides
the value range automatically and creates samples for each
interval. [4]

The second main area is sensitivity analysis which creates a
link between changes of a model’s output and changes of its
inputs. On the one hand, there are methods for local sensitiv-
ity analysis, e.g., differential sensitivity analysis. Methods
for global sensitivity analysis include multi-parametric sen-
sitivity analysis (MPSA) and variance-based methods, such
as Fourier amplitude sensitivity testing (FAST). [5]

3  Constraint Modeling

Constraints define requirements on design parameters. Fol-
lowing the approach from [6], we model a constraint ¢ as
function of design parameters that returns a Boolean value
representing the state of the constraint: Truk if it is fulfilled,
or FaLsk if it is violated.

c:P— B (p,p2....,pn)—> b (D)
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Table 1 Examples of Probability Distributions

Probability Support
Distribution supp(+)
2 Bernoulli k € {0,1}
S Finite Binomial k €{0,...,n}
5 Support Degenerate k = ko
> Uniform ke{a, ... ,b}
% Geometric kef{l,... oo}
S Infinite Logarithmic ke{l,..., o}
2 Support  Negative Binomial & € {0,..., o}
A Poisson k €{0,...,c0}
Dirac Delta X = X
» Bounded Kumaraswamy x €[0,1]
§ Interval Triangular x € [a, b]
3 Uniform x € [a, b]
Z  Semi- Chi x € (0, 00)
a Infinite Gamma x € (0, 00)
§ Interval Log-normal x € (0, 00)
g Laplace X € (—o0, 00)
8 Infinite Logistic X € (=00, 00)
Support Normal x € (=00, 0)
Student’s ¢ X € (—o00, 00)

Therefore, the codomain of ¢ is B = {TruEg, FaLsg}. The
function arguments are the constraint’s target parameters
P1s D2, - - .» Pn- The values of these parameters determine
the constraint’s state.

Constraints can be created by logical combination of
Boolean criteria. These criteria may be constructed from
general, e.g. real-valued functions by introducing upper
and/or lower bounds, conditions like inequality, equality,
existence in a set, and so on. Equation (2) shows an example
constraint on the width w and aspect ratio of an IC.

c(w, h) = (w < 700 um) A (0.8 < % < 1.4) )

The “Global Constraint Catalog” [7] lists about 350 different
constraints that may be used as criteria in a constraint
function definition.

4  Constraint State Prediction

4.1 Estimation of Unknown
Design Parameters

In order to determine the state of a design constraint, the
values of all its target parameters have to be known. However,
these values are likely to be unknown in early stages of the
design process. Therefore, to predict a constraint’s state
early on, we model unknown design parameters as random
variables to reflect this uncertainty.

Each random variable is described by some probability
distribution (PD), the so-called prior probability distribution,
or just prior'. A random variable can be (a) discrete (its

Icf. Bayesian inference
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Figure 1 (a) Probability density function (PDF) and (b)
cumulative distribution function (CDF) for an exemplary
design parameter that was estimated using a triangular
distribution with lower bound a = 1, upper bound b = 6

and mode ¢ = 4. The maximum probability is f(c) =
2-(b-a)'=04.

PD is described by a probability mass function (PMF)),
(b) continuous (its PD is described by a probability density
function (PDF)), or (¢) a mixture of both types. Any PD may
be used to define an unknown design parameter. Table 1
gives examples of common probability distributions and
their respective supports, i.e. the set or range where the
distribution is not zero-valued. Choosing a PD depends
on (a) the design parameter’s type: discrete or continuous,
(b) the set or range where this parameter has non-zero values,
and (c) the knowledge about the shape of its PMF or PDF. A
simple example is a continuous design parameter for which
lower bound, upper bound and mode, i.e. the value with
maximum probability, can be estimated. In general, such
an estimation is based on design experience. In this case, a
continuous triangular distribution may be used, as shown in
Figure 1.

4.2 Predictive Constraint Verification

Constraint functions can be very complex. In order to predict
whether or not a constraint will be satisfied later, we calculate
the constraint state for large number of possible combinations
of design parameter values. We use either Monte Carlo
simulations (MCS) or Latin hypercube sampling (LHS) to
generate a large number of random values for each design
parameter’s PMF or PDF.

MCS allows fast calculation of random samples for given
parameter distributions. For each sample s;, a random
number r; from a uniform distribution in the range [0, 1]
is sampled independently. Then, we use the inverse CDF
to convert this value to a random number of the target
distribution (cf. Figure 2a). However, depending on the
number of samples, the histogram deviates from the PDF,
as shown in Figure 3a. Ranges with low probability might
be underrepresented.

In contrast, LHS promises a more evenly sampling of the
parameter distribution. The key is to divide the range of each
variable in N disjoint intervals of equal probability p = 1/N.
Using the inverse CDF, each probability interval boundary
1/N,2/N,...,(N—1)/N is transformed into the equivalent
interval boundary within the variable range. Figure 2b
shows these interval boundaries as solid lines. Afterwards,
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Figure 2 Sampling of a random variable based on its
cumulative distribution function (CDF, cf. Figure 1b)
using (a) Monte Carlo sampling and (b) Latin hypercube
sampling. Both methods use random numbers from a
uniform distribution that are transformed using the inverse
CDF. However, Latin hypercube sampling divides the
variable range in intervals of equal probability at first and
gets one sample from each interval.
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Figure 3 Comparison of the original probability density
function (PDF, cf. Figure 1a) and the frequency distri-
butions resulting from (a) Monte Carlo sampling and (b)
Latin hypercube sampling.

one value is selected randomly from each interval exactly
as in MCS. Therefore, the complete value range is covered
more evenly, as shown in Figure 3b. [3]

In case of multiple variables, their N individual samples are
combined in a random manner without replacement. For
MCS and LHS, this results in N tuples, each comprising
one random sample of each variable. Correlated variables
are not supported in our current implementation. However,
previous work describes a method for sampling random
variables with a desired rank correlation matrix [3], [8].
This approach could be easily integrated.

After generating the N random parameter sets (i.e. tuples,
as described above), we calculate each constraint’s state
(fulfilled or violated) for each sample. As a result, we
can estimate the probability that a single constraint or all
constraints are satisfied simultaneously.

5  Constraint Sensitivity Analysis

The goal of constraint sensitivity analysis is to calculate
the sensitivity of a constraint’s state to parameters. In this
work we use multi-parametric sensitivity analysis (MPSA)
which is a sampling-based method for global sensitivity
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1: procedure PARAMETEROPTIMIZATION(P, C, p¢,)

2 M — PARAMETERSAMPLING(P) > MCS or LHS
3 > calculate constraint fulfillment probability p
4 p < CONSTRAINTSTATEPREDICTION(C, M)

5. while TruE do
6
7
8
9

v « MPSA(P, C, M) > sensitivity analysis

P’ « TrRaNSLATEPDF(P, v) > move PDF 1/r
M «— PARAMETERSAMPLING(P) > MCS or LHS
: p’ < CoNSTRAINTSTATEPREDICTION(C, M)

10: if p’ — p > py then

11: P« P’

12: p<p

13: else

14: break

15: end if

16:  end while
17:  return P
18: end procedure

Figure 4 Iterative algorithm for parameter optimization.
The goal is to maximize the probability that all constraints
are fulfilled by horizontal translation of individual parame-
ter’s probability density function (PDF) to the left or right.
Arguments are the set P of all parameters, the set C of all
constraints and the probability change threshold py,. The
set M holds tuples of parameter samples.

analysis [9]-[11]. This method classifies the random pa-
rameter sets described in the previous section as acceptable
or unacceptable. When performing MPSA for a single
constraint ¢, a parameter set is acceptable if ¢ is fulfilled for
this set; otherwise it is unacceptable. Afterwards, we can
evaluate the sensitivity to each parameter x; by using the
Kolmogorov-Smirnov two sample test [9], [12]:

da,u(xi) = Sl.lP ISa(xi) - Su(xi)l 3)

with “sup” being the abbreviation for supremum, which
describes the least upper bound of its argument. S, ,(x;)
are normalized cumulative frequency distributions:
e Su(x;) is the distribution of the parameter samples that
belong to acceptable sets, and
e S.(x;) is the one of the samples that belong to unac-
ceptable sets.
Therefore, d,_,(x;) “can be measured directly as the greatest
vertical distance between the two distribution functions
plotted on the same graph” [12]. The resulting value is
in the range [0, 1] and represents the similarity between
the two distributions. It is a measure for the sensitivity of
the constraint’s state to the parameter. Figure 5 shows an
example for two uniformly distributed parameters x; and x.
As can be seen, x| has great influence, while x, has nearly
no influence on the constraint state.
It is also possible to analyze multiple constraints by per-
forming a logical conjunction of all constraints:

Ctotz/\CiZCl/\Cg/\.../\Ci (4)
i
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Figure 5 Frequency distributions (a, b) and normalized cumulative frequency distributions (c, d) of two parameters x;
and x, (both uniformly distributed). Solid dark green lines denote frequency of (accepted) parameter samples which led to
fulfilled constraints. Dashed light red lines denote frequency of (unaccepted) parameter samples which led to violated
constraints. Sensitivity analysis using Kolmogorov-Smirnov two sample test calculates the maximum vertical distance
dga.u(x;) between normalized cumulative frequency distributions for accepted and unaccepted parameter samples S, (x;)
and S, (x;). Due to d, ,(x1) > dg ,(x2), the probability that all constraints are fulfilled is very sensitive to x; and very

insensitive to x;.

As a result, ¢ enforces that all other constraints ¢; have to
be fulfilled simultaneously. Then, sensitivity analysis can
be performed as described above.

6  Design Parameter Optimization

The results of sensitivity analysis form the basis for param-
eter optimization. The goal is to optimize parameters in
order to maximize the probability that all constraints are
fulfilled. Our approach is to change the parameter density
functions iteratively by moving them to the left or the right
without changing the shape of the distribution.

Figure 4 shows the iterative algorithm for parameter opti-
mization. We define a probability change threshold py, as
stop criterion for the optimization. At the beginning, we
perform an initial sampling of all parameters and estimate
the probability p that all constraints are fulfilled (lines 2—4).
In each iteration, we use multi-parametric sensitivity anal-
ysis (MPSA) to identify the parameter v with the greatest
influence on that probability p. Then, this parameter is
moved to the left or the right in order to increase p. We
calculate the movement direction by comparing the values
of parameter v that have maximum probability of being
accepted or unaccepted. In other words, we determine the
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position of the maxima in the frequency distributions of ac-
cepted and unaccepted values of parameter v (cf. Figures Sa
and 5b). If the most likely unaccepted value is greater than
the most likely accepted value, we move v’s distribution to
the left by 10 % of that difference. Otherwise, we move the
distribution to the right.

Afterwards, new samples are generated for parameter v and
the probability that all constraints are fulfilled is re-estimated.
In case the improvement of the constraint fulfillment prob-
ability is smaller than py,, the optimization stops. The
optimized parameter set P is returned.

7  Experimental Results

We implemented our algorithm using the programming lan-
guage Python and the libraries NumPy, SciPy, and Numexpr
[13], among others. Figure 6 shows the main window of
the graphical user interface (GUI).

The first step for the user is to enter the parameters by
choosing one of the supported probability distributions and
entering the corresponding values. Currently supported are:
(a) normal distributions (mean u, standard deviation o),
(b) uniform distributions (lower bound, upper bound), and
(c) triangular distributions (minimum, maximum, mode).
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% Opticon - Constraint State Prediction and Optimization — O *
Show Save C5V Sensitivity Analysis| | Optimization Parameters:
P New
soSonstraint: P 43P, + Ps: 26.5% P 8.89% E-i Edit
I - Delete
Show
400
P 65.39%
300 '3
200} /'\
P 41.23% 100 180 300
100}
Constraints:
/(\\ P_1+3*P_2+P_3 New
0 Edit
600 800 1000 1200 1400 1600 1800 Delete
sampling Method:(_) Monte Carlo Sampling (MCS) (®) Latin Hypercube Sampling (LHS)
Samples: 10000 =
Classes: 50 S

Figure 6 Screenshot of Opticon, the tool we developed for constraint state prediction and optimization. The interface

for parameter and constraint definition is on the right. This example shows a constraint that limits the total power con-
sumption of an integrated circuit containing five instances of three modules. The power consumptions Py, P, and P3 of
these modules are modeled as triangular distributions. The large graph shows the distribution of the constraint function
¢ = Py + 3P, + P3 < 1100 when ignoring the limit. Samples for which c is fulfilled are highlighted in dark green.

In addition, the frequency distributions and normalized cumulative frequency distributions for the accepted and unac-

cepted samples of Py, P, and Pz are shown (cf. Figure 5). The constraint’s probability of fulfillment and the results of the
sensitivity analysis are given as percentage above the graphs.

K] Opticon - Constraint State Prediction and Optimization = O X
Show Save CSV Sensitivity Analysis| | Optimization Parameters:
P_1 Mew
mgonstraint: P +3P,+P;:89.2% P 10.82% E-;- Edit
- Delete
Show
500
400 P 70.27%
P
300
200 L
P 48.94% 0 80 200
100 Constraints:
P 1+3*P 2+P 3 Mew
0 Edit
400 600 800 1000 1200 1400 1600 Delete

sampling Method:(_) Monte Carlo Sampling (MCS) (®) Latin Hypercube Sampling (LHS)
Samples: 10000
Classes: 50

A4

Figure 7 Screenshot of Opticon after optimization of the problem from Figure 6. The probability of the constraint being
fulfilled increased from 26.5 % to 89.2 %. This was achieved by moving the PDF of the triangular distributed parameter
P; to the left by AP, = 100 as can be seen on the right.
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Adding new distribution types to the program is easy. In
parallel, the user can decide on the sampling method and
number of samples used for constraint state prediction and
sensitivity analysis later on. Afterwards, constraints can be
defined using these parameters.

In order to visualize the constraint state in a more mean-
ingful way, we divide the constraint definition in two parts:
(a) definition of a real-valued function, and (b) specification
of a lower and/or upper bound. This second step transforms
the real-valued function into a constraint that is either TRUE
or FaLse—fulfilled or violated.

After parameter and constraint definition, the user is able
to select one of the constraints and perform constraint
state prediction. This results in a frequency distribution
(histogram) of the constraint’s real-valued function (on the
left in Figure 6). The bars of the histogram are colored in
dark green and light red depending on the proportion of
values that fulfill or violate the constraint.

When performing sensitivity analysis, the graphs of fre-
quency distributions and normalized cumulative frequency
distributions for the accepted and unaccepted samples of all
parameters are calculated and shown on the right of the con-
straint state prediction histogram. In addition, the sensitivity
to all parameters is evaluated using the Kolmogorov-Smirnov
two sample test and given as a percentage above the graphs.
Finally, parameter optimization can be performed as de-
scribed in Section 6. After modification of the parameters’
PDFs, all graphs are updated. Figure 6 shows an example
of a constraint that limits the total power consumption of
an integrated circuit containing five instances of three mod-
ules. The parameter with the greatest influence is the power
consumption P, of the module instanced three times. The
results after optimization are shown in Figure 7.

8 Summary and Conclusion

In this paper, we presented a novel approach for predictive
constraint verification to support well-informed decisions
during system-level IC design. This addresses the problem
that constraint verification is only possible after all design
parameters are known. Based on a design team’s experience,
we model design parameters as random variables with
specific probability density functions. Subsequent sampling
of parameters allows us to estimate the probabilities that
constraints will be fulfilled at the end of the design process.
Furthermore, constraint sensitivity analysis tells us which
design parameters have the greatest influence on these
probabilities. This helps to focus attention on those design
aspects that are crucial for compliance with the specification.
In addition, parameter optimization gives suggestions for
design parameter changes that improve probability of con-
straint fulfillment. Our tool Opticon gives easy access to all
the aspects of this work and allows easy experimentation
with different scenarios.

Future research will focus on support of correlated design
parameters and investigation of variance-based sensitivity
analysis methods.
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