
Explicit Feature and Edge Insertion for Improved Analog Layout

Generators in Advanced Semiconductor Technologies

Benjamin Prautsch
*
, Uwe Eichler

*
, Torsten Reich

*
, Jens Lienig

†

*
Fraunhofer IIS/EAS, Fraunhofer Institute for Integrated Circuits, Division Engineering of Adaptive Systems,

Dresden, Germany; {Benjamin.Prautsch, Uwe.Eichler, Torsten.Reich}@eas.iis.fraunhofer.de
†
Dresden University of Technology, Dresden, Germany; jens@ieee.org

Abstract

Analog layout design is a predominantly manual task that is extremely difficult, time consuming, and costly. The so-

called generator-based design methodology is one possibility to reduce the manual effort by substituting design steps

with procedural automation. Recent work already discussed a high degree of technology-independence of procedural

generators. However, same generator code creates always the same structure which reduces flexibility. Moreover,

recent generators behave like black-boxes with implicit behavior. This work utilizes an abstract layout placement graph

in order to include layout relations and/or layout shapes automatically within a post-processing step. As the result,

abstract generator descriptions are much more robust and handle the great amount of advanced process design rules

which is of high practical relevance when targeting multiple technologies. Both the degree of technology independence

and layout quality are therefore increased in an explicit way for the first time – without changing any generator code.

1 Introduction

The design of analog integrated circuits is still a greatly

manual procedure. While digital circuit problems can be

subdivided and abstracted more easily and a variety of

“digital” algorithms are focused on this

scaled/quantitative problem, the analog domain deals

with sensitive interactions and many dependencies which

can not yet be handled entirely by current automation

approaches [1, 2, 3]. One further challenge is that even

comparably small analog design problems lead to a large

number of constraints [4]. Even experienced designers

cannot be aware of this quantity of considerations at a

time. They are more likely to use symmetry and aesthetics

as (poor) measure of layout quality [3]. In addition,

analog designers often do not focus on the many

constraints at all which are, however, important to

consider [5, 6, 7, 8, 9]. In order to automate the analog

design problem, mainly two approaches are being

followed, namely optimization-based [10, 11, 12, 13] and

procedural generator-based [14, 15, 16, 17, 18, 19]. The

first approach is well-known for its generic nature due to

the capability to adapt an optimization method to a wide

range of design problems. However, with growing

problem sizes this approach demands more powerful

algorithms. Especially utilizing advanced technologies

where very complex and dependent design rules are to be

considered optimization tends to be too computation

expensive when taking detailed layout tasks into

consideration [20]. In the second approach, procedural

generators are used to create layouts (also schematics [21]

or the entire set of required views [14, 18, 19]) very fast

even in advanced processes [19]. The reason for the fast

execution speed is the detailed procedural description of

the solution to be generated (expert knowledge) which, at

the same time, is the main drawback: procedural

generators are structurally very static.

1.1 State of the Art

Roughly speaking, optimization-based approaches are

mainly applied in academia while generator-based

approaches are already used in the industry. In order to

address future industrial analog design automation, a

combination of both principles is promising [2]. However,

both approaches are still considered separately today.

Procedural descriptions of layout generators are often

defined by relative positions using design rule variables

from a technology database such as e.g. in [14, 16, 17, 22]

or as in the geometric templates in [10] and [23]. This

means that vectors are calculated within the procedural

generator which are then used to change the position of a

layout element. In “large” technologies (approx.

> 180 nm) this method works properly. However, such

design rule variables are hardly sufficient in processes

below 180 nm and no more sufficient in advanced nodes

Fig. 1 Comparison of former generator methodologies with

no possibility of post-processing (left) and our new

generator approach with layout graph construction and graph

post-processing (right). Our generators are “transparent”.

Therefore, algorithms can be applied directly in order to

adapt the generated result rather than changing design

parameters.

Professor Lienig
Schreibmaschinentext
 Please quote as: B. Prautsch, U. Eichler, T. Reich, J. Lienig "Explicit Feature and Edge Insertion for Improved Analog Layout Generators in Advanced Semiconductor Technologies," Proc. of ANALOG 2016, Bremen, pp. 22-27, Sept. 2016.

far below 90 nm since design rules become increasingly

layout-dependent. Therefore, in [19, 20, 24] dependent

design rules (depending on size and relative position of

related layout elements) are calculated and applied during

generator runtime based on generator commands which

allow a description of abstract placement relations. In

[20] both calculation and placement are combined into

abstract placement commands which, in addition, create

nodes and edges of an abstract layout placement graph

through the generator code.

1.2 Our Contribution

According to [2], we focus on the combination of both

aforementioned automation approaches. Therefore, we

follow a methodology to qualify analog generators better

for optimization-based approaches in order to reuse the

expert knowledge described in the procedural generator

code. Thus, in this work we propose a new insertion

technique applying the idea of improved accessibility

which improves the flexibility of otherwise rather static

(meaning structurally fixed) layout generators. After the

procedural layout generation, all layout relations and

layout elements are stored in an abstract layout graph

according to [20]. This graph is subsequently analyzed for

layout structures out of a library of known critical

structures (see Fig. 1). If such structures are found in the

graph, which is either critical in general (problematic

generator code) or relates to a design rule from the

technology (e.g. dependent rule), they are resolved by

means of insertion of additional features such as edges or

both nodes and edges into the layout graph. The goal of

this methodology is to improve both technology

independence and layout quality of procedural layout

descriptions which is of high practical relevance.

Moreover, the capability to apply post-processing directly

on a generated layout through the generator itself allows

the direct connection of generators and optimizers. This

means that an optimizer is not limited to vary generator

parameters only. Direct adaption of the generated layout

result is possible as well by reusing the contained expert

knowledge through the placement graph. To the best of

our knowledge such insertion technique has not been

presented before for procedural layout generators.

Our particular contribution is summarized as follows:

• We propose a new insertion technique which

allows post-processing and adaption of

procedural analog layout generators

• We present an analysis of layout structures to be

considered during this post-processing step

• Algorithms are given which are used during the

post-processing step in order to improve the

quality of procedurally generated layouts

2 Problem Description

In procedural layout generators �����, �, �, �	, a layout

consisting of layout elements � ∈ � (such as shapes or

figures) is described utilizing variable parameters ∈ �

(e.g. transistor dimensions). The generator can be

executed for each technology � out of the set of supported

technologies � through generic and ordered commands

� ∈ � with � ⊆ 	����. The set ���� depends on the

programming interface (API) which is used. All �	utilized	
in	 ��� describe instantiation, parameterization, rotation,

and position or relation of each	� ∈
. Due to the strong

connection between �, �, �, �, and
, ���� greatly

influences the degree of technology independence. In

Section 1.1 it is discussed that many former methods only

support the description of positions rather than relations.

In addition, since ��� can be programmed by an arbitrary

series of commands �, generators cannot ensure layout

correctness intrinsically and, hence, much generator

verification is to be performed.

Therefore, an automated post-processing step with

verification and correction is required. In order to extract

the command series of ���, each � creates either an edge

or a node in a layout graph �� which describes
 in an

a) Structure “A1”

b) Structure “A2”

c) Structure “B”

d) Structure “C”

e) Structure “D”

Fig. 2 A subset of critical layout structures which might be

defined by a generic generator description. On the left side

the generated layout is illustrated, while the corresponding

placement graph is shown on the right side. Nodes

containing letter � are the starting point of the analysis.

Dashed elements are added by the solution strategy.

abstract way (see [20]). Once all commands � ∈ � were

executed, critical structure definitions	���� out of a

library
!" must be searched in �� in order to apply a

related solution ��#$% which resolves	���� . This means

that once a problematic command series is found, it is

resolved in an explicit way which is required to introduce

more flexibility into otherwise structurally static

generators.

3 Critical Layout Structures

Due to the freedom of the programmer, layout

descriptions may be implemented which lead to DRC

violations. In order to improve DRC correctness, critical

structures need to be recognized and must be handled

using appropriate solutions.

Each node in the placement graph represents a layout

element while each edge represents a detailed description

of the relation between two layout elements. An edge can

either imply an alignment a, a placement p or

decompaction d. Alignment means that the borders of two

layout elements are placed exactly onto each other,

placement means that two layout elements are placed with

respect to each other using the minimal possible distance

or a greater user-defined spacing, and decompaction

means that the spacing between layout elements is

increased. Each relation can be defined in the direction

&'(of all sides left l, right r, top t, and bottom b

(additionally, reference points are defined which is not

discussed in this work for reasons of clarity; see [20]):

&'(∈)*, (, �, +,
In this work, a primitive placement relation step -� is

defined by a placement relation (∈), ., /, &, with

/ 0 	 ∨ . and a related direction &'((to be read

"(from &'("):

• Alignment: .:	&'(
• Placement: :	&'(
• Placement or Alignment: /:	&'(
• Decompaction: &:	&'(

3.1 Classification of Critical Structures

In order to analyze the placement, a library
!" containing

critical structures �� was defined. This library can be

extended fast by new critical structures once new

structures were recognized. A critical structure ��
contains both the definition of the critical layout structure

definition ���� and a related solution	��#$% . Thus, it is a

tuple	��	 0 	 ����� , ��#$%	. Each '-th critical structure

definition is a tuple of 3�'	 relations - which define a

path within the abstract layout graph. In order to define

paths, each 4-th relation is a tuple of 5�4	 primitive

relation steps -� which contain the actual placement

relation and placement direction (data of edges) of the

critical structure. Each relation - starts from the start

node � – the node currently analyzed during the iterative

search (see Section 4). Generalized, a critical structure CS

is given as follows:

�� 0 6���� , ��#$%7,	
��89: ; 0 6-<, -=, … , -?�;	7,	
-@ 0 6-�<, -�=, … , -�A�@	7,

-� 0 (:	&'(
The solution ��#$% to resolve a critical structure ��
contains information about new (inserted) edges and/or

nodes. Such edges and nodes are inserted and/or

overridden. Again a relation	- is used in order to describe

the location of edge and node insertion.

In Fig. 2 critical structure definitions out of
!" are

illustrated in black/solid while the related solution is

shown in red/dashed. Relations are illustrated as dotted

arrows. As an example, in Fig. 2a) the critical layout

structure definition is ���� 0 �	-<		 with -< 0
	�	/: �, /: *		. The related solution ��#$% is applied from the

node found along -<. This means that the inserted edge is

starting from the upper left node facing node	�. “C:v”

indicates that the new edge includes a vertical constraint.

In this particular case, first the upper left element is

decompacted upwards by moving the node located at	-<
relative to �. Following this, placement or alignment of

the upper right element (found at - 0 �/:	�) is applied

from the right w.r.t the upper left element to maintain the

related edge. This solution is written as follows:

	��#$% 0 B6-<, �&: �	7, 6-<, -, �/:	(7C
Since real designs contain several levels of hierarchy as

well as so-called figure groups, which realize a logical

Fig. 3 Hierarchical application of the analysis of critical

structures (dotted rectangles mark hierarchical elements

such as figure groups or instances). On the left side a layout

is illustrated while on the right side the corresponding graph

representation is given (dashed elements are added).

Fig. 4 Iterative application of the feature insertion

technique. Once a critical structure is found, the related

solution is applied. If nodes and/or edges are inserted, nodes

are added to the list of starting nodes and edges are

considered during the ongoing structure search.

hierarchy, solutions are to be propagated top-down as it is

illustrated in Fig. 3. In this example, a node and an edge

are inserted at position - 0 �.: (. Since the starting node

is a figure group, the solution is propagated into this

figure group where it is applied to each primitive shape

which is aligned on the right figure group border

(&'(equals ().

In order to apply corrections on the whole layout, the

starting node � “moves“ through the entire abstract layout

placement graph as it is illustrated in Fig. 4. This is

discussed in more detail in Section 4.

3.2 Isomorphisms of Critical Structures

In order to reduce the number of defined critical

structures and to increase the reliability of the library of

critical structures, each structure is transformed such that

rotation and mirroring are considered. This transformation

is necessary due to the variety of possible orientations of

the analyzed layout. Applied transformations are,

therefore, defined as set of cyclic permutations

(symmetric groups, such as clockwise rotation and

mirroring). The following D"E 0 7 symmetric groups are

applied on each element out of the library of critical

structures
!" in order to extend the number of structures

which will be searched in the layout placement graph:

• Rotation, 90°: R90 = (t l b r)

• Rotation, 180°: R180 = (t b)(r l)

• Rotation, 270°: R270 = (t r b l)

• Mirrored, x-axis: MX = (t b)(r r)(l l) = (t b)

• Mirrored, y-axis: MY = (t t)(r l)(b b) = (r l)

• Composition R90○MX = (t l b r)○(t b) = (t r)(l b)

• Composition R90○MY = (t l b r)○(r l) = (t l)(b r)

As an example, the direction &'(of the placement step

-�	 0 : * is transformed into each isomorphism resulting

in a transformed set G# (the identity function applies first

and multiple appearances are allowed; |G"| 0 D"E + 1):

G# 0): *, : +, : (, : �, : *, : (, : +, : �,
This transformation is also to be done for each placement

step within a relation - such that a set of new relations is

created. For example, a relation -< is �: �, : *	 which

evaluates to the following set of transformed relations �K:

�K 0)	�: �, : *	, �: *, : +	, �: +, : (, �: (, : �	,	
�: +, : *	, �: �, : (, �: (, : +	, �: *, : �		,

Applying this transformation for	���� and ��#$% out of

each critical structure �� as well, the library of critical

structures contains all transformations of each critical

structure. Multiple appearances of same isomorphisms are

now ignored in order to search each structure only once.

4 Algorithms to Find and Resolve

Critical Layout Structures

The critical structures discussed in Section 3 are now to

be searched in the abstract placement graph which is

generated during runtime of the generator. Former

generators would simply be finished after all commands

were executed. In contrast, in the presented work a post-

processing step is applied in order to check and correct

the resulting layout.

4.1 Search of Critical Structures

First, the critical structures �� ∈
!" are transformed as

given in Section 3.2 which results in a set of transformed

critical structures
!"	;#$ containing more critical

structures since all isomorphisms are considered. For each

node � (current starting node) in the abstract layout graph,

it is checked whether or not a critical structure out of

!"	;#$ matches starting from � (see Fig. 5). This means

that it is checked if the edges starting from � fit the

relations - out of the critical structure definition ����
which is contained in the critical structure	��. Once a

relation is found at node	�, the related starting edge �&L�
is ignored during the next iteration using 'L3�&L�
(heuristic approach to reduce the number of searches; it is

assumed that at most one critical structure can be found

per edge which means that
!" must be defined properly).

MNOMP_MR_STUV_RWXTWYUZO�[, \][^RU	:
1 _'�
`� 0),
2 3a&��&L�`	 0 	�. L��_�&L�`_ac�La'3L�	
3 ∀	MR	 ∈ \][^RU:
4 | .**e'� 0 	�(c�; 	'L3�&L� 0),; 		�&L�
'`� 0),
5 | ∀	g	 ∈ MR:
6 | | _'�	 0 	e.*`�
7 | | ∀	OZhO	 ∈ iUZOjZhOR|^hijZhO:
8 | | | ��&L���(, `c���``	 	0 	hOWk^WR�-, �&L�	
9 | | | if `c���``: //	-	_'�`	.�	�&L�

10 | | | 'L3�&L� 0 'L3�&L� ∪)�&L�,
11 | | | �&L�
'`� 0 �&L�
'`� ∪)�-, �&L���(,
12 | | | _'�	 0 	�(c�
13 | | if not _'�: //	-	_'�`	.�	3a	�&L�
14 | | .**e'� 0 e.*`�; 	+(�.n
15 | if .**e'�: //	.**	-	ac�	a_	�`	_'�	3a&�	�
16 | _'�
`�	 0 	_'�
`� ∪)��`, �&L�
'`�	,
17 TOWoTi	_'�
`�

Fig. 5 Algorithm to find a critical structure out of the set of

transformed critical structures
"!	;#$ starting from node	�.

L��e'�`�	 implements a search starting from �&L� to check

if relation - can be found. If so, the series of edges is

returned. Each critical structure �` which was found is

stored in _'�
`� together with the relation -, and the related

list of edges. Finally, _'�
`� is returned.

Xppqr_MR_RUqoW^UiR�[, S^W\RW	:
1 (�`*sDa&�` 0),
2 ∀	�MR, OZhO\RW	 	∈ S^W\RW:
3 | �`#$% 0 �`. L��_`a*c�'a3�	
4 | ∀	RUqoW^Ui ∈ MRRUq:
5 | | 5asDa&� 0 XppqrtqM�`a*c�'a3, �&L�
`�, �	
6 | | (�`*sDa&�` 0 (�`*sDa&�` ∪)5asDa&�,
7 TOWoTi	(�`*sDa&�`

Fig. 6 Algorithm to resolve the critical structures which

were previously found starting from node �. .*u�*��	
implements the actual application of each resolved new or

updated placement command which is located defined by

relation - (contained in `a*c�'a3). Once each solution is

applied, all resolved nodes (= layout elements) are returned.

4.2 Resolving Critical Structures

After the algorithm from Section 4.1 is completed, the

returned value _'�
`� contains the information about

critical structures which were found starting at node �.

This information is now used to resolve the critical

structures (see Fig. 6) such that after the iterative post-

processing step the overall layout is corrected.

5 Experimental Results

In order to test the capability of the proposed method and

algorithms, two different test generators were developed.

The first test generator implements the critical structures

defined in the critical structure library	
!". It verifies that

each of those critical layout structures are found and

resolved correctly. The second test generator creates an

arbitrary series of placement commands. This second test

is used both to find further critical structures and to

evaluate the capability of the search algorithm.

5.1 Test Generator for the Generation of

Known Critical Structures

In order to check proper recognition and resolving of

known critical structures, all critical structures are created

in a dedicated test generator. Fig. 7 shows a part of the

layout result from this test generator. While the critical

structure is not resolved in Fig. 7a), in Fig. 7b) the layout

issue was resolved by the edge insertion technique. It is

important to mention that both layouts result from

identical generator code. The only difference in Fig. 7b) is

that the edge insertion was applied in a post-processing

step which first analyzed the layout using the abstract

placement graph and subsequently applied an explicit

solution provided by the critical structure library
!".

5.2 Test Generator for the Generation of

Pseudo-Random Patterns

In addition to the generation of the known patterns, a

pseudo-random generation was applied as well. This

means that a second test generator was developed which

executes a large number of instantiations of shapes

followed by random placement and align commands from

multiple directions. This variety is used to test the

capability of our algorithms (see TABLE 1).

It can be seen that currently the CPU runtime � depends

slightly quadratic on the number of layout elements D
(� v �5 + 0.1 ∗ D + 0. 006 ∗ D{	 ∗ 10|{s). More than

1000 layout elements are required in order to reach a

runtime of a minute which would still be reasonable.

However, since analog cells often contain a comparably

low number of layout elements (< 100), the runtime is

very short (< 2 s). Independently, we expect that both the

implemented graph database and the applied algorithms

can be optimized further for runtime. The graph database

could be substituted by a more performant open source

implementation and improved checks for sub graph

isomorphism may speed up the algorithms. Additionally,

the procedures for placement graph construction and

related checks can be improved.

Furthermore, it should be stated that the post-processing

step can be deactivated at any time. In a real design flow

(or synthesis), one may (partially) skip this step during

layout-aware sizing of all involved modules. In the final

step, the post-processing would be activated again in

order to improve the generated layouts efficiently.

6 Discussion of the Proposed

Insertion Technique

In contrast to former generator-based approaches such as

[14, 15, 16, 17, 18, 24], our method includes a post-

processing step. The experimental results show that this

post-processing step following the generator code

execution is capable of improving the generated layout in

an explicit fashion without changing any line of generator

code. Such capability is a prerequisite in order to achieve

real technology independence of generators. Dependent

spacing rules and density rules are examples for

considerations which would otherwise require technology

dependent generator code. In addition, our method can be

extended towards two main directions.

First, the proposed method can be used to apply a built-in

verification step after generator execution. This means

that logical errors in the generator code are immediately

found which both improves generator robustness and

decreases generator development time by fast debugging.

Second, instead of searching and resolving known critical

layout structures out of a fixed library
!", further

algorithms can be developed which are capable of finding

critical layout structures automatically. Such algorithms

are not limited to consider DRC issues only. Also further

considerations such as constraints regarding symmetries

between layout elements or coupling constraints can be

a) b)

Fig. 7 A part of a test generator showing the critical

structure “A1” out of the library
!". Without edge-insertion

an overlap error occurs (a), while the same structure is

generated correctly using our edge-insertion technique (b).

TABLE 1 Search of critical structures in a pseudo-

randomly generated layout.

No. of

nodes

20 40 80 160

No. of

structures

2 5 10 19

CPU

runtime

0.10 s 0.21 s 0.51 s 1.74 s

addressed. This means that such algorithms can either

again verify the quality of a generator or they can directly

apply changes in order to improve the resulting layout

quality by means of (explicit) constraints which are

provided to the generator.

Moreover, one can imagine that the link “into” the

generator can be used for a wide range of further

algorithms. We believe that this insight and the capability

of applying algorithms will allow merging expert

knowledge programmed in generators and optimization.

This means that an optimizer can search a solution in a

more directed way (cf. Fig. 1, right) instead of just

defining parameters and evaluating a black-box behavior

(cf. Fig. 1, left) iteratively.

7 Summary and Outlook

In this paper a new methodology to improve the

technology independence and layout quality of procedural

analog circuit generators was presented. An abstract

placement graph which is extracted from the generator

code during runtime is utilized during a post-processing

step to resolve layout issues explicitly using a library of

critical layout structures. Applying test generators, it was

shown that the principle can actually be used to modify

the layout result of a generator without changing any line

of generator code. Our method not only improves the

quality of generated layouts but it also improves the

technology independence of procedural generators in

advanced processes since design rules can be considered

holistically by applying appropriate algorithms which

utilize the abstract placement graph.

The new post-processing step will improve the

correctness of generated layouts since the consideration of

critical structures is no more to be defined only within the

generator code implicitly but also by a separate library of

explicit critical structures. Once a new structure is found,

it can be added to this library to improve layout quality

further.

Moreover, the post-processing step utilizing the abstract

layout graph can be used to apply arbitrary algorithms

such as for verification or for layout changes directed by

explicit constraints. Future analog design automation

methods can, thus, link generators and optimization

directly in order to combine the advantages of both

approaches.

Acknowledgements

The presented work was partly supported by the European

Union and the Free State of Saxony within the project

THINGS2DO (Ref. No. 16ES0240).

References

[1] R. A. Rutenbar and J. M. Cohn, "Layout Tools for Analog ICs and Mixed-

Signal SoCs: A Survery," Proc. of the Int. Symp. on Physical Design ISPD,

pp. 76–83, 2000.

[2] J. Scheible and J. Lienig, "Automation of Analog IC Layout–Challenges

and Solutions," Proc. of the 2015 Int. Symp. on Physical Design, pp. 33–40,

2015.

[3] R. A. Rutenbar, "Analog Synthesis (and Verification) Revisited: Whats's

Missing?," Int Conf. on Synthesis, Modeling, Analysis and Simulation

Methods and Applications to Circuit Design, SMACD, Sept. 2012,

http://rutenbar.cs.illinois.edu/publication/. [Accessed July 2016]

[4] H. Graeb, S. Zizala, J. Eckmueller and K. Antreich, "The Sizing Rules

Method for Analog Integrated Circuit Design," Proc. of the 2001

IEEE/ACM Int. Conf. on Computer-aided design, pp. 343–349, Nov. 2001.

[5] A. Krinke, M. Mittag, G. Jerke and J. Lienig, "Extended Constraint

Management for Analog and Mixed-Signal IC Design," Proc. of the 21st

European Conf. on Circuit Theory and Design (ECCTD), pp. 1–4, Sept.

2013.

[6] A. Krinke, G. Jerke and J. Lienig, "Constraint Propagation Methods for

Robust IC Design," Proc. of ZuE 2015; 8. GMM/ITG/GI-Symposium

Reliability by Design, pp. 1–8, Sept. 2015.

[7] H. Habal and H. Graeb, "Constraint-Based Layout-Driven Sizing of Analog

Circuits," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 30, no. 8, pp. 1089–1102, Aug. 2011.

[8] G. Jerke and J. Lienig, "Constraint-driven Design — The Next Step

Towards Analog Design Automation," Proc. of the 2009 Int. Symp. on

Physical design (ISPD'09), pp. 75–82, 2009.

[9] A. Nassaj, J. Lienig and G. Jerke, "A New Methodology for Constraint-

Driven Layout Design of Analog Circuits," Proc. of the 16th IEEE Int.

Conf. on Electronics, Circuits, and Systems (ICECS), pp. 996–999, Dec.

2009.

[10] R. Castro-López, O. Guerra, E. Roca and F. V. Fernández, "An Integrated

Layout-Synthesis Approach for Analog ICs," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7,

pp. 1179–1189, July 2008.

[11] R. Martins, N. Lourenco and N. Horta, "LAYGEN II—Automatic Layout

Generation of Analog Integrated Circuits," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pp. 1641–

1654, Nov. 2013.

[12] R. Martins, N. Lourenco, S. Rodrigues, J. Guilherme and N. Horta, "AIDA:

Automated Analog IC Design Flow From Circuit Level to Layout," Proc of

the Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods

and Applications to Circuit Design (SMACD), pp. 29–32, 2012.

[13] H. Graeb, F. Balasa, R. Castro-Lopez, Y.-W. Chang, F. V. Fernandez, P.-H.

Lin and M. Strasser, "Analog Layout Synthesis - Recent Advances in

Topological Approaches," Proc. of the Conf. on Design, Automation and

Test in Europe, pp. 274–279, Apr. 2009.

[14] IPGen 1Stone Developer, [Online]. Available: http://www.ipgenme.de/eda-

and-ip-products/1stone-developer.html. [Accessed July 2016].

[15] S. Youssef, F. Javid, D. Dupuis, R. Iskander and M.-M. Louerat, "A

Python-Based Layout-Aware Analog Design Methodology for Nanometric

Technologies," Proc. of the IEEE 6th Int. Design and Test Workshop (IDT),

pp. 62–67, Dec. 2011.

[16] A. Graupner, R. Jancke and R. Wittmann, "Generator Based Approach for

Analog Circuit and Layout Design and Optimization," Proc. of the Design,

Automation & Test in Europe Conference & Exhibition (DATE), IEEE,

Mar. 2011, pp. 1–6.

[17] T. Reich, U. Eichler, K.-H. Rooch and R. Buhl, "Design of a 12-bit cyclic

RSD ADC Sensor Interface IC using the Intelligent Analog IP Library,"

Proc. of ANALOG 2013 – Entwicklung von Analogschaltungen mit CAE-

Methoden, Mar. 2013.

[18] J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas, K. Jung, L.

Kong, N. Narevsky, Y. Lu, N. Sutardja, E. An, A. Sangiovanni-Vincentelli

and E. Alon, "BAG: A Designer-Oriented Integrated Framework for the

Development of AMS Circuit Generators," Proc. of the 2013 IEEE/ACM

Int. Conf. on Computer-Aided Design (ICCAD), pp. 74–81, Nov. 2013.

[19] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich and J.

Lienig, "IIP Framework: A Tool for Reuse-Centric Analog Circuit Design,"

Proc. of the 13th Int. Conf. on Synthesis, Modeling, Analysis and

Simulation Methods and Applications to Circuit Design (SMACD), June

2016.

[20] B. Prautsch, U. Eichler, T. Reich, A. Puppala and J. Lienig, "Abstract

Technology Handling for Generator-Based Analog Circuit Design," Proc.

of ZuE 2015; 8. GMM/ITG/GI-Symp. Reliability by Design, pp. 1–6, Sept.

2015.

[21] D. Marolt, M. Greif, J. Scheible and G. Jerke, "PCDS: A New Approach for

the Development of Circuit Generators in Analog IC Design," 22nd

Austrian Workshop on Microelectronics (Austrochip), pp. 1–6, Oct. 2014.

[22] N. Jangkrajarng, S. Bhattacharya, R. Hartono and C.-J. R. Shi, "IPRAIL—

intellectual property reuse-based analog IC layout automation," Integration,

the VLSI Journal, vol. 36, no. 4, pp. 237–262, 2003.

[23] R. Castro-López, F. V. Fernández, F. Medeiro and A. Rodriguez-Vazquez,

"Generation of Technology-Independent Retargetable Analog Blocks,"

Analog Integrated Circuits and Signal Processing, vol. 33, no. 2, pp. 157–

170, 2002.

[24] Synopsys, "PyCell Studio," [Online]. Available:

https://www.synopsys.com/TOOLS/IMPLEMENTATION/CUSTOMIMPL

EMENTATION/Pages/pycell-studio.aspx. [Accessed July 2016].

https://www.synopsys.com/TOOLS/IMPLEMENTATION/CUSTOMIMPLEMENTATION/Pages/pycell-studio.aspx
https://www.synopsys.com/TOOLS/IMPLEMENTATION/CUSTOMIMPLEMENTATION/Pages/pycell-studio.aspx
Professor Lienig
Schreibmaschinentext
 Please quote as: B. Prautsch, U. Eichler, T. Reich, J. Lienig "Explicit Feature and Edge Insertion for Improved Analog Layout Generators in Advanced Semiconductor Technologies," Proc. of ANALOG 2016, Bremen, pp. 22-27, Sept. 2016.

