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Abstract— Performance of modern multi-chip modules, in-
creasingly implemented as interposer solutions, is limited by
system-level interconnects. We propose an effective method for
optimal wirelength-driven die placement of interposer-based 3D
ICs. Our key ideas are to leverage the constraint-satisfaction prob-
lem (CSP) formalism in combination with a branch-and-bound
(B&B) algorithm, and to develop several novel techniques for
early identification and pruning of unpromising configurations.
Such techniques are crucial for addressing the combinatorial ex-
plosion when solving the NP-hard placement problem. Exper-
iments on ISPD08 (modified) and MCNC benchmarks demon-
strate that our method outperforms prior art: we can optimally
place up to eleven rotatable dies, whereas state-of-the-art tools are
limited to six dies.

I. INTRODUCTION

As transistor scaling reaches the limits of miniaturization and

manufacturability [1], three-dimensional integrated circuits (3D

ICs) offer a promising alternative [2–7]. 3D ICs comprise mul-

tiple dies (or active layers) which are either vertically stacked,

monolithically integrated, or laterally placed on an interposer,

i.e., a substrate with metal layers serving as a system-level inte-

gration platform (Fig. 1). Such interposer-based 3D ICs—also

known as 2.5D ICs—promise higher yield, simplified heteroge-

neous and system-level integration, as well as better heat dissi-

pation compared to stacked or monolithic 3D ICs [3, 4, 6, 8, 9].

Further, they are commercially practicable, as demonstrated by

various interposer-based 3D ICs on the market [10–12]. Design-

ing such novel 3D ICs, however, typically requires some manual

intervention for placement, simulation, verification, etc. [4,8,13].

That is, there is a need for dedicated design automation tools in

order to meet the prospects of 3D integration.

When integrating multiple dies on an interposer, their place-

ment should be optimized to reduce integration overhead and

shorten system-level interconnects [4]. As interposers com-

monly integrate only a few dies (2–10), their optimal arrange-

ment is within reach. Still, prior art is typically content with sub-

optimal solutions, e.g., Ho and Chang [14] as well as Seemuth

et al. [15] leverage simulated annealing. The work of Liu et
al. [16] is based on enumerative search and can, thus, place

dies optimally. Despite the fact that the authors develop various

heuristics for efficient computation, their approach does not

scale beyond six dies in practice. As shown in our investiga-

tion (Section IV), we obtain comparable placement solutions

and do so within 104× shorter runtime in some cases. Closely
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Fig. 1. Structure of interposer-based 3D ICs, also known as 2.5D ICs.

related to optimal die placement, optimal floorplanning has

been addressed by Onodera et al. [17] and by Funke et al. [18].

However, these studies were limited to six modules [17] or the

rotation of modules was neglected [18], thus not guaranteeing

optimal solutions. Overall, for relatively large die counts (�7),

optimal solutions are hard to find but may offer significantly

better placement quality than solutions obtained by heuristics.

This work bridges the gap between optimal and heuristic

placement in terms of performance and solution quality. We

leverage the constraint-satisfaction problem (CSP) formalism

from [19] and the parallel branch-and-bound (B&B) method.

Upon this framework, we develop novel and highly efficient

pruning techniques, where the coverage of the solution space is

carefully relaxed to dramatically improve runtime without any

sensible loss of solution quality. In fact, our pruning techniques

reduce the search time significantly over prior art (Fig. 2) while

still producing optimal placements for all available benchmarks.

We empirically outperform all optimal placement methods in

runtime and all heuristic methods in solution quality. Our tech-

nique can optimally place up to eleven dies while state-of-the-art

tools top off at six dies.

In short, we make the following contributions:

1. We formulate optimal die placement as a constraint-

satisfaction problem (CSP) and develop a parallel B&B

algorithm for an efficient exploration of the combinatorial

solution space.

2. We introduce effective pruning techniques that dramati-

cally, yet accurately, confine the solution space and quickly

rule out unpromising partial configurations. Thus, (i) we

obtain optimal placement solutions in significantly shorter

runtime than prior art, and (ii) we can optimally handle

larger problem instances than prior art.

3. We make our tool publicly available [20], thus we enable

the community to design optimally placed interposer-based

3D ICs.
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(a) Brute Force
~4.4∙10   nodes : ~43 days

(b) Native Branch-and-Bound
263 million nodes: ~10 min

(c) Advanced Branch-and-Bound
350 thousand nodes: ~0.25 sec12

Fig. 2. Configuration spaces traversed by optimization algorithms on a benchmark with six dies. Each subfigure represents a search tree with branches extending

from the root node in the center. Note the reduced search space of our approach due to novel pruning techniques (right).

II. OUR PLACEMENT FRAMEWORK

The main goal of our work is to overcome the limitation

of prior art regarding the number of dies which can be placed

optimally and efficiently. Towards this end, we propose a place-

ment framework which involves two components: a branch-and-

bound (B&B) method with novel pruning techniques, to address

the combinatorial explosion of the problem for larger die counts,

and a constraint-satisfaction problem (CSP) representation, to

efficiently and accurately encode the layout.

We pursue die placement on the interposer with prefabricated

chips, predefined interposer geometry and preset external-pin

positions. Our objective is to find optimized positions and

orientations for all dies while targeting for minimal total wire-

length (TWL), which is calculated as the half-perimeter wire-

length (HPWL). Additionally, valid placements must satisfy

non-overlapping and containment constraints.

A. Layout Representation

We model die placement as CSP according to [19], but we

also capture rotations of dies. While conceptually similar to

horizontal and vertical constraint graphs, the formalism of [19]

operates at two levels of abstraction: (i) conventional CSPs that

represent the placement of a particular die configuration, and

(ii) meta-CSP variables that modify such CSPs. This formalism

helps us define a convenient search tree, supports automated

reasoning about die configurations, and allows us to efficiently

apply branch-and-bound techniques.

To represent a die placement, we distinguish three properties:

A

B C

Orientations:
 A: East
 B: West
 C: North

Topological relations:
 B: Above A
 C: Above A
 C: Right of B

B C

B C

Horizontal constraint graph:

Vertical constraint graph:

A

CSP 
representation

Constraint 
graphs Placement

Fig. 3. An exemplary CSP encoding with the corresponding placement

(CSP–constraint-satisfaction problem).

Orientation for each die can select one of four values: north

(0◦), west (90◦), south (180◦) and east (270◦).

Containment constraints ensure that the dies do not extend

beyond the placement zone on the interposer.

Topological relations represent the relative placement of two

non-overlapping dies d1 and d2. There are four possible cases:

d1 left of d2, d1 right of d2, d1 above d2, and d1 below d2.

For a placement instance with N dies encoded as CSP, non-

overlapping die locations can be found in O(N2) time and space

by constructing the horizontal and vertical constraint graphs,

and tracing their directed paths (Fig. 3).

B. Our Branch-and-Bound Approach

Fundamentally, the B&B approach is a combination of two

mechanisms: traversal of the search tree (branching), and esti-

mation along with pruning of partial configurations (bounding).

During branching, we incrementally construct the placement

according to a given schedule (see Sec. III-A). The following

branching rules are applied (Fig. 4):

• Dies are added one at a time to the search tree.

• For each new die, we first create four nodes with all their

orientations (blue nodes in Fig. 4).

• Then, we construct four topological nodes for each pair

(new die, previously assigned die) of dies. These nodes are

shown in gray in Fig. 4.

Root
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N S E W
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L R A
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Rotation of die 1

Rotation of die 2

Topology 2 to 1

Rotation of die 3

Topology 3 to 1

Topology 3 to 2

Die 1 
added

Die 2 
added

Die 3 
added

W

B

B Defined 
configurations

L R A B

Fig. 4. Branching for the first three dies. Blue nodes indicate die rotations, gray

nodes their topological relations. Defined configurations can be directly

transformed into partial placements.
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Fig. 5. Flowchart for the proposed placement framework.

We traverse the search tree using depth-first search. Before

inserting any new nodes, we sort them according to their TWL

estimation. Thus, we always consider the most promising nodes

first (similarly best-first search).

Along with complete placement solutions (represented by

leaves), the search tree contains many partial configurations that

correspond to incomplete placements (nodes in Fig. 4). The

latter may either be (i) directly converted into actual partial

placements, followed by calculating the HPWL (for configura-

tions where topological relations between all dies are defined),

or (ii) heuristically estimated in terms of the TWL value (for

configurations where some relations are yet undefined).

Bounding evaluates whether a partial configuration is promis-

ing or not. Towards this end, we estimate the lower bound of the

TWL for the partial configuration (see Sec. III-C, D, E) against

the TWL of the currently best known complete solution. In case

the former is larger than the latter, the partial configuration can-

not provide a better solution than the best one found so far and

can be ignored without loss of placement quality. Thus, such

partial configuration is rated as unpromising, the corresponding

branch is pruned, and backtracking occurs.

The interaction between branching and bounding is outlined

in Fig. 5. Initially we determine a high-quality, but suboptimal

placement solution (upper-right corner in Fig. 5). This initial

solution is used as reference for our branch-and-bound flow; it

is essential to speed up the bounding/pruning process without

loss of quality (Sec. III-B). We then initiate a container (stack)

to hold all the nodes to be investigated (recall that each node

represents a partial or complete placement configuration). For

each node we first perform a bounding operation, i.e., we esti-

mate whether it contains a promising configuration and discard

it otherwise. Next, in case the promising node is a leaf, we

accordingly update the best solution found so far. Otherwise,

for regular nodes, we branch the tree and create four new nodes

(recall Fig. 4). Before pushing new nodes into the stack we

check whether they will become unpromising in the future us-

ing our pruning techniques (Sec. III). The above process is

repeated until all nodes are processed. Once the stack is empty,

all promising nodes have been investigated, and the currently

best complete solution represents an optimal placement result.

0.5 0.5

0.50.5

TWL: 2

1.5

0.50.5

TWL: 2.5

Partial configurationComplete solution

Fig. 6. Example of suboptimal placement of partial configurations due to

lower-left-centric packing within whitespace.

C. Implementation of Parallel Branch-and-Bound

We implement our B&B algorithm using the Shared Memory
model. Our implementation includes separated local containers

(stacks) for each thread, and a shared common pool for nodes,

thus leveraging the optimization potential of cache memories.

Initially, several nodes (> number of threads) are generated

by one of the threads within the shared memory. Then, each

thread takes off one node and independently runs the B&B

algorithm using its local container. If a thread has handled the

full solution subset of its current node and the shared pool is

also empty, it passes an “idle” message to all other threads. Any

thread which catches this message swaps its local container with

the shared pool in O(1) time. Then, we repeat the process until

all nodes in the whole search tree are checked.

D. Placement Optimization Within Whitespace

Since our CSP encoding (leveraging constraint graphs) packs

dies towards the lower-left corner of the interposer by default,

we may observe unoptimized placements when whitespace is

available on the interposer. Moreover, as partial configurations

will always contain some whitespace, along with potentially

large displacements from optimal die locations, these configu-

rations may exhibit an overestimated TWL. In turn, this may

lead to pruning the related branches which may have eventually

provided an optimal solution.

Consider Fig. 6 for an example. Here, each die is connected

to a nearby terminal, inducing a TWL of 2 for the complete

solution (Fig. 6[left]). Now, consider a partial configuration

with one die less (Fig. 6[right]), as it occurs earlier during the

B&B search. Due to the lower-left-centric packing, the top-

right die will be moved to the left, thus increasing the TWL to

2.5. This overestimation of the TWL is potentially suggesting

the B&B search to prune this part of the search tree, whereas

the subsequently determined complete solution may be optimal

nevertheless. In other words, such TWL overestimation may

undermine the chances of finding optimal solutions.

To address this problem, accurate and fast techniques for

placement optimization within whitespace are required. Prior

art proposes a min-cost flow problem formulation [21], which

slowed down our algorithms by a factor of 4 when being inte-

grated. Therefore, we propose a fast analytical technique that

moves dies one at a time within the whitespace, to iteratively

find optimal locations. The idea here is to temporarily fix all

dies except the one to be moved, define this die’s placement

zone with respect to the constraints in the CSP, and then derive

an optimal movement. For the latter, we evaluate all the pins of
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Fig. 7. Die ordering according to their impact on TWL.

that die in terms of which can be moved and how far, which shall

remain fixed, and which can be moved within some confined

region, all while targeting for minimal HPWL.

To optimally arrange the placement, we (i) move all dies to-

gether as one “virtual die,” minimizing the terminal connections,

and (ii) perform the technique outlined above for each die, in

multiple iterations, until no further improvement is achieved.

III. ADVANCED BRANCH-AND-BOUND

The maximum number of dies that can be handled by native

B&B algorithms (i.e., without complementary pruning tech-

niques), is limited to six in practice. To overcome the combina-

torial explosion for larger die counts, we propose, implement,

and assess several novel and powerful placement-specific prun-

ing techniques. These techniques allow for early identification

of many unpromising configurations in the search tree, which

would otherwise have to be evaluated in a native approach. In

the following, we describe these techniques in detail.

A. Ordering the Branching Schedule

The order in which dies are added to the search procedure—

also referred to as branching schedule—significantly affect the

B&B search time. The sooner a die which greatly impacts the

TWL is added, the more accurately the partial configurations

can be estimated. In turn, we can detect and prune unpromising

configurations early on. For example, assume that three out of

ten dies contribute to 80% of the TWL; they dominate the overall

placement and should be added first to the B&B search tree.

Any unpromising arrangement of those three dies (inducing

excessive TWL) can then be detected earlier, and the related

branches of the search tree can be pruned.

We propose a greedy, graph-based algorithm to sort dies

according to their impact on the TWL (Fig. 7). Unlike [17, 18],

where dies are only sorted according to their size, we consider

both the size as well as the interconnects of any die. For this,

we construct a complete graph where each die is represented

by a vertex and each edge between two dies (nodes) i, j holds a

weight ci,j = (wi + hi + wj + hj)/2 · ncomm, where wi and

hi are the respective width and height of die i, and ncomm is

the number of nets connecting dies i, j. Then, we iteratively

determine a node with the maximum cut to already sorted nodes.

This heuristic search scheduling cannot undermine optimality;

it only impacts the computational efforts of the search, not the

actual search result.

Die 1
Die 2

Die 1: Left of die 2 
Die 1: North
Die 2: West Approved placement 

zone

(a)

Die

Interposer

(b)

Fig. 8. Estimation of minimal WL (a) between a pair of dies for Forward

Checking and (b) between each die and external interposer pins for Handling of

Terminals.

B. Initial Complete Solution

The sooner we obtain a high-quality, complete placement

solution, the earlier we can prune unpromising partial configu-

rations. For example, assume a partial configuration’s TWL is

estimated as 250mm while the currently best complete solution

exhibits a TWL of 300mm. This partial configuration would

be naturally designated as promising and further considered.

However, assuming we can find a close-to-optimal complete

solution early on, e.g., with a TWL of 200mm, then this partial

configuration becomes unpromising and can be pruned.

As motivated, we seek to find high-quality compete solutions

early on. To do so, we perform our optimization in two B&B

runs. In the first run, we calibrate our B&B algorithm to over-

estimate the lower bounds of partial configurations. Thereby,

many of them are purposely discarded, leaving only a few “dom-

inant” and promising configurations. This allows for speedy

determination of a good (but suboptimal) complete solution. We

empirically observe that such solutions are close to the final op-

timal solution, with TWL deviations typically less than 10%. In

the second run, we use that initial placement as the initially best

solution for our regular B&B algorithm. We apply unscaled and

accurate estimations for the lower bounds during that second

run, thereby granting an optimal placement as a final result.

C. Forward Wirelength Checking

We can check in advance whether any topological constraint

for a pair of dies will render the respective partial configuration

unpromising in the future, even before we allocate and evaluate

it. The idea is to predict the minimal augmentation of the TWL

once we know the relative arrangement of two dies (e.g., die 1

is left of die 2). The minimal augmentation is captured by the

HPWL for the nets connecting exclusively the two dies with

each other, while considering the dies’ optimal “back-to-back”

placement (Fig. 8(a)).

To estimate how any topological relation will enlarge the

TWL, we precalculate the minimal WL across every possible

rotation and topology for each pair of dies. Accordingly, we vary

the topology between the dies (left, right, above, below) and the

rotation of both dies (north, west, south, east), resulting in 43

different variations for each pair. We place every variation as

shown in Fig. 8(a) and minimize the HPWL using our analytical

approach introduced in Sec. II-D. To ensure the minimal WL
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Fig. 9. Bounding of partial configurations using our proposed pruning techniques. The HPWL values are for the exemplary orange path in the search tree; values for

other paths will be different. Besides pruning of unpromising nodes (e.g., the one related to the “Undefined partial configuration” in this example), the remaining

nodes are investigated and branched as long as they are promising, until complete solutions can be derived, as indicated by the “Complete solutions for other paths.”

between two dies, we consider only their common nets; terminal

nets are to be considered separately (see Sec. III-D).

During branching, whenever we seek to assign a new topo-

logical node (gray in Fig. 4), we first check whether this is

promising. We do so by comparing the currently best known

solution against the sum of the current configuration’s TWL esti-

mation and the minimal WL precalculated for this new topology

(as discussed above). In case it is promising, we assign the node

and set its current TWL estimation to the above sum. When the

configuration becomes defined after assignment of this node, we

can further update the TWL estimation with the actual HPWL

value. Unpromising branches are pruned.

D. Handling of Fixed Terminals

During forward checking (FC) above, we already predict the

TWL impact of any topological node (gray in Fig. 4). Now,

we propose a similar technique for rotational nodes (blue in

Fig. 4). Whenever a die is added to the partial placement, it

is likely connected to some terminals besides other dies. To

account for terminals, we align each die individually in all four

possible orientations to its terminals (Fig. 8(b)). Here we apply

the analytical procedure (Sec. II-D) as well. We calculate and

memorize the HPWL values for all respective die orientations.

We utilize these HPWL values analogous to forward checking.

That is, for a rotational node, we sum up its TWL estimation

and the rotation-specific minimal WL towards the respective

terminals. Then, we compare this sum against the currently

best solution’s TWL. A node is allocated only for a promising

configuration, and that node’s estimated WL is set to the above

sum. Unpromising branches are pruned.

E. Estimation of Remaining Distances

At this point, we know the minimal augmentation of the TWL

for each node in the search tree. Now we can use this data to

further estimate, at each level in the tree, how yet unassigned

dies will enlarge the final TWL. We refer to these pending WL

augmentations as remaining distances.

As each level in the search tree specifies either the rotation of

dies or the topological relation between pairs of dies, the idea

is to track the minimal TWL augmentation across all levels in

the tree. To do so, we determine the most promising path in the

tree across the minimal values over all levels. The remaining

distance for a specific level is then simply the sum of minimal

values along that path over all remaining (lower) levels, since

these levels are responsible for yet unplaced dies.

Moreover, we can refine any remaining distances once we

proceed with branching. For example, after assigning a new die

to the search tree, we naturally know the orientation of this new

die as well as the orientations of all previously assigned dies.

Hence, the initial set of variations for forward checking (64) can

be reduced to four on each level, and the remaining distances

for the respective nodes can be recalculated more accurately.

Example of Estimation of Lower Bounds (Sec. III-C, D, E)

An example of the lower-bound estimation of the HPWL for

partial configurations is given in Fig. 9. As always, the FC

values are calculated here only for topological nodes. FC values

represent the minimal wirelength between two dies for their

specific rotations and their topology (recall Sec. III-C). The

terminal handling (TH) values are only relevant for rotational

nodes. TH values provide an estimation for the minimal HPWL

between one die and its terminals (recall Sec. III-D). The re-

maining distances (RD) estimate the HPWL augmentation for

yet unplaced dies for every level in the search tree (Sec. III-E).

The estimation procedure differs for defined and unde-

fined partial configurations (Sec. II-B). For partial configu-

rations, where topological relations between all dies are defined,

we can construct the incomplete placement and calculate its

HPWLdefined. The estimation for this node comprises then

the HPWLdefined and the estimated HPWL augmentation for

yet unplaced dies (i.e., the RD value on the current level). Only

in case the resulting value is smaller than that of the currently

best solution, this partial configuration is considered as promis-

ing, and the related path in the search tree is continued. For

undefined configurations (where we cannot derive a placement),

the estimate for the node is calculated as the sum of: (i) the

HPWL for the last defined configuration; (ii) all FC and TH val-

ues across the related path, from the last defined configuration

to this node; and (iii) the RD value for this node’s level.
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F. Pruning Dominated Configurations

Extending the classical dominance technique for branch-and-

bound algorithms, we seek to rule out configurations which ap-

pear much worse than others at the same level in the search tree.

However, due to the non-linear nature of the HPWL metric (e.g.,

new pins can be inserted inside a net’s bounding box without

increasing the HPWL), partial configurations cannot be com-

pared directly by their HPWL values. Thus, we propose a metric

to select only the partial configurations that are assured to be

unpromising/dominated. Nodes are discarded when they would

increase the TWL by (1/(dies number + 1) × best TWL)
beyond the estimated minimal TWL increase across all other

nodes on the same level. Here, dies number represents the

total count of dies.

According to our experiments, pruning based on this metric

allows to obtain the optimal solution for all considered bench-

marks, along with notably speeding up the search.

G. Handling of Layout Constraints

We have this far identified unpromising partial configura-

tions based on their WL, but they can also be identified based

on geometrical and containment constraints (Section II). For

complete solutions as well as for defined partial configurations,

these constraints can be readily evaluated via their actual place-

ments. However, undefined partial configurations cannot be

transformed into a placement. Thus, we add topological con-

straints to the vertical and/or horizontal constraints graphs repre-

senting those undefined configurations. Then, we apply a topo-

logical sort to the graphs, which provides the minimal bounding

box of all dies considered so far in this partial configuration,

while also satisfying all given topological constraints. Since we

apply such a topological sort for any new node anyway (to check

whether its placement is feasible), these steps do not require any

additional computational resources.

IV. EXPERIMENTAL RESULTS

Our implementation was written in C++11 and compiled with

gcc 4.9.3 (-O3 optimization flag). The runtime was evaluated

on an Intel Xeon E5-2680 Linux workstation with 24 cores

(disabled hyper-threading) running at 2.50 GHz.

We validated our algorithms empirically using three bench-

mark sets (Table I): (i) the interposer-oriented benchmarks

from [16], which are a modified version of the ISPD08 bench-

marks, (ii) the well-known floorplanning benchmarks MCNC,

and (iii) modified MCNC variations. The MCNC benchmarks

are used to compare our algorithms with prior art in optimal

floorplanning [17, 18]. Additionally, we derive MCNC variants

as follows: xerox with reduced die count (6–8 dies); apte, xerox,

and hp with downscaled outlines, where the smaller whites-

pace makes the placement problem more practical. We publicly

provide our tool as executable binary as well as our modified

benchmarks [20].

A. Speed and Scalability of Our Approach

First, we compare two variants of our B&B implementation

(on modified MCNC benchmarks with 6–8 dies, Table II): (i)

TABLE I

BENCHMARK CHARACTERISTICS

Bench Dies Pins Nets Terminals
Interposer

H(μm) W(μm)

t4 s

m
o
d
.

IS
P

D
0
8

4 15,611 1,808 789 12,474 12,474

t4 m 4 91,005 5,326 1,174 25,542 25,707

t4 b 4 223,781 12,265 1,033 27,750 27,850

t6 s 6 20,138 1,720 639 16,324 16,324

t6 m 6 121,935 7,123 1,162 12,485 12,485

t6 b 6 299,228 14,264 1,192 23,250 23,400

t8 s 8 18,689 1,918 882 25,542 25,707

t8 m 8 159,149 8,391 1,391 20,592 20,724

t8 b 8 306,057 12,593 1,049 32,240 32,400

apte

M
C

N
C 9 287 97 73 10,500 10,500

xerox 10 698 203 2 5,831 6,412

hp 11 309 83 45 4,928 4,200

xerox6

m
o
d
.

M
C

N
C

6 259 65 – 4,000 4,000

xerox7 7 329 85 – 4,500 4,500

xerox8 8 382 94 – 5,500 5,500

apte s 9 287 97 73 see Table V

xerox s 10 698 203 2 see Table V

hp s 11 309 83 45 see Table V

TABLE II

COMPARISON OF THE SOLUTION-SPACE SIZE AND RUNTIMES FOR

DIFFERENT SEARCH ALGORITHMS. ALSO REFER TO FIG. 2 FOR XEROX6

Bench
Brute-force Native B&B

Advanced B&B with

our pruning techniques

Nodes
Nodes

(·106)

Time

(s)

Nodes

(·106)

Time

(s)

xerox6 4.398·1012 263.2 585 0.351 0.25

xerox7 7.205·1016 – >24h 18.198 13.1

xerox8 4.722·1021 – >24h 786.425 684

native B&B and (ii) our advanced B&B with novel pruning

techniques. We observe that the maximal number of dies that

can be placed optimally for (i) is limited to six, which is consis-

tent with previous studies [16, 17]. By applying our proposed

techniques (ii), we can overcome this limit and significantly

accelerate the search. Advanced pruning, for example, greatly

reduces the number of nodes to be considered (from 263 mil-

lion) to 350 thousand nodes for six dies. Moreover, recall that

not all of these nodes have to be fully evaluated thanks to our

techniques. The achieved speed-up for this test case is almost

2,000x. In general, whereas native B&B quickly reaches its

limits and computations continue for several days, B&B using

our techniques can solve the problem in a matter of seconds.

Figure 2 visualizes the search trees for a six-die benchmark,

showing the effectiveness of our techniques. We observe that

already for native B&B (Fig. 2(b)) many partial configurations

are discarded, reducing the overall solution space. However,

pruning typically makes a difference only at lower levels in the

tree (when four or five dies have been placed). In contrast, our

novel pruning techniques (Fig. 2(c)) are already effective once

two dies are placed, thereby identifying unpromising partial

configurations early on and accelerating the B&B search.

B. Comparison with Prior Art

Next, we compare our results to those in previous studies:

optimal die placement on the interposer in [16] (Table III) and

optimal floorplanning in [17, 18] (Table IV).
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TABLE III

COMPARISON BETWEEN OUR METHOD AND [16]

Bench

Enumeration from [16]

Bench

Our implementation

Optimal Suboptimal

TWL*

(·106μm)

Time

(s)

TWL*

(·106μm)

Time

(s)

TWL*

(·106μm)

Time

(s)
Speed-up

t4 s 10.43 0.49 10.44 0.72 t4 s* 10.87 0.2 x2.45–3.6

t4 m 36.24 4.59 36.26 8.63 t4 m* 38.14 0.58 x7.9–14.9

t4 b 63.27 17.48 63.27 19.67 t4 b* 58.92 1.16 x15.1–16.9

t6 s 8.84 958 8.84 2.87 t6 s* 9.01 0.45 x6.3–2,129

t6 m 30.51 3,528 30.52 6.88 t6 m* 33.77 8.56 x0.8–412.25

t6 b 55.23 1,607 55.24 17.31 t6 b* 62.71 4.74 x3.65–339

t8 s 26.27** >12h 21.80** 11,289 t8 s* 23.51 3.21 x3,516–104

t8 m 39.05** >12h 33.15** 11,146 t8 m* 36.39 159.1 x70–270

t8 b 69.06** >12h 59.20** 11,351 t8 b* 66.61 20.46 x554.7–103

* The authors of [16] provided only benchmarks with re-generated positions for

all terminals; their reported TWL values for original benchmarks and our TWL

values obtained for re-generated benchmarks are not directly comparable.

** The results for large benchmarks reported for the optimal approach in [16]

are worse than the suboptimal results since the authors interrupt the optimal

search after 12h runtime.

TABLE IV

COMPARISON BETWEEN OUR METHOD AND [17, 18]

Bench

B&B [17],

hierarchical mode*

CSP+B&B [18],

no rotation of dies*

Our

implementation

TWL

(mm)
Time

TWL

(mm)
Time

TWL

(mm)
Time

apte 460 no info 513.06 13s 437.51 14m

xerox 566 38.5h 370.99 48s 365.87** >12h

hp 278 no info 153.33 102s 150.26 61m

* Both studies provide non-optimal results.

** Represents the best result obtained within twelve hours.

We observe that the enumeration-based tool of [16] can opti-

mally place only six dies on the interposer and that the runtimes

for this case are relatively high (15–60 minutes). Placing eight

dies requires more than twelve hours. In contrast, we can find

optimal placements for the six-die benchmarks in a few seconds,

and for benchmarks with eight dies we require less than two

and a half minutes. Liu et al. [16] also report suboptimal results,

which they obtain in much shorter runtime than their optimal

baseline technique. Still, even when comparing to their fast

but suboptimal approach we obtain superior results in shorter

runtime, especially when placing eight dies.

We also examine our solutions for the MCNC benchmarks

with 9–11 dies (apte, xerox, hp), see Table IV and Fig. 10. No

prior art that applies these benchmarks can provide optimal

results: [17] is limited to six dies and leverages hierarchical

placement for more dies, and [18] does not consider die rotations.

These shortcomings are confirmed by our results (Table IV)—

both studies report higher TWLs than ours. Although our tool

runs longer than [18], we enable die rotations and thus ensure

better results with accordingly “exhaustive” optimality.

The xerox benchmark (with 10 dies) is the most challenging

for our approach, in terms of runtime and the number of nodes

evaluated. We failed to cover the entire promising part of the

solution space in twelve hours. Nonetheless and more impor-

tantly, we still obtain a better solution when compared to [18]

within this allocated runtime. Interestingly, another benchmark

with even one more die (hp, 11 dies) enforces much lower com-

TABLE V

RESULTS FOR DOWNSCALED MCNC BENCHMARKS

Bench
Scaled Dimenions

H x W (μm x μm)
Whitespace* (%) TWL (mm) Time

apte s 7630 x 7630 20 377.01 6s

apte s 7400 x 7400 15 373.20 8s

apte s 7000 x 7400 10 366.30 6s

apte s 6400 x 7650 5 375.26 29s

xerox s 5300 x 4530 20 363.99 3.6h

xerox s 4550 x 5003 15 378.76 45m

xerox s 4422 x 4862 10 419.98 34.8m

xerox s 4380 x 4650 5 437.47 19.5m

hp s 3600 x 3070 20 140.02 19s

hp s 3492 x 2975 15 143.42 6s

hp s 3350 x 2930 10 143.77 3s

hp s 3310 x 2800 5 164.01 31m

* For the original benchmarks, whitespace is as follows: 58% for apte, 48% for

xerox, and 57% for hp.

putational efforts. This indicates that there is not necessarily a

direct correlation between benchmark complexity (number and

shape of dies, pins, terminals, etc.) and runtime. We believe that

our efforts depend more on (i) how many solutions are close to

the optimum and (ii) the quality of lower-bound estimations for

partial configurations. The larger the number of near-optimal

solutions, and the lower the estimation for those nodes, the later

they will be pruned—thereby inducing many nodes in the search

tree to be evaluated.

C. Placement Trends for Practical Designs

Due to cost considerations, commercial interposer-based 3D

ICs have typically only little whitespace available [10–12].

Thus, we also consider downscaled, modified versions of the

MCNC benchmarks where the interposer area is reduced to

allow for only up to 20% whitespace.

According to the results in Table V, benchmarks with more

restricted placement areas are notably easier to place. Pruning

due to containment constraints (recall Section III-G) plays a sig-

nificant role here. Empirically, for the downscaled benchmarks

we obtain best solutions within seconds or minutes for apte and

hp benchmarks respectively, while xerox takes up to three and a

half hours. This also reaffirms the benchmark-specific efforts

observed in our prior experiments.

Another trend we observe is that the TWL increases after a

certain point, which is due to the limited flexibility when placing

dies onto downscaled interposers. For hp and xerox, the TWL

degradation is already noticeable from 20% whitespace on; for

apte, the threshold is about 10%. An increasing TWL, in turn,

reduces the effectiveness of our WL-centric pruning techniques.

Accordingly, we observe longer runtimes in some cases, e.g.,

at 5% whitespace for hp. Besides, we note that the aspect ratio

affects the TWL significantly for downscaled interposers. For

example, none of the designs could be placed when the original

aspect ratio (AR) was applied and only 5% whitespace was

provided. For 10% whitespace along with the original AR, apte
and hp have been placed successfully, but with notable TWL

overhead.
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Fig. 10. Obtained placement for the original MCNC benchmarks: (a) apte, (b) xerox, and (c) hp. Yellow fly lines represent nets.

V. SUMMARY

In this paper we tackled wirelength-driven and optimal die

placement on interposers. Our method is based on several novel

techniques that address the combinatorial explosion of the place-

ment problem. Initially, we extended the meta-CSP approach

from [19] to support die rotations. We applied this extension to

mathematically represent placements and to construct the solu-

tion space. Further, we developed a parallel B&B algorithm to

explore this solution space, and we enriched that algorithm with

wirelength-centric pruning techniques to rule out unpromising

configurations early on. These techniques include: a greedy,

graph-based ordering of the search tree; wirelength-based for-

ward checking before node allocation; estimation of minimal

WL augmentations induced by temporarily yet unplaced dies; a

fast (yet high-quality) determination of initial placement solu-

tions; an extension of the B&B dominance concept; and early

checking of containment constraints whether placements will

eventually fit onto the interposer.

We have successfully validated our method using the ISPD08

and MCNC benchmarks. The results show a significant advance-

ment over prior art: whereas previous works can determine opti-

mal placement only for up to six dies of those benchmarks, we

were able to optimally place up to eleven dies. Moreover, we

outperformed all heuristic methods in solution quality.

For future work, we seek to address the trade-offs for TWL,

whitespace quota and aspect ratio of the interposer. There are

other interesting aspects worth investigating, such as optimal

die placement on both sides of the interposer.
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