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Abstract—The effort in designing analog/mixed-signal (AMS)
integrated circuits is characterized by the largely manual work
involved in the design of analog cells and their integration into
the overall circuit. This inequality in effort between analog and
digital cells increases with the use of modern, more complex
technology nodes. To mitigate this problem, this paper presents
four methods to improve existing mixed-signal design flows:
(1) automatic schematic generation from a system-level model,
(2) flexible automatic analog layout generation, (3) constraint
propagation and budget calculation for dependency resolution,
and (4) verification of nonfunctional effects. The implementation
of these steps results in a novel AMS design flow with a
significantly higher degree of automation.

I. INTRODUCTION

Mixed-signal designs are the point of contact between
the digital and analog world. Accordingly, they appear in
the majority of todays microelectronic systems for sensing
applications and mobile communication devices. However,
because of miniaturization and migration to new technology
nodes, complexity and cost of nanometer mixed-signal designs
is increasing. To mitigate these problems, an integrated AMS
design flow, which addresses digital as well as analog design
with a high degree of automation, is required.

A. Challenges

As opposed to digital design, its analog counterpart is domi-
nated by manual design work. Beyond that, while digital parts
highly benefit from small technology nodes in terms of power,
performance, and area, analog circuits suffer from increasing
process variations going along with small technologies. These
discrepancies complicate the integration of digital and analog
design steps in advanced technologies.

B. Session Outline

In this paper, we propose a new AMS design flow. By
combining different state of the art solutions for individual
design steps to a consistent flow, we leverage their benefits
and effectively mitigate the described problems in the field
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Fig. 1. Combined overview of our contributions presented in Sections II-V.

of AMS design. The foundation of our flow is the system-
level description in SystemVerilog, from which we derive
an architectural design hierarchy and identify general circuit
classes, e.g, amplifiers or filters. To close the gap between
this abstract hierarchical description and the actual layout,
we collect constraints and propagate them throughout the
design hierarchy. Simultaneous budget calculation facilitates
the use of constraints in design decisions. Schematic and layout
generation procedures will later consider these constraints to
create results that comply with global requirements. Based on
the identified circuit classes and propagated constraints, the
automated generation of schematics and layouts is initiated. To
ensure correct operation of the circuit even in case of advanced
technologies, we propose a verification methodology, which
integrates nonfunctional effects. Fig. 1 shows an overview of
the contributions of this paper and their relationships.
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II. SCHEMATIC GENERATION FRAMEWORK IN A
MIXED-SIGNAL TOP-DOWN DESIGN FLOW

This Section II presents an entry point for the mixed-signal
top-down design flow which focuses on the framework for
schematic generation from the system-level model.

The structural hierarchy and schematics for the full-custom
part are generated from the system-level SystemVerilog real
number model (RNM). Furthermore, the developed method
offers a framework which automatically detects general models
in the leaf cells and runs corresponding dimensioning scripts,
which can range from simple scripts to abstract approaches.

The flow was used with great success in eliminating structural
inconsistencies, related errors and avoiding additional rework.
Additionally, it provides high automation, thereby reducing
design time.

A. Concept

A digital-on-top top-down flow is chosen to start imple-
menting large mixed-signal designs. The system-level design
is implemented in SystemVerilog where structural descriptions
and functional blocks are strictly separated. As a result,
there are three different kinds of descriptions. First, there
is the structural Verilog description which solely describes
the structure of either digital or analog blocks. The other two
descriptions are for leaf cells. For the digital part the leaf blocks
are implemented in synthesisable Verilog. For analog blocks
the leaf cells are modeled directly with RNM SystemVerilog
or with generic RN models.

The presented tool framework uses the structural description
and the leaf cells with generic RN models to automatically
generate and build the needed Cadence Virtuoso libraries,
schematic structures, black box schematic templates, sized
schematics, and symbols.

The framework is implemented with Python 3 and uses
Cadence Genus for structure elaboration. A TCP/IP socket-
based communication to Cadence Virtuoso is implemented to
control cell and schematic generation.

The main parts of a phase-locked loop (PLL) subsystem
hierarchy in a multi-gigabit design in 28 nm is shown in Fig. 2.
The different views in the system-level description are marked
in the figure.

B. Implementation

The main flow of the schematic generation tool (SGT) is
shown in Fig. 3. In the first step, a YAML configuration
for the tool is parsed to setup where library generation is
required and if building blocks exist and need to be kept
untouched. Additionally, the tool is given the file list of the
system level description and the cell from where to generate the
schematics. In the PLL example the cell from which the full-
custom generation starts would be PLL CORE which contains
all full-custom blocks. The complete toplevel file list is used
to evaluate the subsystem with the system-level context and
parameters.

The file list is then read, parsed and evaluated. At this point
leaf cells are treated as black oxes. Only a structural elaboration

Fig. 2. Simplified phase-locked loop (PLL) design hierarchy and description
types.

is needed. The parsed and evaluated structure is represented
and accessible via the resulting abstract syntax tree (AST).

For each leaf cell, the corresponding RNM description
and parameter configuration is identified and passed to the
schematic and schematic template creation method.

As a first step in the generation process the leaf cells are
parsed and parameters and connection are resolved. Then it is
checked whether a generic model exists. A generic model is a
RNM description from a model library which is often used in
the design. It is not included in the physical design hierarchy.
An example is the general model of a capacity bit that is used
for each different capacity bit leaf cell (Fine, ACQ and PVT
bit) in the DCO.

If no generic RN model exists, as for example for the
DCO Core, a symbol view and a schematic template for
Virtuoso is generated. A schematic template is a black box
schematic cellview with the corresponding pins from the leaf
cell and additional information gathered from special comments
and parameters in the RNM description.

If a generic RN model is found a physical description script is
executed. This physical description script contains the relations
between the high level parameters in the RNM descriptions.

In case of the capacitor bit the high level parameters are the
off capacitance and switch capacitance from which the device
primitive parameters (i.e. width, length, layers) are calculated.
To achieve this, there is a module implemented to simply
access device tables for a table based sizing approach, for
example the gm/id method [1] often used to size transistor
topologies in nanometer designs. These calculated primitives
are forwarded to an architecture script. Depending on high
level parameters different architecture scripts and respectively
schematic topologies can be chosen. At the moment an
expert based approach were the physical description and
architecture script are written by the designer, is chosen. This
can be interchanged to other optimization strategies and script
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Fig. 3. Simplified schematic generation program flow.

languages. With this a sized schematic is generated.
In the following loop the rest of the hierarchy is generated

from the deepest sub hierarchy in the hierarchy tree to the
selected root cell. For each of the elements a schematic
containing the created leaf cells and already created subsystems
and corresponding symbol views are generated.

Furthermore, the framework does not only offer the
schematic generation tool but also a Python package toolbox
to simplify many tasks:
• Simple circuit sizing for table based sizing approaches
• An abstract interface for creation and manipulation of

Virtuoso cellviews
• .f file parser and Verilog preprocessor
• Methods to work on the AST of the parsed design
• An object structure representing the created design

C. Comparision and Results

There are other tools for top down or schematic generation.
Two prominent examples will be shortly described.

One example for a schematic/layout generation framework
is the Berkley Analog Generator (BAG) [2]. The big difference
between our tool and BAG is that it has no inherent connection
to a system-level description and it does not solve the
consistency problem between system-level and implementation.

The Cadence tool ”Verilog In” which exist within the
Virtuoso environment [3] is able to convert Verilog descriptions
to Virtuoso cellviews. This tool was used in early design stages
of this framework but it was too limited in its functionality
to further base the framework on it. ”Verilog In” does not
support parameterized generate expressions and the possibility
to further extend it. The possibility to extend it for the schematic
generation on a leaf cell level, was not given.

Our SGT framework was used to implement a multi-gigabit
transceiver in 28nm [4]. With this design several advantages
could be observed. On the one hand several error sources could
be eliminated by creating a consistent system level structure
and implementation. Furthermore there is a significant speed up
in the design flow since the structure is automatically generated.
Another side effect of the structural consistency between the
different design views was the possibility to back annotate
block level SPICE simulation into the system level models.
This enabled accurate system level simulations which could
not been done in SPICE because of the runtime. One example
for an accurate system level simulation was the PLL phase
noise and its performance impact on the bit error rate.

Since then, the framework has been further developed to
the schematic sizing functionality described in this Section.
Parameterizable automatically sized schematics from leaf cells
will result in a higher reusablility, more automation and less
error sources.

Future work will include working upon the resulting object
structure of the design and implementing more parameterizable
leaf cells. Furthermore the framework will be improved in
terms of logging and usability functions in the framework
package.

III. CONSTRAINT-DRIVEN CROSS-HIERARCHICAL DESIGN

The complexity of today’s microelectronic systems such
as SoCs requires the overall design task to be divided into
several less complex subtasks or modules. Typically, this results
in a hierarchical system structure with different design teams
working on these modules using different sets of tools. However,
complex global dependencies, e.g. constraints on the layout
position of elements, make it difficult to design the modules
separately, because design decisions in one module may
influence and ultimately violate constraints in other modules
[5]. The cause of this problem is that dependencies are often
not recognizable for the designers.

To cope with these issues, this Section III proposes a
methodology to make constraints visible and verifiable in
all relevant modules throughout the hierarchy. Starting with
the constraints from the system specification, we propagate
these and the constraints that designers add later during the
design process within the design hierarchy. At the end of this
process, we know the set of relevant constraints including, e.g.,
geometrical dimensions and pin positions, for every module.
If the final layout fulfills all these constraints, the correct
operation of the overall system according to the specification
can be guaranteed.

A. Constraint Definition

Each AMS circuit contains many different design elements,
e.g., cells, instances, nets, terminals, layout shapes, etc. These
design elements have a variety of properties that can be changed
during design. Examples of these design parameters are the
power consumption of a cell and the layout position of an
instance.
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Constraints are requirements for the values of these design
parameters, e.g., an upper limit for the power consumption of a
cell or the horizontal alignment of two instances in the layout.
All constraints must be met before tape-out for the circuit to
meet the specification.

When defining a new constraint, the designer first chooses
the cell to which the constraint applies, then selects target
design elements in that cell, and formulates the requirement
for associated design parameters. The cell to which a constraint
belongs is called the context cell of the constraint. The
constraint must be fulfilled for the context cell itself and for
all its instances.

The value of a design parameter usually varies for each
occurrence of the context cell in the design and depends on the
current design state. Therefore, we model design parameters as
functions ψ that associate a design state, an occurrence of the
context cell and a tuple of target design elements to a value,
e.g. a number or a physical quantity.

Based on these observations, we model the meaning of a
constraint using a constraint function φ that is a mathematical
expression of design parameters and constraint parameters.
This expression calculates a Boolean value (true/false) that
represents the state of the constraint (fulfilled or violated). To
determine this value, the function requires information about
the design state, an occurrence of the context cell, a tuple of
target design elements as well as a tuple of constraint parameter
values. The first three arguments are used to calculate the values
of design parameters.

Consequently, when creating a concrete constraint, the
designer chooses a context cell, selects or defines the constraint
function, selects target design elements, and sets constraint
parameter values. Therefore, a constraint is ultimately a tuple
of these four parts.

B. Constraint Types
The concept of constraint functions allows the creation of an

infinite number of different constraints. Reasons are the vast
number of possible design parameters and the infinite number
of possible structures of the constraint function. To make this
variety manageable, their classification into different types is
necessary. These types allow you to quickly grasp the meaning
of a constraint by only looking at its type and target design
elements without having to understand its constraint function.
In addition, they simplify constraint management in EDA tools.

We use the mathematical structure of the constraint function
to define constraint types. An example is the constraint function

ϕ :
(
m1,m2

) 7→ distance
(
POSITION(m1), POSITION(m2)

)
>

s · (w1 · PC(m1) + w2 · PC(m2)
)
, (1)

that defines a minimum distance of two instances depending
on their respective power consumption (PC). The variables w1,
w2 and s are constraint parameters. The mathematical structure
of this function can be represented by an expression tree as
shown in Fig. 4.

Constraints of the same type have similar expression trees.
Therefore, we define constraint types as annotated expression

TABLE I
PROPAGATION TYPES FOR DESIGN PARAMETERS

Propagation Type Example Design Parameters

Based on Instantiation
Top-Down Area, Power Consumption
Bottom-Up Position/Orientation in the Top Cell

Based on Connectivity
Based on Logical Connectivity Load Capacity, ESD Protection
Based on Physical Connectivity Parasitic Resistances &

Capacitances

Based on Spatial Adjacency Overlapping Instances,
Metal Density

trees, called pattern trees. Vertices are annotated with quan-
tifiers that specify how often the corresponding subtree may
occur. Comparable to a regular expression, the pattern tree
of a constraint type describes a possibly infinite number of
expression trees and thus constraint functions of this type.

C. Constraint Propagation

For a constraint to be considered in design decisions, it has
to be visible and verifiable in all relevant cells, i.e., in all cells
where its state can be influenced. The process of constraint
propagation determines this set of relevant cells [6].

Which cells are relevant for a constraint depends on the
design parameters and mathematical structure of the constraint
function, its target design elements, and its context cell.
However, the algorithm to search for these cells only depends
on the design parameters. In this regard, design parameters
can be divided into small number of categories. Once the
propagation category of a design parameter is known, its
relevant cells can be determined according to a fixed set of
rules.

1) Propagation Types: We identified five fundamental types
of propagation. The assignment of a design parameter (DP) to a
propagation type depends on how relevant cells are determined:
• Top-down propagation: DP depends on all cells that are

further down in the design hierarchy,
• Bottom-up propagation: DP depends on all cells that are

further up in the design hierarchy,
• Propagation based on logical connectivity: DP depends

on properties of electrically connected instances,
• Propagation based on physical connectivity: DP depends

on the physical implementation of a net, and
• Propagation based on spatial adjacency: DP depends on

the layout in a specific region.
Tab. I lists example design parameters for all propagation

types. For a single design parameter, propagation results in a
propagation tree that contains a node for each relevant cell
while edges represent the spreading of information from one
cell to another.

2) Propagation Algorithm: Based on the propagation types
of the individual design parameters, the propagation of a
constraint determines the relevant cells for the complete con-
straint. For each global instance (occurrence) of the constraint
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Fig. 4. Expression tree of (1) with current values of design parameters after
bottom-up constraint verification.

context cell in the design, there is an individual set of relevant
cells. Therefore, for a specific global instance, propagation
proceeds to process all design parameters and operations in the
expression tree of the constraint in reverse topological ordering.
For each design parameter, propagation is performed according
to the corresponding type and (new) propagated constraints
are created in all relevant cells.

Afterwards, the current value of the design parameter or
operation is calculated and passed upwards in the tree. If the
current value cannot be calculated, e.g., because of missing
information in early stages of the design, the parameter can be
modeled as a random variable based on design experience [7].

After propagation of all constraints, they are visible in all
relevant cells and can be considered in design decisions in
these cells.

D. Constraint Verification and Budget Calculation

Constraint verification requires the calculation or estimation
of all relevant design parameters values. Since we have modeled
design parameters as functions ψ, we can now evaluate these
functions to calculate their value for the current design state. As
stated above, yet unknown design parameters can be estimated
using probability distributions.

At this point, we have all the necessary information to
verify constraints by calculating their state. For this purpose,
we evaluate constraint functions ϕ for the current values of
the design parameters. The value of ϕ is either true or false,
depending on the constraint’s state. Constraint verification can
be visualized using the expression tree of ϕ. As an example,
Fig. 4 shows the expression tree for the constraint in (1). The
current design parameter values flow upwards through the tree
following the red arrows. The value calculated for the root
vertex represents the constraint state.

Next, we determine the budgets of all relevant design
parameters. This budget is the set of permissible values
for one design parameter assuming that the values of all
other parameters are unchanged. Therefore, we calculate these
budgets by solving the constraint function ϕ for a single design
parameter. Since constraints often use inequalities, budgets are

>250 µm <500 µm
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Consumption

m2
instance

Budget: 250 µm

Fig. 5. Top-down calculation of design parameter budgets.

also expressed as inequalities. For example, Fig. 5 shows the
resulting budgets for individual design parameters.

Finally, calculated budgets are allocated to the individual
propagated constraints according to the propagation trees of
design parameters. As a result, propagated constraints not only
signal an influence on constraints in other cells, but also define
concrete requirements (budgets) for local design parameters.

E. Discussion

As part of the implementation of our methodology, we
developed an adaptive data model for efficient constraint
management and propagation [8]. It is built on top of Neo4j,
an open source property graph database. We integrated both the
graph database with the new data model and our methodology
into Cadence DF II. The implementation supports the definition
of new constraints, their propagation, and the visualization of
propagation trees.

The presented methodology supports the propagation of
arbitrarily complex constraints through the design hierarchy.
It is complemented by methods for constraint verification
and budget calculation. Not only do designers recognize the
existence of dependencies between modules, but they can also
actively take them into account when making decisions.

IV. FLEXIBLE GENERATION OF
ANALOG INTEGRATED LAYOUTS USING A

NOVEL FLOORPLANNING-DRIVEN P&R APPROACH

A fault-free and verified layout is the final result of the analog
design flow. One approach particularly aiding layout design is
generator-based automation [9]–[11]. Generators create layouts
and other views fast from a single-source description (generator
code). They work in a parameterizable and structurally pre-
defined bottom-up way. However, limited structural flexibility
and limited access to formalized requirements such as con-
straints (see Section III) are so far disadvantages of generators.

This Section IV discusses a new generator concept that
allows a mixture of both bottom-up layout description and
abstract top-down layout description. Both constructive and
iterative algorithms that use formal constraints as input aid
the bottom-up and top-down styles, respectively. This way,
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Designer‘s 
Intent

Designer‘s 
Intent

Procedural Generator Template-driven Generator

Accessible 
Generator Code

Layout Layout

Constraints

Procedural
Generator Code Algorithms

Fig. 6. Comparison between procedural generators without direct code
accessibility by algorithms (left) and template-driven generators which can be
accessed and adapted by algorithms (right).

we overcome limits of procedural generators and generation
gets standardized in a template-based way. The new approach
bridges the gap between procedural bottom-up generators and
optimization-based top-down approaches being a step towards
a continuous analog design automation flow.

A. Procedural Generators vs. Template-driven Generators

Former entirely procedural generators have the drawback that
the flow from the programmer’s intent towards the realization
is too implicit [5]. I.e. the idea which is to be implemented
as generator code is first available as thoughts in the mind
of the programmer. Second, these thoughts are transferred
into procedural generator source code. Third, the code is run
which results in the actual design data. Only after the code
was run, the generator source code can be verified indirectly
via DRC and LVS checks executed on the generated design
data. This approach is both time-consuming and prone to errors
as logical faults of the generator description itself cannot be
discovered. Therefore, time-consuming and incomplete iteration
of generation and DRC/LVS checking must be applied.

Recently, new template-driven generator approaches were
presented [12], [13] which implement the template approach
[14]–[16] into procedural generators. The basic idea is to
overcome error-prone procedural descriptions which do not
allow direct algorithmic access to the generator code. As the
template-driven generators are programmed by well-defined
constructive commands, these commands adapt a data structure
which itself is accessible by algorithms. Thus, algorithmic
access for both data extraction and data adaptation becomes
possible even for generator code. The basic differences between
procedural and template-driven generators are shown in Fig. 6.

B. Template-driven Approach for Placement and Routing

More specifically, we propose a template-driven generator
implementation approach which organizes floorplannning,
placement, and routing in a single and hierarchical abstract
representation. This representation takes advantage of the
composite design pattern which allows both edits and data
aggregation on different hierarchical levels at any time. Com-
pared to procedural generators, the order of the generator code

rt3

rt0

rt2

cc2
cc_top

cc0 cc1rt0 rt1 rt2

A0 B1 B2 A3 B0 A1 A2 B3

rt3 rt4

rt4 (detail)

cc0

cc1

A0

A1 A2

A3B1 B2

B3B0

rt1 rt4

cc2

cc_top

Fig. 7. Hierarchical composite structure of the layout representation. Left,
the coarse floorplan is given which represents the global view (Ax and Bx are
instances, rtx are routing channels, and ccx are helper compositions). In the
middle, the related graph representation is shown and right, an exemplified
partitioning of routing channel rt4 into multiple bins is depicted. Both dashed
green and dotted blue lines represent routing on either representation.

is, thus, no more relevant and therefore dependencies in layout
generation can be solved by algorithms (see [13]). Additionally,
both high-level and low-level requirements can be described on
this single layout object which propagates relevant information
such as constraints [6] across the hierarchy. The partitioning
approach of this layout representation as well as the related
graph are depicted in Fig. 7.

In Fig. 8, the abstract layout decomposition of two instances
and their local routing scheme are depicted. The two instances
on top are connected by the horizontal routing channel at
the bottom. The instances depicted by the gray areas are
surrounded by additional routing channels. Both instances and
routing channel areas are partitioned into routing bins which
can be tagged with properties each. An instance including
the surrounding local routing channels corresponds to a leaf
node in the graph of Fig. 7. The horizontal routing channel
is represented by another internal node of the graph. The
green channels illustrate feasible wiring ways (provided by the
device definition) which are automatically conform with the
design rules. Depending on additional parameters like symmetry
requirements or wire parasitics, the router will search the best
routing solution. This routing solution will be influenced by
the instance properties (e.g. available wire channels), but also
by properties of the horizontal routing channel. For example,
the used metal layer in the horizontal channel can influence
the routing around the instances (path, metal layer, vias) and
vice versa. The final routing is not hard coded in the generator
anymore, instead it is controlled by properties of the graph
nodes. Using this abstract layout representation, the actual
layout generation is executed subsequently.

Based on this concept, an investigation was carried out in
[17]. There, an abstract routing API was developed in order to
represent routing based on a given placement in an abstract
way. An example of this approach is given in Fig. 9 in which an
automatically generated differential pair layout is depicted. The
major advancement of this approach over former generators is
that the abstract API is used according to the template-driven
approach mentioned above. The layout, thus, is pre-compiled
on an abstract level including automatic adaptation of PDK-
dependent dimensions and spacings prior to generation. This
first step both optimizes and checks the layout. Only afterwards,
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I1 I2

Fig. 8. Example of the partitioning of the abstract layout representation using
a slicing approach. In grey, two instances I1 and I2 with surrounding bins
are represented with two pins each. The green tracks are preserved for local
device routing. Both red and blue lines are actual abstract wires on different
layers and blue rectangles represent vias. The partitioning into bins depends
on amounts of wires, pin and instance positions as well as sizes.

Fig. 9. Stick diagram representing floorplan, placement, and routing (top) and
generated layout (bottom) [17].

the layout is generated based on the preliminary geometric
considerations.

C. Outlook

For future layout generators, this approach will allow to
include abstract constraints into the layout generation procedure
and, therefore, the generated results will improve significantly.
Both explicitly programmed layout structures and explicit
constraints which are generated during other design steps will
be joined in order to improve future analog layout automation
as part of the entire analog/mixed-signal design flow.

V. INVASIVE ANALYSIS FRAMEWORK FOR
NONFUNCTIONAL EFFECT VERIFICATION

Modern methods for system analysis and verification demand
for either refining a given model or evaluating the impact of
certain changes as for instance in design space exploration. In
analog/mixed-signal systems, the hand-made models mostly
show the purely functional behavior [18]. For including

Fig. 10. Example for the refinement process: A system is refined by inserting
new components (refinement functions) at the interconnections. These can be
applied either a) along a branch connection or b) on a node.

nonfunctional effects such as sensitivity for power supply non-
idealities, the models have to be refined. In this Section V,
we present a framework for processing Verilog-AMS models.
This framework can be used to structurally modify a given
system and interface to an industrial simulation environment
for paving the way to novel analysis and refinement methods.

A. Concept

Invasive analysis refers to methods that extract information
from a system by applying changes within the system. For
example, the relevance of noise-coupling to certain nodes can
only be observed by applying a noise source within the model
to be simulated. Hence, conducting invasive analysis relies on
refining a given model of a system in a certain way. Since
most systems are a composition of several components, it is
reasonable to apply these refinements to the interconnections
and reference them to a target module. Consider the example
shown in Fig. 10. In this illustration, an example system is
refined by inserting new components (refinement functions).
We call the insertion points due to their conceptual similarity
with circuit engineering nodes and branches. Each refinement
function may have several node and branch connections. For
instance, a coupling network has to be connected to several
branches while a very simple crosstalk model could be realized
by a capacitance connected between two nodes. Consequently,
our framework has to support modification of internal model
connections of both types and is in addition able to insert
instances of refinement functions. For further automation,
functionalities that allow iterations over the model structure
to perform for instance operations for all signals in a system
have to be included.

B. Realization

For realizing this kind of model-rewriting framework, we
created the structure shown in Fig. 12. The model parsing and
rewriting infrastructure supports the processing of Verilog-AMS
[18] and SystemC-AMS [19] models. The parser examines
the structure of the given model and generates a meta-model
datastructure that may be used for iterations or additional
modifications. It is afterwards fed into the Rewriter together
with the generated code of the refinement function. The code
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A. Krinke, T. Horst, G. Gläser, M. Grabmann, T. Markus, B. Prautsch, U. Hatnik, J. Lienig, “From Constraints to Tape-Out:
Towards a Continuous AMS Design Flow,” in Proc. 22nd International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), 2019, pp. 1–10, DOI: 10.1109/DDECS.2019.8724669

https://doi.org/10.1109/DDECS.2019.8724669


Fig. 11. Text templating provides our framework with a highly flexible
multi-language code generator.

Fig. 12. The internal structure of our model Invasive Analysis Framework
providing model parsing and rewriting facilities combined with simulator
control.

generation scheme relies on text templating as shown in Fig. 11,
which provides a highly flexible code generator for different
modelling languages. Out of this data, the rewriter block re-
assembles the model with the demanded modifications or
refinements.

The resulting code can be directly passed to a simulator
frontend that provides access to an industrial simulator such as
for instance the Cadence AMS Designer [20]. By parsing the
command-line output of the simulator, performance parameters
of the conducted simulation are extracted.

Since this framework is implemented as a Python package,
algorithms may be implemented on top of the shown function-
ality. Examples of these algorithms are shown in the following
section.

C. Application

The invasive analysis algorithms shown in this section
follow the implementation pattern shown in Fig. 13. Following,
examples for analysis-specific algorithms will be sketched.

1) Parasitic Impact Rating: For the design of AMS circuitry,
the parasitic couplings introduced in the layout phase are a ma-
jor issue. Even for carefully verified circuits, the performance
may be severely degraded by these elements. The commercially
available frameworks provide the designer with an augmented
netlist of the circuit including additional elements for modelling
these couplings. Still, this netlist does not provide the designer

Fig. 13. Implementation pattern for the presented invasive analysis algorithms
(Units realized by our framework shown in green).

Fig. 14. The acceptance and failure regions of pairs of parasitics exhibit a
certain shape in presence of symmetry constraints.

with information about the criticality of these elements – and
therefore no starting point for optimization.

The proposed invasive analysis tries to answer this question:
By successively removing subsets of these parasitic elements
and re-simulating the circuit, the impact of individual parasitics
can be extracted. Hence, the user algorithm selects the parasitic
elements to be removed and creates a rating due to their impact
on the simulated circuit performance. This rating provides hints
for sensitive (or aggressive) signals in the circuit. It enables
the designer to systematically enhance the circuit’s robustness
to the relevant couplings. In this way, the lengthy and costly
process of post-layout circuit debugging can be significantly
improved. It has been shown that this method is even applicable
to EMI (electromagnetic interference) issues in industrial-size
circuits [21].

2) Parasitic Symmetry Analysis: In analog layout, symmetry
is a fundamental concept to ensure matching, i.e. the reduction
of variations in size-relations. Traditionally, constraints for the
symmetry of functional elements can be defined in modern
design frameworks. For parasitic elements, the treatment of
symmetry relations has not been in focus of research so far.
Still, the knowledge about these relations may ease the overall
layout generation process. Invasive analysis provides a novel
approach here [22]. Each parasitic symmetry, as shown in
Fig. 14, exhibits a certain (symmetrical) shape in the parameter
space. In the context of our framework, the user algorithm
inserts hypothetical parasitic elements into the netlist. By
simulation, the parallelogram shape of the region is extracted
using the maximum tolerable parasitic capacitor values. In the
figure, these are given by the intersection of the red/green
transition line with the axis. Following, a single point PTest on
the symmetry axis is evaluated. If the simulation passes, i.e.
the circuit’s performance target is reached, PTest is part of the
acceptance region and therefore, the symmetry constraint is
present.

This method provides the designer with a powerful tool
for extracting layout constraints from a given circuit without
prior knowledge about the final parasitics. It has been proven
that even in rather simple circuits, a high number of these
constraints may be present. Therefore, the pre-knowledge is
of significant value for the layout engineer reducing the effort
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for post-layout fixing. In the future, this algorithm could be of
value for automated layout generation algorithms.

3) Monitor Generation and Insertion: The augmentation of
existing functional models with additional checks is currently
a mostly manual effort. Still, many of these checks could be
generated automatically, for instance if the model is operating
in a valid region [23], if glitches on digital control signals may
distort the operation, or if the model is generating implausible
output values outside of the supply-range. Note that most of
these checks are in principle model agnostic, i.e. they can
be realized in a similar way for different models. Using our
framework methods for code generation, monitor modules
can be conveniently derived. In combination with the model-
rewriting step, an augmented model for system verification
can be generated. For special cases, such as checking if the
model is operating in a valid region, these checks can even be
generated automatically as shown in [23].

This method can be used for instance in maintaining or
enhancing existing model libraries. The code to be maintained
can be reduced to the purely functional behavior while the
checks and additions for nonfunctional properties can be added
automatically.

D. Discussion

The presented Invasive Analysis Framework provides the
functionality to examine the behavior of a system subject to
nonfunctional effects. Methods for extracting properties such
as criticality or symmetry constraints for parasitic elements
can be implemented to ease the design process. From the
modelling perspective, it enables the verification process
by augmenting existing models with additional checks or
properties. In perspective, the methods can be used for new
kinds of sensitivity or stability analysis by insertion of saboteur
modules in the design domain. In the verification domain, the
augmentation of models by additional properties such as for
instance transient power consumption can be targeted.

VI. OUTLOOK

The methods presented here provide various ways to
significantly improve the mixed-signal design flow. Further
automation can only be achieved by combining existing
methods – those presented and those published by other
researchers – to create a novel design flow. This poses a great
challenge on our way to an automated design framework that
reduces risk and improves the quality of analog and mixed-
signal design.
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everything: Automating AMS operating condition check generation on
system-level,” Integration, Jun. 2018.

Please cite as:
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