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Abstract— Layout design of analog integrated circuits suffers 
from a lack of automation due to the multitude of complex design 
constraints. Most of them are specified and considered manually 
by expert designers (expert knowledge). We present a new 
methodology that enables the automatic inclusion of expert 
knowledge in the form of layout constraints. The resulting 
comprehensive constraint-driven design approach allows 
defining and verifying the analog layout constraints by 
transforming them between the different design domains. In 
order to verify our methodology, we present a new constraint-
driven placement optimization engine. It includes a deterministic 
decision maker. The decision maker is used to solve effectively 
the hard instances of the optimization problem that are resulting 
from complex correlations between the constraints. We have 
verified our methodology successfully by applying it to the 
placement of analog circuits in an industrial design environment. 

I. INTRODUCTION  
Contrary to digital layout design, the layout design of analog circuits 
is often a manual and time-consuming task. This is due to the 
various stringent and complex design requirements (constraints) that 
must be considered simultaneously. In analog designs, most of the 
constraints are currently specified and considered manually by 
experts (so-called expert knowledge). These constraints are often 
used implicitly based on the designer’s experience. This prevents the 
effective use of the constraints in design automation.  

Each constraint is assigned a specific constraint type that 
represents a classification property for the same class of constraints. 
For example, the constraint type “IR-drop” is used by n individual 
constraints that define the detailed IR-drop limits between n pin pairs 
of the specific circuit. Constraint types have a clearly defined unit 
that belongs to the physical, electrical, mechanical, mathematical or 
geometrical domain.  

Today’s automatic design approaches require a specific algorithm 
to handle each constraint type. Hence, considering new constraint 
types requires the re-development of the algorithmic approaches. In 
order to avoid this, a new methodology is needed in which new 
constraint types can be defined and considered “on the fly” by 
introducing appropriate transformation rules.  

The physical design process is characterized by layout design 
tools that optimize the layout with regard to the design objectives 
while fulfilling all constraints. State of the art optimization engines 
are based mainly on heuristics which search the solution space of the 
constraints based on trial-and-error methods. However, a trial-and-

error method does not work efficiently if the constraints are 
numerous and correlated as it is often the case in analog layout 
designs. For a successful automatic layout design, the following 
questions should be positively answered:  

• Can the methodology understand and consider automatically all 
required constraints throughout the whole layout design process? 

• Can the methodology automatically find an optimized layout in 
a reasonable time even in the presence of numerous and highly 
correlated constraints? 

In this paper, we provide a placement methodology that addresses 
these questions for the first time.  

A. Related Work 
Several approaches for automatic analog layout design have been 

developed such as [1][2]. One of the first placement and routing 
frameworks is introduced in [3]. It considers symmetry, device 
abutment and merging constraints. In [4], performance-driven layout 
techniques are presented. These approaches are only suitable for 
small circuits such as filters and operational amplifiers. The approach 
introduced in [5] directly takes into account the presence of an 
arbitrary number of symmetry groups during the exploration of the 
solution space. In [6], a heuristic to place analog devices taking into 
consideration symmetry and other placement constraints is described. 
However, a heuristic does not always succeed in finding a solution if 
many correlated constraints exist. In [7], a deterministic topological 
approach based on a hierarchically bounded enumeration of basic 
building blocks is published.  

In [8], we presented a new approach for the placement of analog 
circuits. It allows the verification whether a layout solution satisfying 
all constraints exists at all prior to placement optimization. The cost 
function of the algorithm is evaluated based on the objectives as well 
as on the adaptively weighted constraints. The results are proven to 
be better than those of the conventional analog placement 
approaches. In case of numerous and highly correlated constraints, 
however, only few solutions that satisfy all constraints exist. As the 
probability of finding these solutions using a conventional trial-and-
error heuristic is very low, the algorithm is sometimes trapped in 
invalid regions of the solution space. 

B. Our Contribution 
We present a new methodology to solve the above mentioned 

problems. It has been extensively verified in an industrial design 
flow. Firstly, we introduce a new concept of a comprehensive 
constraint-driven layout design approach. The new paradigm allows 
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defining and verifying the analog layout constraints by transforming 
them between the different design domains based on appropriate 
transformation rules. Hence, all transformable constraints can be 
handled with our approach without the need to modify the 
fundamental design algorithm. Secondly, we present a new 
constraint-driven placement optimization engine in order to verify 
our methodology. The engine searches for an optimized placement 
while using a deterministic decision maker. This allows solving 
efficiently the hard instances of the placement optimization problem 
in case of numerous and correlated constraints. Hence, the decision 
maker efficiently prevents the algorithm of being trapped in invalid 
regions of the solution space. 

Our paper is organized as follows. In Section II, we describe the 
fundamental components required in a constraint-driven analog 
layout design flow. We verify this methodology by applying it to the 
placement step as shown in Section III. Section IV discusses the 
experimental results. Finally, concluding remarks are drawn. 

II. COMPONENTS OF THE CONSTRAINT-DRIVEN ANALOG 
LAYOUT DESIGN FLOW  

A design methodology that considers all relevant constraints in a 
consistent and comprehensive manner throughout the whole layout 
design process is denoted as constraint-driven layout design. In the 
following, we provide an overview of its essential components.  

A. Constraint Representation 
Formally, constraints define relations between the set of design 

variables that are related with each other. A relation between 
independent design variables represents a simple constraint. A 
relation between dependent design variables represents a complex 
constraint. In the latter case, the constraints share the same set of 
design parameters and are thus either directly or indirectly correlated. 
All constraints and all related design data must be uniformly defined. 
A constraint, such as a delay time constraint, must be preserved at 
any time during the layout design process in order to guarantee the 
correct processing of constraint information. Our approach uses CLP 
(Constraint Logic Programming [9][10]) in order to uniformly 
represent the constraints. CLP is an extension to logical programming 
languages like PROLOG. The constraints are described as predicates 
within Horn clauses. The following notation shows a simple example 
of a maximum permitted signal delay time constraint (0 ps ≤ dt  ≤ 200 
ps) between two net terminals p1 and p2:  

signalDelay(p1, p2, dt) :- 0 <= dt , dt <= 200ps. 
The uniform representation enforces a common understanding of 

all constraints among all involved design and verification algorithms. 
Hence, it is a primary requirement for the development of multilateral 
layout design and verification algorithms that are able to address the 
current “constraint challenge”. 

B. Constraint Derivation (Assignment) 
Constraint derivation is the process of either generating new 

constraints (e.g., by applying new design rules) or deriving sub-level 
constraints from top-level constraints. The constraint transformation 
presented in Section C is a special case of the constraint derivation. It 
derives low-level constraints (e.g., geometrical constraints) from 
high-level constraints (e.g., electrical constraints) and vice versa. 

C. Constraint Transformation 
Constraints can be transformed from a higher level to a lower 

(physical) level (top-down) and vice versa (bottom-up). The result of 
any transformation must be complete and unambiguous. As an 
example, transforming an electrical wire resistance constraint 
between two net terminals into a one-dimensional geometrical 
maximum distance constraint is shown (using CLP):  

getCoordinate(x1, x2, RQ, DQ) :- x2- x1 = DQ*R/RQ, R<10.   

The CLP clause getCoordinate() defines a transformative relation 
between the electrical parameter wire resistance R and the 
geometrical net terminal coordinates x1 and x2. This clause also holds 
a resistance constraint R<10 (Ohm). It ensures that only variables x1 
or x2 will be returned that fulfill the defined resistance constraint. (It 
is assumed here that square resistance RQ and the lengths of a wire 
square DQ are constants.) Using this approach, it is now possible to 
automatically consider the (transformed) geometrical constraint by a 
placement tool during the optimization process. For the definition of 
complex constraints, x1, x2 and R might also depend on additional 
clauses that may, for example, describe a temperature dependency. 
This simple example demonstrates the flexibility and power of our 
approach. Once a transformation relation between, for example, 
electrical and geometrical constraints can be formulated, all 
transformable electrical constraints can be handled with our approach 
without the need to modify the fundamental placement algorithm.  

D. Constraint Verification 
Constraint verification ensures correct application functionality 

as well as design quality and reliability. During the analog layout 
design, various constraint types must be considered simultaneously. 
Many of them are complex constraints. The fulfillment of these 
constraints cannot be verified with conventional verification 
approaches. This is due to the fact that these approaches require one 
specific verification tool or algorithm for each constraint type.  

Recently, we introduced an approach that allows verifying 
complex linear constraints for the first time [10]. This meta-
verification approach is based on dividing every complex verification 
problem into simpler problems, which in turn can be verified using 
existing verification algorithms and tools. The meta-verification does 
not replace existing verification and simulation tools. It rather offers a 
method to combine the tasks of these tools. 

E. Mutual Constraint Dependencies 
In order to solve mutual constraint dependencies, we 

implemented a linear constraint solver [10]. It is based on the simplex 
algorithm and provides logical conclusions on linear equations and 
inequations. In this work, we use this solver in order to (1) verify if 
either a set of linear and piecewise linear constraints can be met at all 
or a mutual constraint conflict exists, and (2), if possible, to find a 
solution that meets all constraints simultaneously. In this work, we 
show the usefulness of this method in the light of the analog 
placement problem (Section III C).  

III. CONSTRAINT-DRIVEN PLACEMENT ALGORITHM  
We verify our constraint-driven design methodology by applying 

it to the placement of analog circuits. The placement procedure is 
divided into two main steps. First, the analytical method linear 
programming (LP) is used in order to find out whether the placement 
under the given constraints is feasible [8]. If feasible, LP constructs 
an initial placement satisfying all constraints. In the second step, the 
placement is optimized with regard to the objectives. Our 
optimization engine uses two methods simultaneously, a heuristic and 
an analytical method. Both interact and solve efficiently the 
optimization problem as described in Section III B.    

A. Initial Placement Using Linear Programming 
Using linear programming (LP), the layout information and the 

constraints are represented as a linear system of equations. (Please 
refer to [8] for a detailed description.) By using LP for constructing 
the initial placement, we assert if a solution for all constraints exists 
at all. If this is the case, LP constructs an initial placement satisfying 
all constraints. Assuming that each constraint has a range of 
permitted values, the modules are placed so that their constraint 
parameters are as far away as possible from their critical boundary 
values. While assuming a generally linear or convex placement 
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optimization problem, the placement has in this case maximum 
constraint robustness. Here, small perturbations of the placement 
solution will most probably not violate any constraint.  

B. Placement Optimization Engine 
The optimization engine consists of two parts. A heuristic method 

is used effectively in order to optimize the placement by minimizing 
a cost function. It interacts with a deterministic decision maker (DM). 
The DM is called by the heuristic whenever the optimization cannot 
find a solution that satisfies the numerous and correlated constraints 
simultaneously (solution trapping). 

The heuristic starts with the initial placement which has 
maximum constraint robustness but is not yet optimized with regard 
to the design objectives. The cost function is extended with all 
constraints and is evaluated only if the placement perturbation 
satisfies all constraints. In case of correlated constraints, the 
optimization often traps at several stages and finds only solutions that 
do not fulfill all constraints. In order to solve this problem, the 
placement information and the constraints are delivered to the DM in 
order to analytically find a solution that satisfies all constraints.  

In more detail, the optimization engine perturbates the placement 
and verifies the fulfillment of the constraints. For example, it moves a 
selected module mi to a new position. If the perturbation does not 
violate any constraint, then the cost function is evaluated. Otherwise, 
the perturbation is rejected and a counter “count” is increased 
(Algorithm I). Then, a new perturbation is applied on mi and the 
constraints are verified again. In case the number of consequent 
violations count exceeds a temperature dependent number k(T), the 
decision maker is called. The DM analytically finds solutions that 
satisfy the constraints and feeds them back to the heuristic. The 
whole procedure is repeated until a specified stop criterion is reached.    

Algorithm I: Optimization Engine 
1:  Read initial placement constructed using linear programming 
2:  REPEAT 
3:     Select a module mi  for perturbation 
4:     REPEAT 
5:         Apply placement perturbation  
6:         IF no geometrical constraint is violated THEN 
7:             Evaluate the cost function (estimate the gain) 
8:             Accept or reject the perturbation based on the gain 
9:         ELSE  
10:             reject the perturbation 
11:             IF count++ > k(T) THEN 
12:                 Call the decision maker for violating module mi   
13:       IF solutions exist THEN  
14:           Return solutions to SA 
15:           Go to 5 
16:       ELSE i = i + 1; go to 3 
17:   UNTIL number of perturbations exceeds a predefined value 
18:   T = α * T 
19:UNTIL T < Tmin or desired placement quality reached. 

The output of the algorithm is a placement optimized with respect 
to its cost function. To our knowledge, this is the first analog 
placement algorithm having mixed heuristic and deterministic (local 
optimization) elements at the same time. By applying a controlled 
deterministic behavior when needed, it combines the advantages of 
both classes with a relatively small runtime (see Section IV). 

C.   Decision Maker 
The input data to the decision maker (DM) are the current 

position of the circuit modules and the relevant constraints. Its task is 
to find a new position of the circuit module mi that is to be perturbed 
while fulfilling all related constraints. The DM is called by our 
modified SA algorithm when the heuristic procedure fails for k(T) 
number of times to find a valid position for mi that fulfills all 

constraints. The term k(T) is the number of failed attempts. It is 
linearly dependent on the SA cooling temperature T. The DM 
analytically searches for new valid positions for mi that fulfill all 
constraints:  

• If the DM does not find a valid new position for mi, then the 
current position of mi is the only valid one at this point in the 
design process. Consequently, SA keeps mi in its position and 
applies a new placement perturbation on another module. 

• If the DM finds one or more valid positions, then it returns 
them all to the SA algorithm for evaluation. Consequently, the 
SA decides which solution best optimizes the placement.  

The outline of the DM algorithm is given as follows: 

Algorithm II: Decision Maker 
1:   Get module mi and add it to List L 
2:   Get all related constraints cj applied to the module mi 
3:   For each constraint cj 
4:       Get all involved modules mj 
5:       If mj ∉ L 
6:           Add mj to L 
7:   Formulate the problem for mi, cj, and mj ∈ L (see below)  
8:   Solve the linear system of equations 
10: Return the solutions (if they exist) to SA 

Next, we present the problem formulation as used by our 
approach. The objective is to minimize all Pj variables, where Pj is a 
measurement of the fulfillment of the constraints cj, ∀ j ∈ J, where J 
is the number of the shared constraints between mi and mj. The origin 
of mi is defined by the coordinates (xi, yi) of its lower left corner. W 
and H are the maximal allowed width and height of the placement.  

Minimize ;; JjPj ∈∀∑                                          (1) 

;0;0 ≥≥ ii yx                (2) 

);();( iiii mgetHeighthmgetWidthw ==             (3) 

;; HhyWwx iiii ≤+≤+                  (4) 

for each constraint cj, Jj∈∀  
   );( jj cgetModulem =                    (5)  

   );();( jjjj mgetYymgetXx ==                               (6)  

   );();( jjjj mgetHeighthmgetWidthw ==             (7)  

   );(min
2

)()(
jij

jiji
jiji c

hhww
yyxx ≥

−+−
+−+−                  (8) 

   );(max
2

)()(
jij

jiji
jiji c

hhww
yyxx ≤

−+−
+−+−                (9) 

   ;)(
2

)()(
jjij

jiji
jiji Pcopt

hhww
yyxx =−

−+−
+−+−         (10) 

We assume that each constraint is fulfilled in a the range 
[minij(cj), maxij(cj)]. The mean of the boundary values is given by 
opt. The last three equations guarantee that the module mi is placed 
within [minij(cj), maxij(cj)] as near as possible to the position opt. The 
distance is given as center-to-center Manhattan distance for mi and mj. 
The system of equations is solved and the solutions are passed to the 
SA for evaluation according to all of the placement objectives. 

IV. EXPERIMENTAL RESULTS 
We implemented our approach in the Java programming 

language. Several analog circuit test benches from automotive IC 
applications were used to validate our approach. The test benches are 
real-world circuits with known optimized placement results laid out 
manually by experienced analog designers. All experiments were 
done using an AMD PC, running at 1.9 GHz with 512 MB RAM.  
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In order to show the advantages of our methodology, we compare 
it with a conventional SA optimization algorithm and with that in [8]. 
The latter approach is also based on the SA algorithm. However, the 
algorithm is driven not only by the objectives, but also by the 
adaptively weighted constraints. To ensure a fair comparison, we 
used in all approaches the same cooling schedule and inner-loop 
criterion for the SA. Table I lists some of the results. In the second 
column, the correlation degree of the constraints is given. “Medium 
correlation” means that 20-35% of all constraints are correlated to at 
least one other constraint. The third column indicates whether the 
desired quality of a layout is reached. This is the case if the layout 
fulfills all constraints and the increase in the design objectives does 
not exceed 10% compared to the manually placed layout.   

TABLE I.  COMPARISON OF OUR PLACEMENT METHODOLOGY WITH A 
CONVENTIONAL APPROACH (SA) AND WITH THE APPROACH PRESENTED IN [8]. 

Table I shows that a conventional optimization approach solely 
based on SA could not achieve the desired quality for a larger number 
of constraints with medium and high correlation degree. In this case, 
SA spends most of the time performing invalid perturbations that 
fulfill some constraints while violating others at the same time. The 
approach in [8] shows better results than that of the conventional SA 
approach. However, the trial-and-error heuristic fails for complex 
designs with numerous and highly correlated constraints as only few 
neighboring valid solutions exist. We overcome this problem by 
including the decision maker. It finds analytically valid solutions and 
passes them to the SA for evaluation. As a result, the design quality 
was reached for all test benches. 

We also compare our approach with state-of-the-art analog 
placement tools in terms of runtime and area usage. However, this 
comparison is difficult. First, the approaches were tested on different 
computers and platforms. Second, available benchmark circuits 
include only few constraint types such as symmetry. Nevertheless, 
Table II shows the comparison between our methodology and other 
approaches based on two benchmark circuits. The approaches in 
[5][7][11] take only the symmetry constraint into consideration 
during placement. Hence, we also restricted our approach to this 
constraint in order to allow a direct comparison. 

While the results of our new methodology and the state-of-the-art 
placers are comparable, it is important to mention that our goal was 
not to compete with the other approaches solely in terms of the 
runtime and area usage. We rather present a methodology that 
enables a layout designer to define new constraint transformation 
rules whenever needed during the design process. This allows 
including new constraint types without the need to modify the 
fundamental placement algorithm. Furthermore, our methodology can 
automatically consider all constraints during the optimization process 

even if they are highly correlated. All these properties are missing in 
the state-of-the-art analog placement approaches. 

V. CONCLUDING REMARKS 
The automatic inclusion of expert knowledge in the form of 

constraints is one major precondition in order to overcome the analog 
IC design problem with its fundamental lack of automation. We 
present a new constraint-driven design methodology that addresses 
this issue. It includes two modules. The first module is a 
comprehensive constraint system for capturing, transforming, and 
verifying the constraints. This system is accessed by the second 
module consisting of the layout optimization engines such as 
placement algorithms.  

We introduce a hybrid optimization algorithm for the placement 
of analog circuits. It combines the advantages of heuristic and 
analytical approaches. A heuristic optimizes efficiently the placement 
with regard to the objectives. It calls an analytical decision maker in 
order to solve hard instances of the optimization problem resulting 
from multiple and correlated constraints. We have shown that our 
methodology is comparable to the state-of-the-art analog placement 
approaches in terms of area optimization and runtime. However, it is 
superior in terms of the flexible and comprehensive constraint 
consideration.  
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Constraints Desired quality reached? 
Circuit  

# Degree of 
Correlation (%) SA  LP + SA 

[8]  
LP + SA 

+ DM 
cir_x1 14 Low (<20) Y Y Y 
cir x2 18 Med. (20-35) Y Y Y 
cir x4 35 High (>35) N Y Y 
cir x6 54 Med. (20-35) N N Y 
cir x7 48 High (>35) N N Y 

TABLE II.  COMPARING THE AREA USAGE AND TIME BEHAVIOUR OF OUR METHODOLOGY WITH OTHER APPROACHES BASED ON TWO INDUSTIAL 
CIRCUITS. THE CIRCUITS INCLUDE ONLY SYMMETRY CONSTRAINTS. TIME IS MEASURED IN SECONDS. 

Approaches 
Modules   

[5] [7] [11] Our Work 
Circuit  
Name 

# Area (103 µm2) Area (%) Time Area (%) Time Area (%) Time Area (%) Time 
biasynth 2p4g 65 100% (4.7) 114.89 246 104 96 337 104.68 22 108,36 407 

lnamixbias 2p4g 110 100% (46) 109.35 726 107.68 387 105.72 43 109,84 639 
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