
A New Methodology for Constraint-Driven
Layout Design of Analog Circuits

Ammar Nassaj, Jens Lienig
Dresden University of Technology

Institute of Electromechanical and Electronic Design
Dresden, Germany

nassaj@ifte.de, jens@ieee.org

Göran Jerke
Robert Bosch GmbH, AE/EIM

Reutlingen, Germany
goeran.jerke@ieee.org

Abstract— Layout design of analog integrated circuits suffers
from a lack of automation due to the multitude of complex design
constraints. Most of them are specified and considered manually
by expert designers (expert knowledge). We present a new
methodology that enables the automatic inclusion of expert
knowledge in the form of layout constraints. The resulting
comprehensive constraint-driven design approach allows
defining and verifying the analog layout constraints by
transforming them between the different design domains. In
order to verify our methodology, we present a new constraint-
driven placement optimization engine. It includes a deterministic
decision maker. The decision maker is used to solve effectively
the hard instances of the optimization problem that are resulting
from complex correlations between the constraints. We have
verified our methodology successfully by applying it to the
placement of analog circuits in an industrial design environment.

I. INTRODUCTION
Contrary to digital layout design, the layout design of analog circuits
is often a manual and time-consuming task. This is due to the
various stringent and complex design requirements (constraints) that
must be considered simultaneously. In analog designs, most of the
constraints are currently specified and considered manually by
experts (so-called expert knowledge). These constraints are often
used implicitly based on the designer’s experience. This prevents the
effective use of the constraints in design automation.

Each constraint is assigned a specific constraint type that
represents a classification property for the same class of constraints.
For example, the constraint type “IR-drop” is used by n individual
constraints that define the detailed IR-drop limits between n pin pairs
of the specific circuit. Constraint types have a clearly defined unit
that belongs to the physical, electrical, mechanical, mathematical or
geometrical domain.

Today’s automatic design approaches require a specific algorithm
to handle each constraint type. Hence, considering new constraint
types requires the re-development of the algorithmic approaches. In
order to avoid this, a new methodology is needed in which new
constraint types can be defined and considered “on the fly” by
introducing appropriate transformation rules.

The physical design process is characterized by layout design
tools that optimize the layout with regard to the design objectives
while fulfilling all constraints. State of the art optimization engines
are based mainly on heuristics which search the solution space of the
constraints based on trial-and-error methods. However, a trial-and-

error method does not work efficiently if the constraints are
numerous and correlated as it is often the case in analog layout
designs. For a successful automatic layout design, the following
questions should be positively answered:

• Can the methodology understand and consider automatically all
required constraints throughout the whole layout design process?

• Can the methodology automatically find an optimized layout in
a reasonable time even in the presence of numerous and highly
correlated constraints?

In this paper, we provide a placement methodology that addresses
these questions for the first time.

A. Related Work
Several approaches for automatic analog layout design have been

developed such as [1][2]. One of the first placement and routing
frameworks is introduced in [3]. It considers symmetry, device
abutment and merging constraints. In [4], performance-driven layout
techniques are presented. These approaches are only suitable for
small circuits such as filters and operational amplifiers. The approach
introduced in [5] directly takes into account the presence of an
arbitrary number of symmetry groups during the exploration of the
solution space. In [6], a heuristic to place analog devices taking into
consideration symmetry and other placement constraints is described.
However, a heuristic does not always succeed in finding a solution if
many correlated constraints exist. In [7], a deterministic topological
approach based on a hierarchically bounded enumeration of basic
building blocks is published.

In [8], we presented a new approach for the placement of analog
circuits. It allows the verification whether a layout solution satisfying
all constraints exists at all prior to placement optimization. The cost
function of the algorithm is evaluated based on the objectives as well
as on the adaptively weighted constraints. The results are proven to
be better than those of the conventional analog placement
approaches. In case of numerous and highly correlated constraints,
however, only few solutions that satisfy all constraints exist. As the
probability of finding these solutions using a conventional trial-and-
error heuristic is very low, the algorithm is sometimes trapped in
invalid regions of the solution space.

B. Our Contribution
We present a new methodology to solve the above mentioned

problems. It has been extensively verified in an industrial design
flow. Firstly, we introduce a new concept of a comprehensive
constraint-driven layout design approach. The new paradigm allows

978-1-4244-5091-6/09/$25.00 ©2009 IEEE 996

Professor Lienig
Schreibmaschinentext
© IEEE 2009. This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 16th IEEE International Conference on Electronics, Circuits andSystems (ICECS), Hammamet, Tunisia, pp. 996-999, December 2009.

defining and verifying the analog layout constraints by transforming
them between the different design domains based on appropriate
transformation rules. Hence, all transformable constraints can be
handled with our approach without the need to modify the
fundamental design algorithm. Secondly, we present a new
constraint-driven placement optimization engine in order to verify
our methodology. The engine searches for an optimized placement
while using a deterministic decision maker. This allows solving
efficiently the hard instances of the placement optimization problem
in case of numerous and correlated constraints. Hence, the decision
maker efficiently prevents the algorithm of being trapped in invalid
regions of the solution space.

Our paper is organized as follows. In Section II, we describe the
fundamental components required in a constraint-driven analog
layout design flow. We verify this methodology by applying it to the
placement step as shown in Section III. Section IV discusses the
experimental results. Finally, concluding remarks are drawn.

II. COMPONENTS OF THE CONSTRAINT-DRIVEN ANALOG
LAYOUT DESIGN FLOW

A design methodology that considers all relevant constraints in a
consistent and comprehensive manner throughout the whole layout
design process is denoted as constraint-driven layout design. In the
following, we provide an overview of its essential components.

A. Constraint Representation
Formally, constraints define relations between the set of design

variables that are related with each other. A relation between
independent design variables represents a simple constraint. A
relation between dependent design variables represents a complex
constraint. In the latter case, the constraints share the same set of
design parameters and are thus either directly or indirectly correlated.
All constraints and all related design data must be uniformly defined.
A constraint, such as a delay time constraint, must be preserved at
any time during the layout design process in order to guarantee the
correct processing of constraint information. Our approach uses CLP
(Constraint Logic Programming [9][10]) in order to uniformly
represent the constraints. CLP is an extension to logical programming
languages like PROLOG. The constraints are described as predicates
within Horn clauses. The following notation shows a simple example
of a maximum permitted signal delay time constraint (0 ps ≤ dt ≤ 200
ps) between two net terminals p1 and p2:

signalDelay(p1, p2, dt) :- 0 <= dt , dt <= 200ps.
The uniform representation enforces a common understanding of

all constraints among all involved design and verification algorithms.
Hence, it is a primary requirement for the development of multilateral
layout design and verification algorithms that are able to address the
current “constraint challenge”.

B. Constraint Derivation (Assignment)
Constraint derivation is the process of either generating new

constraints (e.g., by applying new design rules) or deriving sub-level
constraints from top-level constraints. The constraint transformation
presented in Section C is a special case of the constraint derivation. It
derives low-level constraints (e.g., geometrical constraints) from
high-level constraints (e.g., electrical constraints) and vice versa.

C. Constraint Transformation
Constraints can be transformed from a higher level to a lower

(physical) level (top-down) and vice versa (bottom-up). The result of
any transformation must be complete and unambiguous. As an
example, transforming an electrical wire resistance constraint
between two net terminals into a one-dimensional geometrical
maximum distance constraint is shown (using CLP):

getCoordinate(x1, x2, RQ, DQ) :- x2- x1 = DQ*R/RQ, R<10.

The CLP clause getCoordinate() defines a transformative relation
between the electrical parameter wire resistance R and the
geometrical net terminal coordinates x1 and x2. This clause also holds
a resistance constraint R<10 (Ohm). It ensures that only variables x1
or x2 will be returned that fulfill the defined resistance constraint. (It
is assumed here that square resistance RQ and the lengths of a wire
square DQ are constants.) Using this approach, it is now possible to
automatically consider the (transformed) geometrical constraint by a
placement tool during the optimization process. For the definition of
complex constraints, x1, x2 and R might also depend on additional
clauses that may, for example, describe a temperature dependency.
This simple example demonstrates the flexibility and power of our
approach. Once a transformation relation between, for example,
electrical and geometrical constraints can be formulated, all
transformable electrical constraints can be handled with our approach
without the need to modify the fundamental placement algorithm.

D. Constraint Verification
Constraint verification ensures correct application functionality

as well as design quality and reliability. During the analog layout
design, various constraint types must be considered simultaneously.
Many of them are complex constraints. The fulfillment of these
constraints cannot be verified with conventional verification
approaches. This is due to the fact that these approaches require one
specific verification tool or algorithm for each constraint type.

Recently, we introduced an approach that allows verifying
complex linear constraints for the first time [10]. This meta-
verification approach is based on dividing every complex verification
problem into simpler problems, which in turn can be verified using
existing verification algorithms and tools. The meta-verification does
not replace existing verification and simulation tools. It rather offers a
method to combine the tasks of these tools.

E. Mutual Constraint Dependencies
In order to solve mutual constraint dependencies, we

implemented a linear constraint solver [10]. It is based on the simplex
algorithm and provides logical conclusions on linear equations and
inequations. In this work, we use this solver in order to (1) verify if
either a set of linear and piecewise linear constraints can be met at all
or a mutual constraint conflict exists, and (2), if possible, to find a
solution that meets all constraints simultaneously. In this work, we
show the usefulness of this method in the light of the analog
placement problem (Section III C).

III. CONSTRAINT-DRIVEN PLACEMENT ALGORITHM
We verify our constraint-driven design methodology by applying

it to the placement of analog circuits. The placement procedure is
divided into two main steps. First, the analytical method linear
programming (LP) is used in order to find out whether the placement
under the given constraints is feasible [8]. If feasible, LP constructs
an initial placement satisfying all constraints. In the second step, the
placement is optimized with regard to the objectives. Our
optimization engine uses two methods simultaneously, a heuristic and
an analytical method. Both interact and solve efficiently the
optimization problem as described in Section III B.

A. Initial Placement Using Linear Programming
Using linear programming (LP), the layout information and the

constraints are represented as a linear system of equations. (Please
refer to [8] for a detailed description.) By using LP for constructing
the initial placement, we assert if a solution for all constraints exists
at all. If this is the case, LP constructs an initial placement satisfying
all constraints. Assuming that each constraint has a range of
permitted values, the modules are placed so that their constraint
parameters are as far away as possible from their critical boundary
values. While assuming a generally linear or convex placement

997

Professor Lienig
Schreibmaschinentext
© IEEE 2009. This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 16th IEEE International Conference on Electronics, Circuits andSystems (ICECS), Hammamet, Tunisia, pp. 996-999, December 2009.

optimization problem, the placement has in this case maximum
constraint robustness. Here, small perturbations of the placement
solution will most probably not violate any constraint.

B. Placement Optimization Engine
The optimization engine consists of two parts. A heuristic method

is used effectively in order to optimize the placement by minimizing
a cost function. It interacts with a deterministic decision maker (DM).
The DM is called by the heuristic whenever the optimization cannot
find a solution that satisfies the numerous and correlated constraints
simultaneously (solution trapping).

The heuristic starts with the initial placement which has
maximum constraint robustness but is not yet optimized with regard
to the design objectives. The cost function is extended with all
constraints and is evaluated only if the placement perturbation
satisfies all constraints. In case of correlated constraints, the
optimization often traps at several stages and finds only solutions that
do not fulfill all constraints. In order to solve this problem, the
placement information and the constraints are delivered to the DM in
order to analytically find a solution that satisfies all constraints.

In more detail, the optimization engine perturbates the placement
and verifies the fulfillment of the constraints. For example, it moves a
selected module mi to a new position. If the perturbation does not
violate any constraint, then the cost function is evaluated. Otherwise,
the perturbation is rejected and a counter “count” is increased
(Algorithm I). Then, a new perturbation is applied on mi and the
constraints are verified again. In case the number of consequent
violations count exceeds a temperature dependent number k(T), the
decision maker is called. The DM analytically finds solutions that
satisfy the constraints and feeds them back to the heuristic. The
whole procedure is repeated until a specified stop criterion is reached.

Algorithm I: Optimization Engine
1: Read initial placement constructed using linear programming
2: REPEAT
3: Select a module mi for perturbation
4: REPEAT
5: Apply placement perturbation
6: IF no geometrical constraint is violated THEN
7: Evaluate the cost function (estimate the gain)
8: Accept or reject the perturbation based on the gain
9: ELSE
10: reject the perturbation
11: IF count++ > k(T) THEN
12: Call the decision maker for violating module mi
13: IF solutions exist THEN
14: Return solutions to SA
15: Go to 5
16: ELSE i = i + 1; go to 3
17: UNTIL number of perturbations exceeds a predefined value
18: T = α * T
19:UNTIL T < Tmin or desired placement quality reached.

The output of the algorithm is a placement optimized with respect
to its cost function. To our knowledge, this is the first analog
placement algorithm having mixed heuristic and deterministic (local
optimization) elements at the same time. By applying a controlled
deterministic behavior when needed, it combines the advantages of
both classes with a relatively small runtime (see Section IV).

C. Decision Maker
The input data to the decision maker (DM) are the current

position of the circuit modules and the relevant constraints. Its task is
to find a new position of the circuit module mi that is to be perturbed
while fulfilling all related constraints. The DM is called by our
modified SA algorithm when the heuristic procedure fails for k(T)
number of times to find a valid position for mi that fulfills all

constraints. The term k(T) is the number of failed attempts. It is
linearly dependent on the SA cooling temperature T. The DM
analytically searches for new valid positions for mi that fulfill all
constraints:

• If the DM does not find a valid new position for mi, then the
current position of mi is the only valid one at this point in the
design process. Consequently, SA keeps mi in its position and
applies a new placement perturbation on another module.

• If the DM finds one or more valid positions, then it returns
them all to the SA algorithm for evaluation. Consequently, the
SA decides which solution best optimizes the placement.

The outline of the DM algorithm is given as follows:

Algorithm II: Decision Maker
1: Get module mi and add it to List L
2: Get all related constraints cj applied to the module mi
3: For each constraint cj
4: Get all involved modules mj
5: If mj ∉ L
6: Add mj to L
7: Formulate the problem for mi, cj, and mj ∈ L (see below)
8: Solve the linear system of equations
10: Return the solutions (if they exist) to SA

Next, we present the problem formulation as used by our
approach. The objective is to minimize all Pj variables, where Pj is a
measurement of the fulfillment of the constraints cj, ∀ j ∈ J, where J
is the number of the shared constraints between mi and mj. The origin
of mi is defined by the coordinates (xi, yi) of its lower left corner. W
and H are the maximal allowed width and height of the placement.

Minimize ;; JjPj ∈∀∑ (1)

;0;0 ≥≥ ii yx (2)

);();(iiii mgetHeighthmgetWidthw == (3)

;; HhyWwx iiii ≤+≤+ (4)

for each constraint cj, Jj∈∀
);(jj cgetModulem = (5)

);();(jjjj mgetYymgetXx == (6)

);();(jjjj mgetHeighthmgetWidthw == (7)

);(min
2

)()(
jij

jiji
jiji c

hhww
yyxx ≥

−+−
+−+− (8)

);(max
2

)()(
jij

jiji
jiji c

hhww
yyxx ≤

−+−
+−+− (9)

 ;)(
2

)()(
jjij

jiji
jiji Pcopt

hhww
yyxx =−

−+−
+−+− (10)

We assume that each constraint is fulfilled in a the range
[minij(cj), maxij(cj)]. The mean of the boundary values is given by
opt. The last three equations guarantee that the module mi is placed
within [minij(cj), maxij(cj)] as near as possible to the position opt. The
distance is given as center-to-center Manhattan distance for mi and mj.
The system of equations is solved and the solutions are passed to the
SA for evaluation according to all of the placement objectives.

IV. EXPERIMENTAL RESULTS
We implemented our approach in the Java programming

language. Several analog circuit test benches from automotive IC
applications were used to validate our approach. The test benches are
real-world circuits with known optimized placement results laid out
manually by experienced analog designers. All experiments were
done using an AMD PC, running at 1.9 GHz with 512 MB RAM.

998

Professor Lienig
Schreibmaschinentext
© IEEE 2009. This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 16th IEEE International Conference on Electronics, Circuits andSystems (ICECS), Hammamet, Tunisia, pp. 996-999, December 2009.

In order to show the advantages of our methodology, we compare
it with a conventional SA optimization algorithm and with that in [8].
The latter approach is also based on the SA algorithm. However, the
algorithm is driven not only by the objectives, but also by the
adaptively weighted constraints. To ensure a fair comparison, we
used in all approaches the same cooling schedule and inner-loop
criterion for the SA. Table I lists some of the results. In the second
column, the correlation degree of the constraints is given. “Medium
correlation” means that 20-35% of all constraints are correlated to at
least one other constraint. The third column indicates whether the
desired quality of a layout is reached. This is the case if the layout
fulfills all constraints and the increase in the design objectives does
not exceed 10% compared to the manually placed layout.

TABLE I. COMPARISON OF OUR PLACEMENT METHODOLOGY WITH A
CONVENTIONAL APPROACH (SA) AND WITH THE APPROACH PRESENTED IN [8].

Table I shows that a conventional optimization approach solely
based on SA could not achieve the desired quality for a larger number
of constraints with medium and high correlation degree. In this case,
SA spends most of the time performing invalid perturbations that
fulfill some constraints while violating others at the same time. The
approach in [8] shows better results than that of the conventional SA
approach. However, the trial-and-error heuristic fails for complex
designs with numerous and highly correlated constraints as only few
neighboring valid solutions exist. We overcome this problem by
including the decision maker. It finds analytically valid solutions and
passes them to the SA for evaluation. As a result, the design quality
was reached for all test benches.

We also compare our approach with state-of-the-art analog
placement tools in terms of runtime and area usage. However, this
comparison is difficult. First, the approaches were tested on different
computers and platforms. Second, available benchmark circuits
include only few constraint types such as symmetry. Nevertheless,
Table II shows the comparison between our methodology and other
approaches based on two benchmark circuits. The approaches in
[5][7][11] take only the symmetry constraint into consideration
during placement. Hence, we also restricted our approach to this
constraint in order to allow a direct comparison.

While the results of our new methodology and the state-of-the-art
placers are comparable, it is important to mention that our goal was
not to compete with the other approaches solely in terms of the
runtime and area usage. We rather present a methodology that
enables a layout designer to define new constraint transformation
rules whenever needed during the design process. This allows
including new constraint types without the need to modify the
fundamental placement algorithm. Furthermore, our methodology can
automatically consider all constraints during the optimization process

even if they are highly correlated. All these properties are missing in
the state-of-the-art analog placement approaches.

V. CONCLUDING REMARKS
The automatic inclusion of expert knowledge in the form of

constraints is one major precondition in order to overcome the analog
IC design problem with its fundamental lack of automation. We
present a new constraint-driven design methodology that addresses
this issue. It includes two modules. The first module is a
comprehensive constraint system for capturing, transforming, and
verifying the constraints. This system is accessed by the second
module consisting of the layout optimization engines such as
placement algorithms.

We introduce a hybrid optimization algorithm for the placement
of analog circuits. It combines the advantages of heuristic and
analytical approaches. A heuristic optimizes efficiently the placement
with regard to the objectives. It calls an analytical decision maker in
order to solve hard instances of the optimization problem resulting
from multiple and correlated constraints. We have shown that our
methodology is comparable to the state-of-the-art analog placement
approaches in terms of area optimization and runtime. However, it is
superior in terms of the flexible and comprehensive constraint
consideration.

REFERENCES
[1] R. Rutenbar and J. Cohn 2000, “Layout tools for analog ICs and mixed-

signal SoCs: a survey,” In Proc. of ISPD, pp. 76–83, 2000.
[2] H. Graeb, F. Balasa, P.-H. Lin, R. Castro-Lopez, and M. Strasser,

“Analog layout synthesis - Recent advances in topological approaches,''
Proc. of Design, Automation and Test in Europe (DATE), pp. 274-279,
Apr. 2009.

[3] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“Koan/Anagram II: New tools for device-level analog placement and
routing,” IEEE JSSC, vol. 26, pp. 330–342, Mar. 1991.

[4] K. Lampaert, G. Gielen, and W. Sansen, “Analog layout generation
performance and manufacturability,” Springer, 1999.

[5] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “On the
exploration of the solution space in analog placement with symmetry
constraints,” IEEE Trans. on CAD, vol. 23, pp. 177–191, Feb. 2004.

[6] Y. Tam, E. F. Young, and C. Chu, “Analog placement with symmetry
and other placement constraints,” ICCAD, pp. 349–354, 2006.

[7] M. Strasser, M. Eick, H. Graeb, U. Schlichtmann, F. M. Johannes,
“Deterministic analog circuit placement using hierarchically bounded
enumeration and enhanced shape functions,” Proc. of the 2008 ICCAD,
pp. 306 -313, Nov. 2008.

[8] A. Nassaj, J. Lienig, G. Jerke, “A Constraint-Driven Methodology for
Placement of Analog and Mixed-signal Integrated Circuits,” Proc. of
the 14th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS),
pp. 770-773, Aug. 2008.

[9] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap, “The clp language and
system,” ACM Trans. on Programming Languages and Systems, vol.
14, pp. 339–395, Jul. 1992.

[10] J. Freuer, G. Jerke , J. Gerlach, and W. Nebel, “On the verification of
high-order constraint compliance in IC design,” Proc. ACM/IEEE
Design, Automation and Test in Europe (DATE), pp. 26–31, 2008.

[11] L. Po-Hung and L. Shyh-Chang; “Analog placement based on novel
symmetry-island formulation,” In ACM/IEEE Design Automation
Conference (DAC), pp. 465–470, Jun. 2007.

Constraints Desired quality reached?
Circuit

Degree of
Correlation (%) SA LP + SA

[8]
LP + SA

+ DM
cir_x1 14 Low (<20) Y Y Y
cir x2 18 Med. (20-35) Y Y Y
cir x4 35 High (>35) N Y Y
cir x6 54 Med. (20-35) N N Y
cir x7 48 High (>35) N N Y

TABLE II. COMPARING THE AREA USAGE AND TIME BEHAVIOUR OF OUR METHODOLOGY WITH OTHER APPROACHES BASED ON TWO INDUSTIAL
CIRCUITS. THE CIRCUITS INCLUDE ONLY SYMMETRY CONSTRAINTS. TIME IS MEASURED IN SECONDS.

Approaches
Modules

[5] [7] [11] Our Work
Circuit
Name

Area (103 µm2) Area (%) Time Area (%) Time Area (%) Time Area (%) Time
biasynth 2p4g 65 100% (4.7) 114.89 246 104 96 337 104.68 22 108,36 407

lnamixbias 2p4g 110 100% (46) 109.35 726 107.68 387 105.72 43 109,84 639

999

Professor Lienig
Schreibmaschinentext
© IEEE 2009. This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 16th IEEE International Conference on Electronics, Circuits andSystems (ICECS), Hammamet, Tunisia, pp. 996-999, December 2009.

