Check for
Updates

Layout Verification Using Open-Source Software

Andreas Krinke
Dresden University of Technology
Institute of Electromechanical
and Electronic Design
Dresden, Germany
andreas.krinke@tu-dresden.de

ABSTRACT

The design and manufacturing of integrated circuits is an expensive
endeavor. The use of open-source software can lower the barrier to
entry significantly, especially for smaller companies or startups. In
this paper, we look at open-source software for layout verification, a
crucial step in ensuring the consistency and manufacturability of a
design. We show that a comprehensive design rule check (DRC) and
layout versus schematic (LVS) check for commercial technologies
is possible with open-source software in general and with KLayout
in particular. To facilitate the use of these tools, we present our
approach to automatically generate the required DRC scripts from
a more abstract representation. As a result, we are able to generate
nearly 74% of the over 1000 design rules of X-FABs XH018 180 nm
technology as a DRC script for the open-source software KLayout.
This demonstrates the potential of using open-source software for
layout verification and open-source process design kits (PDKs) in
general.

CCS CONCEPTS

« Hardware — Physical design (EDA); Software tools for EDA;
Design rules.

KEYWORDS

design rule check, layout versus schematic, KLayout

ACM Reference Format:

Andreas Krinke, Robert Fischbach, and Jens Lienig. 2024. Layout Verifica-
tion Using Open-Source Software. In Proceedings of the 2024 International
Symposium on Physical Design (ISPD °24), March 12-15, 2024, Taipei, Taiwan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3626184.3635289

1 INTRODUCTION

The cost of designing an integrated circuit (IC) is high, not only
because of the labor costs, but also because of expensive software
licenses. It is difficult to estimate these software costs, but a compari-
son with the overall size of the semiconductor market, which also in-
cludes manufacturing costs and profits, helps to put them in perspec-
tive. The global semiconductor market size was at US$574 billion
in 2022 [27], while the electronic design automation (EDA) market
was valued at US$12.9 billion, or 2.2%, in the same year [13]. Fur-
thermore, these software costs vary greatly, depending on factors

ISPD °24, March 12-15, 2024, Taipei, Taiwan

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0417-8/24/03
https://doi.org/10.1145/3626184.3635289

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Robert Fischbach
Dresden University of Technology
Institute of Electromechanical
and Electronic Design
Dresden, Germany

robert.fischbach@tu-dresden.de

137

Jens Lienig
Dresden University of Technology
Institute of Electromechanical
and Electronic Design
Dresden, Germany
jens@ieee.org

Table 1: Selection of analog design steps and related open-
source tools

Design Step Open-Source Tool(s)

Xschem [25], Qucs [5],
Qucs-S [6, 9]

ngspice [21], Xyce [15]
KLayout [18], Magic [4]
KLayout, Magic
KLayout, Magic

Magic

ngspice, Xyce

Schematic Entry

Analog and RF Simulation
Layout Design

Design Rule Check (DRC)
Layout Versus Schematic (LVS)
Parasitic Extraction (PEX)

Post Layout Simulation

such as the type of chip (analog and/or digital), the complexity of
the design, and the technology used. This can easily lead to the cost
of software licenses for a single seat exceeding an employee’s wage
costs.

Especially for smaller companies that want to design an IC, these
software costs can be a high barrier to entry. Open-source tools are
a means to replace some of the proprietary design tools in a design
flow and thus reduce these costs. Even complete open-source design
flows are gradually becoming viable. A crucial advance in this di-
rection for digital designs has been the development of OpenROAD
[1, 28], an open-source technology-independent RTL-to-GDSII flow
that performs floorplanning, global/detailed placement and rout-
ing, and chip finishing steps. OpenROAD is used both in research
and commercial flows. One example is OpenLane [11, 26], a flow
developed by Efabless that includes OpenROAD and is tailored
to SkyWater’s 130 nm open-source process design kit (PDK) [7].
Additionally, OpenROAD/OpenLane also support GlobalFoundries’
180 nm open-source PDK [2] and several proprietary PDKs. These
open-source flows have been used in over 600 tapeouts in SKY130
and GF180. However, customized PDKs must first be developed for
use with new technologies.

For analog design, a schematic editor is used to create the netlist
for subsequent simulation and layout design. During layout design,
the layouts of individual devices are generated using parametric
cells (PCells). More complex generators are also available that can
generate entire sub-circuits automatically, e.g. [10, 24]. Neverthe-
less, the layout design of analog circuits is still dominated by manual
tasks due to the large number and variety of constraints [16, 17, 20].
Table 1 shows a selection of common open-source tools for the
multiple steps in analog IC design.

https://orcid.org/0000-0001-7081-4104
https://orcid.org/0000-0001-6233-3204
https://orcid.org/0000-0002-2140-4587
https://doi.org/10.1145/3626184.3635289
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626184.3635289
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626184.3635289&domain=pdf&date_stamp=2024-03-12

ISPD ’24, March 12-15, 2024, Taipei, Taiwan

Once the physical design has been finalized, it is important to
verify the layout to confirm correct electrical and logical function-
ality and to ensure manufacturability. This step, known as layout
verification, is the focus of this paper and comprises several tasks: (1)
design rule check (DRC), (2) layout versus schematic (LVS) check,
(3) parasitic extraction, (4) antenna rule check, and (5) electrical
rule check (ERC) [14, 19]. Obviously, layout verification is crucial
for the final signoff in chip design. As shown in Table 1, Magic [4]
and KLayout [18] are currently the most important open-source
tools for layout verification.

The aforementioned layout verification steps require rule decks
that contain, for example, the design rules for DRC and allow device
extraction for LVS. These rule decks are part of a foundry’s PDK
and are provided as reference documents and in proprietary file
formats for one or more supported commercial verification tools.
For example, while the Cadence Physical Verification System (PVS)
uses rule decks written in the Physical Verification Language (PVL),
Siemens Calibre nmDRC uses the Standard Verification Rule Format
(SVREF).

The success of open-source flows is tightly coupled with the
availability of compatible PDKs, since only then can ICs for real-
life semiconductor technologies be designed. To support smaller
customers that want to use open-source tools, foundries are encour-
aged to publish open-source PDKs. The effort required to create
such a PDK specifically for open-source tools is, however, very
high. A large amount of necessary information, e.g., the layer stack,
PCells, standard cells, device models, design rules, and rules for
device extraction, has to be translated into open file formats that
are supported by the chosen open-source tools.

Our goal is to facilitate the creation of open-source PDKs, which
then allows for a comprehensive DRC and LVS check for commer-
cial technologies using open-source software. For this purpose, we
present our approach for generating DRC and LVS runsets for KLay-
out. We introduce our program Babylon with which the necessary
DRC and LVS scripts can be created efficiently.

This paper is structured as follows. We first discuss the history
and capabilities of the two most important open-source layout tools,
Magic and KLayout. Section 3 describes the main contribution of
our paper, the aforementioned runset generation using Babylon.
We summarize with a conclusion and outlook in Section 4.

2 STATE OF THE ART
2.1

Magic is an open-source VLSI layout tool that was originally created
by John Ousterhout and his graduate students at UC Berkeley, with
work on the project commencing in February 1983. The history of
Magic VLSI is intertwined with the evolution of very-large-scale
integration (VLSI) technology. By April 1983, a primitive version of
Magic was operational, serving the needs of graduate student chip
designers working on the SOAR CPU chip, a follow-on to Berkeley
RISC. [22]

Magic remained relevant for universities and smaller companies
throughout the following decades. A diverse team of contributors
from industry and academia worked on Magic during this period.
From 2005 to 2020, the development was mainly underwritten by

Magic

138

Andreas Krinke, Robert Fischbach, and Jens Lienig

(OT BEING EDITED] Tool: b

i i | Window | eyers e cptions SRR
5 @—‘

[
1

X

Figure 1: Screenshot of Magic

the companies employing Timothy Edwards, basically MultiGiG
(acquired by Analog Devices) and Efabless. [4]

In 2017, Magic was released on GitHub with Timothy Edwards
as lead developer and maintainer of the code repository. With
more than 300,000 lines of C code, the estimated development costs
amount to US$8 million (calculated using the COCOMO model [8]).

2.1.1 Capabilities. This subsection provides a short review of the
main capabilities of Magic based on its documentation [4].

Magic provides a graphical user interface for interactive layout
editing of IC cell hierarchies. Figure 1 shows a screenshot of the
Magic layout editor, which allows basic polygon entry but also
advanced manipulation techniques, such as wiring and plowing.
It also integrates automatic routing to connect subcells based on
connectivity information provided by a netlist.

The ability to continuously check for design rule violations re-
duces the turnaround time during layout validation. Magic’s DRC
can also be globally applied to a loaded layout making it viable as a
DRC engine within open-source flows.

Circuit netlists can be extracted from a layout for use with simu-
lation tools, such as IRSIM or SPICE. Furthermore, Magic enables
layout vs. schematic comparisons by handing the source and ex-
tracted netlists to Netgen. Netgen is an open-source netlist com-
parison tool, which was incorporated as part of the Tcl-based tool
suite.

Repetitive tasks can be automated with the Tcl scripting interface,
and the built-in functionalities can be extended and customized.
Technology information is stored in a self-contained technology
file, which is divided into multiple specific sections (e.g., layer pa-
rameters, design rules, router settings). This format is continuously
updated as new features are added to Magic.

2.1.2 Utilization in OpenROAD. Magic has been integrated into
OpenROAD due to the above capabilities. It is used to perform the
sign-off DRC for the layouts generated by the place and route steps
in the OpenROAD flow. The files (control script, technology file)
required for the target technology are prepared by OpenROAD and

Layout Verification Using Open-Source Software

Figure 2: Screenshot of KLayout

then used with Magic to check if the layout fulfills all design rules
provided by the foundry.

2.2 KLayout

At its core, KLayout [18] is a fast layout viewer and editor that
supports GDS and OASIS files. The main developer of KLayout,
Matthias Kofferlein, published the first version in 2006 and con-
tinues to work on it to this day. The repository currently contains
more than 500,000 lines of C++ code, with an estimated develop-
ment cost of about US$24 million (calculated using the COCOMO
model [8]). KLayout is open-source software and licensed under
the GPLv3.

2.2.1 Capabilities. In this section, we will only briefly discuss the
features of KLayout. Further details will follow in Section 3.

KLayout can be used to efficiently load and display large layout
files. Figure 2 shows a screenshot of KLayout’s main window. When
loading multiple layouts, these can be displayed in separate (syn-
chronized) tabs or overlayed. How individual layers are displayed
can be configured extensively.

KLayout supports many drawing functions, operations on shapes
and entire layers; and cells in lower hierarchy levels can be edited
in place with it. Parameterized cells (PCells) can be implemented
in Ruby or Python for analog design. The same two languages
can be used to program macros using the integrated development
environment (IDE); these macros can be used for comprehensive
automated layout manipulations.

DRC and LVS scripts are special types of macros. They are writ-
ten in Ruby and executed in a separate environment with access
to the commands of the KLayout DRC/LVS application program-
ming interface (API). DRC errors can be analyzed or an LVS netlist
comparison can be assessed via two built-in database browsers.

In addition to the functions mentioned, KLayout also includes
other useful utilities such as an XOR tool, a tool for hierarchical
comparison (Diff), and a 2.5D view of the layout. Technology in-
formation and add-ons that extend KLayout’s functionality can be
managed with two package managers.

139

ISPD ’24, March 12-15, 2024, Taipei, Taiwan

2.2.2 Usage. KLayout is used for layout verification in Global-
Foundries’ 180 nm open-source PDK [2] and in IHP’s SG13G2 Open-
PDK [3].

3 GENERATING DRC AND LVS RUNSETS FOR
KLAYOUT

In this section, we present our approach for generating scripts for
the design rule check (DRC) and the layout versus schematic check
(LVS) with KLayout.

3.1 Why KLayout?

Our decision to target KLayout was based on several factors. As
described in Section 2.2, KLayout already implements the infras-
tructure for running DRC and LVS scripts, viewing DRC errors
with a marker browser, and writing and viewing report databases
(RDBs). KLayout DRC and LVS scripts are written in the Ruby
programming language, which supports multiple programming
paradigms, e.g., procedural, object-oriented, and functional pro-
gramming. Theoretically, two types of scripts can be developed:
declarative scripts, where the order of the commands is irrelevant,
similar to SVRF, and imperative scripts, where the order of the com-
mands is decisive. KLayout supports many typical DRC operations
including Boolean layer operations, width and space checks, density
checks, and many more. Connectivity extraction is also supported—
enabling connectivity-aware layout operations and antenna checks.
All these operations are implemented in Ruby as methods of a
few classes. These classes can be extended directly in Ruby, e.g.,
to implement new operations based on low-level commands, or
to adapt existing operations. Another important consideration is
KLayout’s very comprehensive and well-structured documentation.
These aspects make it much easier to get started with the program
than with Magic. Last but not least, KLayout is available under
the GPLv3, a strong copyleft license that ensures changes remain
open-source. In theory, there are no limitations as to what we can
do—if there are missing functions or speed problems in Ruby, we
can change the C++ source code as a last resort.

3.2 Why Generate?

At this point, we could have started writing the KLayout DRC and
LVS scripts manually for a specific technology. However, we have
decided to generate them automatically instead. This approach has
the obvious disadvantage that we have to define a suitable input
data format and design a software tool that generates the script.
However, there are also a number of advantages, which we outline
next.

In general, several hundred to several thousand design rules are
checked for a technology. There are a variety of rule types and even
seemingly simple rules may require a large amount of code; this
means the DRC scripts may be very extensive. These challenges
can be mitigated by using custom classes, functions, and methods
to modularize the scripts. An example of this approach is shown in
Listing 1 and will be discussed in Section 3.3.5. Nevertheless, writing
a DRC script for a new technology is still a major undertaking.

By generating the scripts, best practices and improvements in
implementing individual rules can be quickly applied to the en-
tire script and also for multiple technologies. The same applies to

ISPD ’24, March 12-15, 2024, Taipei, Taiwan

Babylon

KLayout
DRC/LVS
Script

Internal
Data
Structure

Parsing & Data

KLayout
Generator

>

Transformation

Ruby

Python

Figure 3: Overview of our approach to automatically generate
DRC and LVS commands for KLayout

Internal Data Structure
‘ AN
"type": "layer_definition",
"layer_name": "green",
"layer_operation": {

DRC Runset

"type": "layer_operation",
"keyword": "and",
"layers": [

Parsing & Data "blue”,

Transformation "yellow"

1
3,

"source_line": 1
)
JSON + JSON Schema

Figure 4: Internal data structure using JSON and JSON schema

changes to the DRC application programming interface (API) in
KLayout, regardless of whether new or modified methods or altered
program behavior are involved. Ideally, the work involved in coding
a DRC script for a new technology should decrease over time.

3.3 Our Approach

Next, we present our methodology to generate DRC and LVS scripts
automatically for KLayout; Figure 3 shows an overview of our ap-
proach. Our software tool is called Babylon and essentially consists
of three parts: (1) a parser that reads and translates the input file(s),
(2) the internal data structure, and (3) the actual generator that
creates the DRC and LVS scripts for KLayout.

3.3.1 Input Format. The Babylon input format is based on the
KLayout DRC API itself. This means that the input files are syntac-
tically correct Ruby scripts that can use all DRC commands defined
by KLayout. However, there are two differences w.r.t. to a valid
script: (1) methods can have a different signature, e.g., additional
arguments, and (2) the order of the commands is irrelevant.

With these modifications Babylon can support completely new
or extended DRC commands with additional options. Furthermore,
the format allows the rules to be described declaratively without
having to consider dependencies between the operations, such as
the correct definition of connectivity.

3.3.2 Internal Data Structure. The parser reads our input format
and translates it into an internal data structure that can be directly
exported as a JSON (JavaScript Object Notation) [12] document.
Figure 4 shows an example for this translation. The JSON file en-
codes layer imports, layer definitions, layer operations, and rule
checks. Layer operations, whether stand-alone or as part of a rule
check, are translated into an equivalent JSON tree structure. The file

140

Andreas Krinke, Robert Fischbach, and Jens Lienig

blue

ImportedLayer
yellow

‘ ImportedLayer

LayerOperation

blue AND yellow

LayerDefinition
green

ImportedLayer
red

LayerOperation
green AND red

RuleCheck
BROWN

Figure 5: Example of our internal data model

produced is easy to debug as each entry refers to the original line
in the input file. Debugging is further assisted by a JSON schema
[23] that describes the structure of a valid JSON document.

The generator is separated from the input file by this intermedi-
ate file. In future, we will be able to support additional input formats
without having to change the generator. Only the parser will need
to be modified in this case.

3.3.3 Internal Data Model. The generator loads the internal data
structure and transforms its entries into equivalent Python objects.
These objects are processed multiple times to establish all depen-
dencies between their respective layer definitions, layer operations,
and rule checks. A simple example is shown in Figure 5. Operations
that need connectivity information are flagged, as the connectivity
and all layers required for it must be defined in advance. Using
topological sorting, all layer definitions and operations as well as
(partial) connectivity extractions are ordered correctly. Another
result is that we know whether each object can be implemented at
this stage in KLayout and whether all the required arguments are
available. This information helps to generate clean KLayout DRC
scripts in the next step.

3.3.4 Generating KLayout DRC Commands. As soon as all entries
are in the correct order, they can be translated into the correspond-
ing KLayout DRC commands. In general, the result looks similar to
the input file, but with a different command order.

First, we load the required layers from the layout, as shown
below.

name =
blue =

input (GDS layer number)
input (1)

While KLayout supports loading layers directly from a GDSII file,
the DRC is normally executed for a layout that has been loaded
already. This means that any DRC errors that might occur can be
viewed directly in the open layout using KLayout’s marker browser.
However, it is also possible to execute the DRC directly on the
command line (without graphical user interface) and write the
result to a report database (RDB).

After loading layers from the layout, new layers can be cre-
ated by performing operations on a single layer or on multiple
layers. Since these operations are implemented as methods of a

Layout Verification Using Open-Source Software

Intersecting
Edges

Touch
Points

Separation
Errors

Figure 6: Types of two-layer separation errors

common DRCLayer class, multiple operations can be chained to-
gether. Besides named layer definitions, as in the following example,
anonymous definitions can also be made.

name = layer operation

green = blue.and(yellow)

In order to define a design rule, we simply call the output method
for the layer to be checked. This layer can be specified by its name
or created ad-hoc with an anonymous layer definition, like in the
example below. The layer can contain polygons, edges, edge pairs,
or points that represent DRC errors; all these geometries can be
displayed in the marker browser and exported to an RDB.

(layer operation).output(rule name, comment)
(green.and(red)).output ("BROWN", "Is that
< chocolate?")

Some rule checks require temporary layers that are only used
for this rule. A local scope can be created so as not to “pollute” the
global namespace. All layer definitions in this scope can only be
accessed inside this rule check. The following example shows the
code for creating such a local scope.

-> (;brown) do
separate scope that allows temporary layers
— to be defined without naming conflicts
brown = green.and(red)

end. () .output ("BROWN", "Is that chocolate?")

3.3.5 Extensions. So far, we have created a series of KLayout DRC
commands for each Python object in our internal data model. More
complex layer operations may require extensive coding. To improve
the readability of the DRC script, it is worth extending the APL

Ruby allows us to add new methods to a class. In KLayout, all
layer operations are methods of the class DRCLayer. Therefore,
whenever we want to change the behavior or signature of an exist-
ing DRC command, we can add a new method with the ext prefix.
The built-in separation command is a case in point: here, the
command checks the spacing of polygons on two different layers.

Despite the numerous configuration options, touch points (also
called kissing corners) and intersecting edges cannot yet be consid-
ered separately by the separation command. Figure 6 shows the
different types of separation errors.

We have implemented the new method outlined in Listing 1
that enables the different types of errors to be identified. Individual
error-type detection can be enabled or disabled with this method
(not shown in the listing). For Babylon we added 30 methods that
extend built-in KLayout layer operations. Functions that are used

141

ISPD ’24, March 12-15, 2024, Taipei, Taiwan

Listing 1: Extending the layer class with new methods

class DRC::DRCLayer
def ext_separation(other,
separation_errors =
intersecting_edges_errors =
touch_point_errors =
return (separation_errors
+ intersecting_edges_errors
+ touch_point_errors)

value [, options])

end
end
blue.ext_separation(green,
< "Minimum BLUE spacing to GREEN

1.0).output("S1BLGR",
1.0")

by more than one layer operation can be added as a method to the
DRCEngine class.

3.4 Verification

During the development of Babylon, we used X-FAB’s XH018 180 nm
technology as a reference. Individual layer operations were verified
on test layouts. The complete DRC script was verified on a known
DRC-clean example layout, to which polygons with deliberate DRC
errors were added. As expected, no DRC errors were found in the
layout, while the deliberate DRC errors were correctly detected.

The final KLayout DRC script supports 74% of the over 1000
XHO018 design rules. Babylon ensures that every layout operation
in the final DRC script (1) is supported in KLayout, (2) has access
to all required layers, and (3) is a direct or indirect dependency of a
design rule. The final KLayout DRC script is thus always executable;
this facilitates further development of the tool.

3.5 Extension for LVS

So far, we have focused on DRC script generation. However, KLay-
out also supports layout versus schematic (LVS) checking using
the same Ruby environment as for DRC scripts. It therefore makes
sense to broaden the scope of Babylon so that both DRC and LVS
scripts can be generated.
The following steps are necessary for the LVS check in KLayout:
(1) Layer import
(2) Definition of derived layers
(3) Device recognition
(4) Device parameter calculation
(5) Connectivity extraction
(6) Netlist comparison

The first two steps can be carried out in exactly the same way as
for the DRC (cf. Section 3.3.4).

Device recognition and device parameter calculation are often
summarized under the heading “Device extraction”. KLayout sup-
ports, for example, the extraction of MOS and bipolar transistors
(with three and four terminals), diodes, resistors, and capacitors.
For each of these devices, detection and parameter-calculation al-
gorithms are predefined. Only the layers required for recognition
have to be specified in the LVS script.

Certain types of devices may not be recognized with these sup-
ported device classes. This may occur if the recognition algorithm

ISPD ’24, March 12-15, 2024, Taipei, Taiwan

is too inflexible or if device parameters are calculated differently or
not at all. To solve this problem, new device types can be defined in
KLayout. This can be done directly in Ruby by implementing two
new classes: (1) aDeviceExtractor class that performs recognition
and parameter calculation, and (2) a DeviceParameterCompare
class that compares the parameters of the extracted device with
those of the corresponding device from the netlist.

Once the devices have been extracted, connectivity extraction
follows. In addition to specifying pairs of electrically connected
layers, global connections can also be defined. These can be used
for bulk connections, for example; and they ensure that all shapes
in a layer belong to the same net.

To summarize, Babylon can reuse existing functions from DRC
script generation when generating LVS scripts. Only a few com-
mands need to be added for device extraction, connectivity defini-
tion, and netlist comparison. Only new component types need to
be realized manually.

4 CONCLUSION AND OUTLOOK

The goal of this paper was to show that a comprehensive design
rule check (DRC) and layout versus schematic (LVS) check for com-
mercial technologies can be performed with open-source software
in general and with KLayout in particular. KLayout supports the
fundamental features necessary to run these checks, such as a wide
range of layer operations, parallel processing for fast execution, a
marker browser for efficient investigation of DRC errors, and the
creation of result databases (RDBs).

We have presented our Babylon program with which the neces-
sary DRC and LVS scripts can be generated efficiently. While its
output are valid KLayout DRC/LVS scripts, the input is an extended
script file that allows the use of new complex methods. The plan
is to replace this input format by an open rule format; this will
enable complete design rule documents to be created, for example.
Although Babylon is currently not open source, the generated DRC
and LVS scripts can become part of an open-source PDK.

Using KLayout with X-FAB’s XH018 180 nm technology, we are
currently able to check 74% of its over 1000 design rules. We are
working to increase the number of rules supported by Babylon. In
addition to our work on XH018, we are also developing the KLayout
DRC script for IHP’s SG13G2 OpenPDK [3].

Our current research is focused on extending the DRC script gen-
eration to support the verification of assembly rules for packaging.
The assembly rules for a specific (advanced) package are informed
by (1) the assembly technologies for individual dies (e.g., pick and
place, micro transfer printing), and (2) the connection technologies
(e.g., wire bonding, bumps, micro bumps). Our goal is to formally
describe these different packaging technologies as a foundation for
automatic package-level DRC runset generation for KLayout.

ACKNOWLEDGMENTS

We would like to thank R. Timothy Edwards and Matthias Kof-
ferlein for their many years of work on Magic and KLayout re-
spectively. Our thanks also go to all other contributors to these
two open-source projects. This work is supported by the German
Federal Ministry of Education and Research (BMBF) under Grant
No. 16ME0484.

142

Andreas Krinke, Robert Fischbach, and Jens Lienig

REFERENCES

[1] T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim, J.
Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda, M. Saligane, S. S. Sapatnekar,
C. Sechen, M. Shalan, W. Swartz, L. Wang, Z. Wang, M. Woo, and B. Xu. 2019.
Toward an Open-Source Digital Flow: First Learnings from the OpenROAD
Project. In 2019 56th ACM/IEEE Design Automation Conference (DAC). 4 pages.
https://doi.org/10.1145/3316781.3326334

GlobalFoundries PDK Authors. 2022. GF180 PDK. https://github.com/google/
gf180mcu-pdk

IHP PDK authors. 2023. IHP Open Source PDK. https://github.com/IHP-GmbH/
IHP-Open-PDK/

Magic authors. 2020. Magic. http://opencircuitdesign.com/magic/
Qucs authors. 2017. Quite Universal Circuit Simulator (Qucs).
sourceforge.net/

Qucs-S authors. 2023. Ques-S: Ques with SPICE. https://ra3xdh.github.io/
SkyWater PDK Authors. 2020. SKY130 PDK. https://skywater-pdk.readthedocs.
io/

B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.
Madachy, D. J. Reifer, and B. Steece. 2000. Software Cost Estimation with COCOMO
I (1st ed.). Prentice Hall, NJ, USA.

M. E. Brinson and V. Kuznetsov. 2016. A new approach to compact semiconductor
device modelling with Qucs Verilog-A analogue module synthesis. International
Journal of Numerical Modelling: Electronic Networks, Devices and Fields 29, 6 (2016),
1070-1088. https://doi.org/10.1002/jnm.2166

E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. Nikoli¢, and E. Alon. 2018.
BAG2: A Process-Portable Framework for Generator-Based AMS Circuit Design.
In 2018 IEEE Custom Integrated Circuits Conference (CICC). 1-8. https://doi.org/
10.1109/CICC.2018.8357061

Efabless Corporation. 2023. OpenLane Website. https://efabless.com/openlane
ECMA 2017. The JSON Data Interchange Syntax (2nd ed.). ECMA. https://ecma-
international.org/publications-and- standards/standards/ecma-404/

Global Market Insights. 2023. Electronic Design Automation (EDA) Market. Re-
trieved December 11, 2023 from https://www.gminsights.com/industry-analysis/
electronic-design-automation-eda- market

A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. 2022. VLSI Physical Design: From
Graph Partitioning to Timing Closure. Springer, Cham. https://doi.org/10.1007/
978-3-030-96415-3

E. R. Keiter, R. L. Schiek, H. K. Thornquist, T. Mei, J. C. Verley, K. V. Aadithya,
G. J. Templet, J. D. Schickling, and G. L. Hennigan. 2023. Xyce Parallel Electronic
Simulator. https://github.com/Xyce/Xyce

A. Krinke. 2020. Constraint Propagation for Analog and Mixed-Signal Integrated
Circuit Design. Number 474 in Fortschritt-Berichte VDI, Reihe 20. VDI Verlag,
Dresden.

A. Krinke, M. Mittag, G. Jerke, and J. Lienig. 2013. Extended Constraint Manage-
ment for Analog and Mixed-Signal IC Design. In 2013 European Conference on
Circuit Theory and Design (ECCTD). 1-4. https://doi.org/10.1109/ECCTD.2013.
6662319

M. Kofferlein and contributors. 2023. KLayout. https://www.klayout.de/

J. Lienig and J. Scheible. 2020. Fundamentals of Layout Design for Electronic
Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-39284-0

A. Nassaj, J. Lienig, and G. Jerke. 2009. A New Methodology for Constraint-Driven
Layout Design of Analog Circuits. In 2009 16th IEEE International Conference
on Electronics, Circuits, and Systems (ICECS). 996-999. https://doi.org/10.1109/
ICECS.2009.5410838

ngspice authors. 2023. ngspice. http://ngspice.sourceforge.net/

J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor. 1983.
A Collection of Papers on Magic. Technical Report UCB/CSD-83-154. EECS De-
partment, University of California, Berkeley. http://www2.eecs.berkeley.edu/
Pubs/TechRpts/1983/5295.html

F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgo¢. 2016. Foundations of
JSON schema. In Proceedings of the 25th International Conference on World Wide
Web. 263-273.

B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich, and J. Lienig.
2016. IIP framework: A tool for reuse-centric analog circuit design. In 2016 13th
International Conference on Synthesis, Modeling, Analysis and Simulation Methods
and Applications to Circuit Design (SMACD). 1-4. https://doi.org/10.1109/SMACD.
2016.7520725

Stefan Schippers and contributors. 2023. Xschem. https://xschem.sourceforge.io/
M. Shalan and T. Edwards. 2020. Building OpenLANE: A 130nm OpenROAD-
based Tapeout-Proven Flow. In 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). 1-6.

World Semiconductor Trade Statistics. 2023. WSTS Semiconductor Market Forecast
Fall 2023. Retrieved December 11, 2023 from https://www.wsts.org/76/Recent-
News-Release

OpenRoad Team. 2023. OpenROAD Website. https://theopenroadproject.org/

http://qucs.

U,
B —

(13

[14

[15]

[16]

N
=

[21]
[22]

(23]

[24

https://doi.org/10.1145/3316781.3326334
https://github.com/google/gf180mcu-pdk
https://github.com/google/gf180mcu-pdk
https://github.com/IHP-GmbH/IHP-Open-PDK/
https://github.com/IHP-GmbH/IHP-Open-PDK/
http://opencircuitdesign.com/magic/
http://qucs.sourceforge.net/
http://qucs.sourceforge.net/
https://ra3xdh.github.io/
https://skywater-pdk.readthedocs.io/
https://skywater-pdk.readthedocs.io/
https://doi.org/10.1002/jnm.2166
https://doi.org/10.1109/CICC.2018.8357061
https://doi.org/10.1109/CICC.2018.8357061
https://efabless.com/openlane
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.gminsights.com/industry-analysis/electronic-design-automation-eda-market
https://www.gminsights.com/industry-analysis/electronic-design-automation-eda-market
https://doi.org/10.1007/978-3-030-96415-3
https://doi.org/10.1007/978-3-030-96415-3
https://github.com/Xyce/Xyce
https://doi.org/10.1109/ECCTD.2013.6662319
https://doi.org/10.1109/ECCTD.2013.6662319
https://www.klayout.de/
https://doi.org/10.1007/978-3-030-39284-0
https://doi.org/10.1109/ICECS.2009.5410838
https://doi.org/10.1109/ICECS.2009.5410838
http://ngspice.sourceforge.net/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/5295.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/5295.html
https://doi.org/10.1109/SMACD.2016.7520725
https://doi.org/10.1109/SMACD.2016.7520725
https://xschem.sourceforge.io/
https://www.wsts.org/76/Recent-News-Release
https://www.wsts.org/76/Recent-News-Release
https://theopenroadproject.org/

	Abstract
	1 Introduction
	2 State of the Art
	2.1 Magic
	2.2 KLayout

	3 Generating DRC and LVS Runsets for KLayout
	3.1 Why KLayout?
	3.2 Why Generate?
	3.3 Our Approach
	3.4 Verification
	3.5 Extension for LVS

	4 Conclusion and Outlook
	Acknowledgments
	References

