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Abstract—The simultaneous optimization of both pin assign-
ment and pin routing for different hierarchy levels (chip, package,
board) of an electronic system is a bottleneck in today’s hierar-
chical co-design flows, typically requiring manual optimization
strategies and multiple iterations. Specifically, a fast and fine-
grained evaluation of routability that considers all requirements
between the different hierarchy levels is missing. In this paper we
provide a comprehensive, fast method to evaluate the routability
of interfaces in hierarchical systems based on a new probabilistic
routability prediction. We implemented our methodology in an
industrial design flow and achieved significant improvement in
overall routing, including reduced manufacturing costs of chip-
package-board co-designs.

I. INTRODUCTION

An important step in the co-design of integrated circuits
(ICs) and printed circuit boards (PCBs) is the definition of the
interfaces between different hierarchy levels (chip, package,
board). One seeks to assign signals (nets) to pin locations
(pin assignment) on both the component ICs and the PCB such
that the subsequent pin routing of the overall system design
optimizes system performance, and is achieved in reasonable
time (Fig. 1).

In many practical examples, however, the interface configu-
ration of devices is dictated by the internal physical structure
of the component. While this simplifies the internal routing
task, it does so at the expense of more complex routing
between the external pins of the various hierarchical levels.
On the other hand, optimizing the interface based only on the
(external) pin routing task may result in an internal routing
problem that is difficult to solve.

Connecting pins among different hierarchy levels has be-
come an increasingly difficult task as a result of the preference
given to internal IC routing. Recently, routing algorithms tack-
ling the problem of pin routing [1]–[5] have been published.
However, they do not address what we consider to be the
main factor contributing to the difficulty: the gap that exists
between levels of a design that is developed hierarchically.
Specifically, the internal IC design (i.e., chip routing and
“internal” pin assignment) is not synchronized with the task
of connecting external pins at the system-design level. As we
demonstrate, bridging this gap not only eases the design flow,
it also improves the overall system performance.

It is clear that optimization of the overall routability across
different hierarchy levels demands an integrated pin assign-
ment step that is synchronized with the design of the internal
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Fig. 1. The pin assignment and routing problem of a simple chip-package
co-design. External pins of two ICs (a) with superimposed signal pins of the
chip carrier (b), the optimized pin assignment illustrated by flylines (c), and
the final pin routing (inset).

chip and the PCB. This requires early, concurrent optimization
of pin assignment at all hierarchy levels to enable the best
routability. Such optimization must be fast, must work on
an abstraction level that is available early in the design flow,
and must provide fine-grained, detailed information about the
quality/routability/congestion.
The contributions of this paper are:
● a new methodology based on probabilistic congestion

prediction that determines the routability of a design
similar to global routing, yet with significantly shorter
computation times,

● a time-efficient approach to evaluate and, hence, improve
the pin assignment and pin routing of interfaces in
hierarchical designs on all hierarchy levels, thereby,

● enabling concurrent optimization of the I/O interfaces of
all system levels (chip, package, and board) for the first
time.
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Fig. 2. Classification of routability prediction methods sorted by their
granularity from coarse (top) to detailed (bottom).

II. RELATED WORK

A. Pin Assignment Optimization

Pin assignment is an essential part of interface optimiza-
tion between different hierarchy levels. The pin assignment
problem is to assign all nets (signals) to unique, valid pin
locations so that the overall design is optimized. In most cases,
pin assignment optimization aims to maximize routability. So
far, pin assignment algorithms have evaluated routability based
on either basic geometric characteristics [6], [7] (such as net
lengths, signal skew and the count of flyline intersections)
or principles of global and detailed routing [1]–[5], [8] (e.g.,
min-cost max-flow optimization).

B. Methods of Routability Prediction

Routability prediction methods differ in granularity, accu-
racy, sophistication, required input data, and computational
effort. A basic classification of routability prediction methods
(as relevant to pin assignment) is depicted in Fig. 2.

As will be shown in Sec. V-B, routability prediction based
on probabilistic congestion prediction provides pin assign-
ment optimization with an improved accuracy compared to
routability prediction based on basic geometric characteristics
(such as net lengths, signal skew or flyline intersections).
Obviously, prediction methods based on global routing provide
even better accuracy. However, they are impractical for
optimizing pin assignment due to two reasons. First, their
higher computational effort is significant, since many different
pin assignment configurations have to be evaluated during the
optimization of one design. Second, global routing requires
known detailed routing resources – an input not yet available
during pin assignment. Consequently, probabilistic congestion
prediction is best suited for early interface optimization.

C. Probabilistic Congestion Prediction

As discussed above, probabilistic methods of congestion
prediction estimate routability at an intermediate accuracy,
i.e., between the accuracy of basic geometric characteristics
and that of global routing (Fig. 2). They provide detailed,
local routability measures similar to global routing with shorter
computation times. This faster computation is achieved be-
cause possible routing conflicts are not resolved in detail. Yet,

probabilistic congestion prediction has not been used for pin
assignment optimization so far.

Evaluation and optimization of the routability of pin assign-
ment requires adapted probabilistic congestion prediction (see
below), using methods originally developed to guide strategic
decisions of global routing algorithms. These probabilistic
prediction schemes include methods for routing paths with an
unlimited number of bends [9], [10] and methods for routers
using up to two, four, or five bends per routing path [11]–[14].
Finally, a combination and extension of the approaches in [15]
and [16] was recently presented in [17]. It differs from all of
the afore mentioned works by not assuming probabilities for
specific possible routing paths. Instead, local routing density
distributions are deduced from distances between pins.

III. PROBABILISTIC CONGESTION PREDICTION

Pin assignment optimization regarding routability strictly
depends on the availability of a quantitative measure of
routability. This measure can only be calculated most accu-
rately if the time-consuming process of detailed routing was
actually completed before. However, the effort required for
routing is prohibitive for effective pin assignment optimization
processes. Therefore, pin assignment at an early stage of
physical design, like during interface definition and optimiza-
tion, should be based on estimates that can be determined
quickly and are known to resemble routability of the design
appropriately. These estimates typically are: predicted routing
lengths, signal skew, and signal intersections. In practice,
however, these measures are not precise enough for an effec-
tive routability optimization. For example, several different
pin assignments for the same design might have identical
estimated Manhattan routing lengths and, consequently, cannot
be distinguished by this method.

Pin assignment optimization based on global routing avoids
this problem. However, global routing is slower and requires
knowledge of locally available routing resources. Unfor-
tunately, these resources depend on technological decisions
which, in practice, are often still pending, during early in-
terface optimization. Moreover, it is desirable to optimize
pin assignment with regard to routability first and only sub-
sequently evaluate the required routing resources. This allows
technological requirements to be derived from the optimization
results.

As global routing does not provide this option, we adapt
probabilistic congestion prediction to evaluate and optimize
pin assignments with regard to routability.

A. Routing Density Distribution

A probabilistic congestion prediction is based on a statistic
density distribution un(x, y) for a single net n, which depends
on the routing width and pitch of the net and reflects the
statistic average of the final routing geometry for the net.
Typically, values for such distributions equal zero outside of
the smallest rectangle enclosing all pins of the net. Multiple
density distributions are used in practical applications [9]–
[17] because different routing strategies are resembled best by
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Fig. 3. Probabilistic routing density distribution for a two-pin net resembling
(a) Z-shape routing geometry (two bends per routing path) and (b) routing
with an unlimited number of bends [10]. Pins are located in the upper-left
and lower-right corner.
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Fig. 4. Overall estimated utilization UChip(x, y) for chip adaptec1 of the
ISPD global routing benchmark suite [18].

different density distributions. Fig. 3 illustrates two example
distributions.

The overall estimated utilization Ul(x, y) for hierarchy level
l is determined by superimposing the density distributions of
all individual nets (Fig. 4).

Ul(x, y) = ∑
n∈Nl

un(x, y), (1)

with Nl denoting the set of all nets in hierarchy level l.

B. A New Approach to Over-Congestion

When used to guide global routing, the overall utilization es-
timation Ul(x, y) is typically “smoothed” based on the locally
available routing resources. During this post-processing step,
utilization is shifted away from regions exceeding the available
routing resources (over-congested) into adjacent regions with
free capacities. This resembles constrained routing resources
that force routers to detour nets around over-congested regions.
As illustrated in Fig. 5, such a post-processing step erases
local congestion information and prevents detailed analysis
within over-congested and adjacent regions. For that reason
and because routing resource constraints are not known during
pin assignment (as discussed above), such a post-processing
step is impractical for pin assignment optimization.

Instead, we introduce the critical net length C(n) of a net
n as a new metric to interpret probabilistic prediction in over-
congested regions. It allows an improved evaluation within

U(x)(a)
Estimated
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(b)

Estimated
Utilization
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Routing Channel x

Available

Resources
Routing
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Fig. 5. Local features of the overall utilization prediction (a) are erased to
imitate the behavior of global routers in over-congested regions χ. Utilization
is shifted away from over-congested regions into adjacent regions (b).

congested regions during pin assignment optimization since
local utilization does not have to be shifted by any post-
processing step. C(n) is calculated by

C(n) = ∑
(x,y)∈Al

[Ul(x, y) − un(x, y)] ⋅ un(x, y), (2)

with l denoting the hierarchy level of net n andAl denoting the
region of that hierarchy level. According to Eq. 2, the critical
net length C(n) of net n is the sum of products of estimated
utilization for n and overall estimated utilization over all bins
(Fig. 6). Consequently, C(n) results in higher values if more
probable routing paths of net n traverse highly utilized regions
and thus, provides a detailed measure of routability for net n.

We chose to refer to C(n) as critical net length because the
factor ∑(x,y)∈Al

un(x, y) of Eq. 2 is proportional to net n’s
Manhattan length.

C. Adapted Probabilistic Prediction Model

In order to improve the accuracy of probabilistic predic-
tion, we developed a probabilistic net model which includes
modeling of detoured routing and thus renders a smoothing
post-processing step redundant. In contrast to any previous
work, such as [17], we model detours depending on the angle
of a net. As shown later, this improves the prediction accuracy
in all system levels.

Let Pn1 and Pn2 denote two pins of a net n. Further
let (xn1, yn1) denote the coordinates of pin Pn1 and let
(xn2, yn2) denote the coordinates of pin Pn2. Subsequently
the Manhattan windowMHn of net n is located as illustrated
in Fig. 7 and has the horizontal size δxn and vertical size δyn,
calculated as follows:

δxn = ∣xn1 − xn2∣ (3)
δyn = ∣yn1 − yn2∣ (4)

We define the wave front wn(d) to be a line segment within
the Manhattan windowMHn with each point having the same
Manhattan distance d to pin Pn1. In other words, a wave front
wn(d) is a diagonal line segment that is Manhattan distance d
away from pin Pn1 at any point. We define the length lwn(d)
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Fig. 6. Illustration of critical net length (see Eq. 2). The overall estimated
utilization reduced by estimated utilization of net n is shown at the top left.
The utilization of net n is shown at the top right. The resulting product of
both utilizations is shown at the bottom. The sum of products over all bins
is the critical net length C(n) of net n.

of a wave front wn(d) for d ∈ [0, δxn + δyn] as follows:

lwn(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d d ≤min(δxn, δyn)
δxn + δyn − d d ≥max(δxn, δyn)
min(δxn, δyn) else

(5)

The estimated utilization un(i, j) of point (i, j) is calcu-
lated as defined in Eq. 6, based on the wave front length
lwn(i + j) with tn denoting the routing pitch of net n. Fig. 8
illustrates the wave front length and the utilization for the
example of Fig. 7 along the dotted cut line.

un(i, j) =
tn

tn + lwn(i + j)
(6)

According to Eq. 6, the probability that a routing path will pass
through a certain point is evenly distributed along a wave front.
Furthermore, the estimated utilization is 50% at a distance of
one routing pitch tn away from the pins of net n.

D. Adapted Probabilistic Prediction Model Including De-
toured Routing Paths

We define a routing detour region Sn in the proximity
of the Manhattan window MHn to include routing detours
in the probabilistic prediction of a single net. This region

δxn

cut
i

j
δyn

Pn1(xn1, yn1)

Pn2(xn2, yn2)
cut

∣δxn -δyn∣

wn(δyn)

Sn
MHn

sn

Sn
sn sn

sn

Fig. 7. Illustration of our net model for δxn > δyn. Refer to Fig. 8 for the
plot of the wave front length and the estimated utilization along the dotted
cut line.
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Fig. 8. Wave front length and utilization estimation along dotted cut line of
Fig. 7 for δxn > δyn.

is defined by the distance sn spreading orthogonally away
from the Manhattan window into all directions except into the
“shadow” behind the two pins (as illustrated in Fig. 7).

The width sn (sn ≥ 0) of the routing detour region
Sn determines the longest possible routing path lsn that is
included in the routing prediction. This longest path follows
the outer border of Sn. We introduce the factor ηα (ηα ≥ 0) to
describe the relation between the length of the shortest possible
rectilinear routing path (HPWL) and the longest routing path
included in the prediction.

lsn = 4 ⋅ sn + δxn + δyn (7)
lsn = 4 ⋅ sn +HPWLn (8)
lsn = ηα ⋅HPWLn (9)

Auto routers typically construct routing paths on rectilinear
grids. According to experience, on average this gridded
approach causes different amounts of routing detour for nets
with different angles αn relative to the x-coordinate axis.

αn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan( yn2−yn1

xn2−xn1
) xn2 ≥ xn1, yn2 ≥ yn1

arctan( yn2−yn1

xn2−xn1
) + π xn2 < xn1

arctan( yn2−yn1

xn2−xn1
) + π xn2 = xn1, yn2 < yn1

arctan( yn2−yn1

xn2−xn1
) + 2π xn2 > xn1, yn2 < yn1

(10)

That is, α = 0○,180○ for “horizontal” nets and α = 90○,270○
for “vertical” nets. Routing these horizontal and vertical nets
typically results in more detour length, in addition to HPWL,
than routing nets with other angles. Therefore, we chose to
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define the width sn of the routing detour region Sn to depend
on the angle αn of net n.

Our choice for values of ηα is based on practical experience
of design experts and experimental data gained by examining
benchmarks of the ISPD 2008 global routing contest [18].
These data indicate that for horizontal and vertical nets, a
suitable value for factor η90 is between 1.20 and 1.45. For
nets with an angle of 45○, 135○, 225○, or 315○, the best value
for factor η45 is 1.0.

From the above assumption, i.e., η45 = 1.0 for 45○ nets,
follows that the area of region S45 is zero.

S45 = 0 ∣ η45 = 1.0 (11)

Additionally, we state that the combined region S ′n (which,
for reasons of simplification, is region Sn combined with the
two “shadowed” regions behind the two pins) plus region
MHn for any net n shall be equal to the region MH45 of a
diagonal net n45 (δx45 = δy45) of the same Manhattan length
(δxn + δyn = δx45 + δy45).

MHn + S ′n
bydef.

= MH45 (12)

(δxn + 2⋅sn) ⋅ (δyn + 2⋅sn) = δx45 ⋅ δy45 (13)

Following the above assumptions and definition we calculate
width sn of the routing detour region Sn as follows:

sn =
√

1

8
(δx2n + δy2n) −

1

4
(δxn + δyn) (14)

This results in η90 =
√
2 and η45 = 1, i.e. no detour is allowed

for the routing of diagonal nets. The longest detoured routing
path for horizontal and vertical nets is factor

√
2 − 1 longer

than their shortest possible Manhattan path. Consequently,
for a specific desired maximum length η90 ⋅HPWLn of the
detoured routing path, the value sn can be adjusted by:

s′n = sn ⋅
η90 − 1√
2 − 1

(15)

If, for example, the maximum of an allowed detoured routing
path length should be 120% of the shortest possible routing
path length, then η90 = 1.20 and s′n = sn ⋅ 0.20√

2−1
≈ 0.4828 ⋅ sn.

Please refer to Fig. 9 for a plot of ηα and sn depending on
the angle αn of net n with η90 =

√
2.
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Fig. 10. Utilization estimation including routing detour.

For the estimated utilization in the routing detour region S ′n
we state:
● The utilization is evenly distributed within S ′n.
● Any amount of utilization added to the detour region
S ′n has to be subtracted from within the Manhattan
window MHn. This assures that the overall estimated
utilization is linearly proportional to the net length and
thus, comparable/summable for several nets.

● The minimum of the estimated utilization withinMHn is
equal to the utilization value in the routing detour region
S ′n.

Let the minimum of the estimated utilization within the
Manhattan window be umin n, which is for example equal
to un(δxn,0), then the estimated utilization us n(i, j) con-
sidering detoured routing is

us n(i, j) =
⎧⎪⎪⎨⎪⎪⎩

un(i, j) − ucorr n ∣ within MHn

umin n − ucorr n ∣ in S ′n
(16)

where ucorr n has to be calculated as follows in order to fulfill
the above listed statements:

ucorr n = umin n ⋅
4s2n + 2snδxn + 2snδyn
(2sn + δxn) ⋅ (2sn + δyn)

(17)

The resulting utilization prediction that includes routing
detours through region S ′n is illustrated in Fig. 10.

IV. ROUTABILITY EVALUATION OF PIN ASSIGNMENTS

In this section, we describe how to apply the above pre-
sented congestion prediction method and the deduced critical
net length to determine routability for pin assignments. This
evaluation can then be the basis for any heuristic to optimize
pin assignment of interfaces between all hierarchy levels
(Fig. 11).

To the best of our knowledge, our work is the first to
propose probabilistic congestion prediction and using the cost
term critical net length for pin assignment optimization. We
combine new, congestion-based cost terms with the established
terms net length, signal skew and signal intersections, to ac-
complish a comprehensive detailed routability evaluation. The
individual terms are separately determined for the different
hierarchy levels of the design and are subsequently combined
into one value using weighted sums.
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Fig. 11. Integration of pin assignment optimization into the layout synthesis
process. Related input and output data are indicated on the right.

For all hierarchy levels l of system L, we determine the
following terms based on the adapted probabilistic congestion
prediction described in Sec. III:
● The maximum utilization Ûl, which allows evaluating the

severity of the most congested spots:

Ûl = max
∀(x,y)∈Al

Ul(x, y) (18)

● The overall utilization Ul:

Ul = ∑
(x,y)∈Al

Ul(x, y) (19)

● The utilization’s standard deviation σU l, which evaluates
how evenly utilization is spread:

σU l =
¿
ÁÁÀ 1

∣Al∣ − 1
∑

(x,y)∈Al

[Ul(x, y) − Ul]
2

(20)

● The average Cl of the introduced critical net length,
which allows evaluating the routability of all individual
nets in detail (see Eq. 2):

Cl =
1

∣Nl∣
∑
n∈Nl

C(n) (21)

Furthermore, we determine the overall net length rl, signal
skew sl, and the number of signal intersections Il. For that
purpose, net lengths are estimated using minimum spanning
trees, signal skew is calculated using the variation of the
respective net lengths, and signal intersections are estimated
as intersections of the nets’ flylines [7].

The overall routability cost R of a hierarchical system L, as
required for pin assignment optimization, is calculated based
upon the mentioned individual cost terms:

R =∑
l∈L

Ψl ⋅ {ψl1 ⋅ Ûl + ψl2 ⋅ Ul + ψl 3 ⋅ σU l + ψl 4 ⋅Cl

+ψl5 ⋅ rl + ψl 6 ⋅ sl + ψl7 ⋅ Il}
(22)

Weights Ψl define the importance of the individual hierarchy
levels l, while weights ψl1 . . . ψl7 define the preferences of
the individual cost terms and allow prioritization of specific
optimization targets. Varying routing widths of individual
nets in different hierarchy levels are indirectly included in the
routability costR through cost terms Ûl, Ul, σU l, and Cl, since
they are based on probabilistic congestion prediction, which
in turn depends on individual routing widths and pitches.

V. EXPERIMENTAL RESULTS

A. Probabilistic Congestion Prediction

In general, any probabilistic prediction scheme based on a
reasonable routing density distribution can be used to support
the cost function presented in Sec. IV. To prove the prediction
accuracy of our net model (Sec. III-C and III-D), we evaluated
seven density distributions using data of the ISPD 2008 global
routing contest [18]. Using 16 real-world routing benchmarks
(with up to 1.6 million nets), we compared the real global
routing results created by 12 different global routers with seven
different probabilistically predicted congestion maps (Fig. 4).
We considered the following probabilistic net models:

1) Even density distribution within the Manhattan window,
2) Lou’s net model [10] (Fig. 3 b),
3) Z-Shape density distribution (Fig. 3 a),
4) Westra’s net model [11], [12],
5) L-Shape density distribution,
6) Sham’s net model [17], and
7) our net model “WF” (Sec. III-C and III-D) using four

different parameters η90 = {1.00,1.15,1.30,1.45}.
Considering all seven probabilistic prediction methods, we
determined the average absolute estimation error for all routing
bins and the Pearson product-moment correlation coefficient
between estimated and real global routing results. We per-
formed this analysis for all 16 benchmarks and all available
global routing solutions (which were created by 12 different
routers). The results are summarized in Fig. 12. Compared
with each other, a prediction is better if the average error is
lower and if the correlation coefficient is closer to 1.

The results show that our net model using parameter
η90 = 1.45 provides the best prediction accuracy. The results
also reveal that a simple even density distribution achieves
surprisingly good prediction accuracy, while distributions of
Z-shape routing, L-shape routing, and the approaches in [10]
and [11] are more sophisticated but provide less accurate
predictions.

Please note that values larger than roughly 1.45 for η90
have no practical background. η90 = 1.45 means horizontal
and vertical nets may detour up to a length of 45% of their
shortest possible Manhattan path. In practice, only rarely nets
are routed using a longer detour. Consequently, we did not
further increase η90 even though the results shown in Fig. 12
imply this could further improve prediction accuracy.

Runtimes for probabilistic congestion prediction range be-
tween 2 s and 40 s. This underscores its efficiency compared
with global routing which, despite its accuracy in routability
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TABLE I
CHARACTERISTICS OF THREE CHIP-PACKAGE CO-DESIGNS.

Design
# of Chips
in Package # of Signal Nets

module (Fig. 13) 1 329
mcm2 (Fig. 1) 2 786
mcm7 7 2400

prediction, would be too runtime expensive to be used in
interface optimization. (According to the ISPD benchmark
data, global routers require from 2 minutes up to several hours
to route the same benchmarks.)

B. Hierarchical Pin Assignment

Having verified the accuracy of the probabilistic congestion
prediction method in the previous section, we now show how
this local probabilistic congestion prediction can effectively be
used for routability evaluation. To illustrate the effectiveness
of our evaluation terms, we present the results of three
chip package designs (Tab. I). These designs consist of an
interposer (chip carrier, package) that carries one, two, and
seven flip-chips, respectively. We assume the pin assignment
for the chip pins to be fixed and that the interface of the
package must be optimized for routability.

As shown in Tab. II, we first use the conventional routability
metrics Manhattan net length, signal skew, Euclidean net
length, and signal intersections to optimize pin assignment.
(Please note that it is not possible to optimize design “module”
for a minimal overall Manhattan length because obviously
all possible pin assignments result in identical lengths.) We
then compare these pin assignments to a pin assignment
that is optimized based on our local congestion prediction
as described in Sec. IV. To report the actual routability of
the different pin assignment solutions in Tab. II, we use the
Cadence Specctra auto router to obtain the detailed routing
solutions (see also Fig. 13).

TABLE II
ANALYSIS OF THE ROUTABILITY OF PIN ASSIGNMENTS OPTIMIZED ON

THE BASIS OF BASIC GEOMETRIC CHARACTERISTICS OR OUR
CONGESTION PREDICTION METHOD (ROUTING RESULTS ACHIEVED WITH

CADENCE SPECCTRA AUTO ROUTER).

Design
Routability
Optimization

Required #
of Routing

Layers
Wiring
Length Vias

Manufac-
turing

Cost
module Manhattan length Optimization not possible

Euclidean length 6 40.1 746 100%
Signal skew 6 40.1 723 100%
Flyline intersections 4 40.0 739 67%
Predicted
local congestion 2 40.0 668 33%

mcm2 Manhattan length 8 9.9 842 100%
Euclidean length 8 9.9 836 100%
Signal skew 8 10.1 882 100%
Flyline intersections 6 9.9 822 75%
Predicted
local congestion 6 9.9 801 75%

mcm7 Manhattan length 8 88.1 3364 100%
Euclidean length 6 87.9 3078 75%
Signal skew 8 88.9 3232 100%
Flyline intersections 6 88.0 3062 75%
Predicted
local congestion 4 88.1 2962 50%

The routability of a pin assignment is considered to be better
if the detailed routing can be completed in less routing layers
and with less overall routing length and vias. The results show
that the achieved overall routing lengths are virtually identical
for all pin assignments, while the numbers of required routing
layers and vias differ significantly.

The pin assignments optimized based on local congestion
prediction provide the best routability. For example, design
“module” can be completely routed in two layers only when
using our methodology. For this example we achieved a
reduction by four and two routing layers, respectively, by
introducing the critical net length, our new local congestion-
prediction-based term, to evaluate routability. Since man-
ufacturing costs for modules and boards are dominated by
the number of required routing layers, this is equivalent to a
reduction of the manufacturing costs by approximately 67%
and 50%, respectively [19].

The above results affirm the efficiency of the improved
cost function in one hierarchy level of chip-package-board co-
design, namely package routing. Moreover, the presented cost
function equally enables a concurrent optimization of several
hierarchy levels (overall routability of package and board).
Thus, for pin assignment tasks with multiple hierarchy levels,
two characteristics of our approach support the overall goal of
improved routability: Firstly, a fast and detailed routability
evaluation achieved by local congestion-based terms. Sec-
ondly, the ability to concurrently optimize all system levels,
i.e. being able to find a trade-off of the routabilities in the
individual system levels such that the overall routability is
maximized in a time-efficient manner.
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Fig. 13. Pin assignment task of chip-package co-design (a). Sample pin
assignment (flylines) (b) and the respective detailed routing solution (c). Only
a subset of all chip and package pins is illustrated.

VI. SUMMARY

We presented an efficient methodology to evaluate the over-
all routability of a hierarchical system during pin assignment
optimization of the interfaces between hierarchy levels. Our
quantitative evaluation enables detailed manual and automatic
optimization of the interfaces. It provides a more detailed rout-
ability evaluation than previous approaches because we include
local-congestion-based terms for each hierarchy level. At the
same time, it is faster than global-routing-based methods since
potential routing conflicts are not resolved in detail. Ignoring
the details of specific routing conflicts is furthermore beneficial
because resolving them requires detailed knowledge of routing
resource constraints. However, often this information is
not yet available during the early optimization of interfaces.
Consequently, probabilistic congestion prediction is inherently
better suited for early routability evaluation of interfaces than
global routing.

To achieve the improved evaluation, we adapted proba-
bilistic congestion prediction to the special requirements of
interface routability evaluation at early stages of physical
design. We validated the accuracy of our adaptation by
comparing it to six other prediction methods using data of
the ISPD 2008 global routing contest.

Thereupon we introduced metrics like the critical net length,
which are based on adapted local congestion prediction and
reflect details of routability in all levels of a hierarchical de-
sign. We illustrated their efficiency for routability optimization
during interface definition using three co-designs. For this
purpose, we applied different routability metrics during pin
assignment optimization and compared the resulting detailed
routing results.
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