

978-1-5090-0490-4/16/$31.00 ©2016 IEEE

IIP Framework:
A Tool for Reuse-Centric Analog Circuit Design

Benjamin Prautsch*, Uwe Eichler*, Sunil Rao*, Björn Zeugmann*, Ajith Puppala*, Torsten Reich*, Jens Lienig
†

*Fraunhofer Institute for Integrated Circuits IIS, Division Engineering of Adaptive Systems EAS, Dresden, Germany
{benjamin.prautsch, uwe.eichler, sunil.rao, bjoern.zeugmann, ajith.puppala, torsten.reich}@eas.iis.fraunhofer.de

†
Dresden University of Technology, Dresden, Germany; jens@ieee.org

Abstract—Current design of analog integrated circuits is still a

time-consuming manual process resulting in static analog blocks

which can hardly be reused. In order to address this problem, a

new framework to ease reuse-centric bottom-up design of analog

integrated circuits is introduced. Our IIP Framework

(IIP: Intelligent Intellectual Property) enables the development of

highly technology-independent analog circuit generators

applicable in multiple design environments. IIP Generators are

parameterizable descriptions of each view of an analog block, i.e.,

layout, schematic, and symbol. They allow the adaptation of

complex layouts within seconds to minutes in order to

incorporate hardly estimable parasitics and further

considerations into the design flow. Due to the abstract generator

description, valid design data is created for very different

technologies such as 28 nm and 180 nm bulk CMOS, 28 nm FD-

SOI, and others. The design experiment shows that procedural

generators can be an effective tool for the efficient design of

analog integrated circuits.

Keywords—Layout; Analog Design Automation; Generator;

Technology Independence; Reuse; Efficient Design; FD-SOI

I. INTRODUCTION

Analog circuit design is still a matter of comprehensive
manual tasks. It includes the selection of circuit architectures
and circuit topologies, a proper definition of the verification
environment (testbench), circuit sizing, and finally the iterative
design of all related layouts including placement and routing
led by many very detailed expert decisions. This enormous
amount of very different and separated steps results in long
design times [1]. Combined with the lack of analog automation
analog designers spend a great amount of manual work even
for small problem sizes. Especially analog layout design is very
tedious. In contrast, the digital domain benefits from complete
synthesis flows. Thus, analog parts of ICs are not only critical
regarding ever more important time-to-market, but they are
also the main reason for circuit failure [2].

A. State of the Art

Basically two major approaches arose in order to address
the analog design problem, particularly optimization-based and
procedural generator-based methods [2, 3]. Both concepts are
expected to collaborate in an industrial “bottom-up meets top-
down design flow” [1], which is partly comparable to the more
abstract template-based optimization approaches in academia
[4, 5]. Optimization-based approaches are a very general way
of addressing the analog design problem. A prerequisite for this
methodology is that many constraints are handled properly [6]
which, in addition, must be propagated throughout the entire

circuit hierarchy [7]. Generators, on the other hand, are
procedural “bottom-up” [1] descriptions of analog blocks with
a dedicated structure of often comparably low complexity
resulting in very high execution speeds. Their procedural
nature can be subdivided into two major groups, particularly
parameterized cells [8, 9, 10], which create blocks temporarily
in the computer memory, and circuit generators or IP
generators (IP: intellectual property) which create all views of
an analog block as a persistent library cell similar to manual
designs [11, 12, 13]. In addition, higher-level templates are
often used in optimization-based approaches in. They refer
either to more detailed parameterized cells [14, 15] or to more
abstract layout representations [16, 17, 18]. Thus, in [18]
templates are called either geometric or structural/symbolic,
respectively. Furthermore, besides procedural description
which is the focus of this paper, layouts can be fully described
as an optimization problem as well [19].

Former procedural approaches either do not consider
advanced design rules [15, 20, 21] or report related issues [9].
In [22] an abstract placement graph is utilized which is created
from the generator code at runtime. It represents the intent of
the designer, thus, such generators adopt the template-based
principle on a detailed generator level. Additionally, most
generator-based approaches are either fixed to a specific design
environment or create parameterized cells only (see Fig. 1).

B. Our Contribution

In comparison to former approaches, our IIP Framework
integrates the following advances into a single environment

iPDK [23]

IIP Framework:

28 nm – 350 nm

(This Work)

Design Data

Cadence

Synopsys

Others

Parameterized Cells

PyCells [9]:

Portable

Design

Environment

Library Cells

[11, 12, 13]:

180 nm – 350 nm

Templates

[16, 17, 18]:

Symbolic

Templates

[14, 15]

Geometric T.

pCells [8]:

Not Portable

Procedural Generators

Fig. 1 Our contribution to procedural bottom-up analog design
automation. While symbolic templates represent abstract descriptions of
layouts, generators (or geometric templates) create cells. Library cells
allow much more complex design hierarchies seamlessly contrary to
parameterized cells (where additional steps would be required). Our IIP
Generators, thus, create library cells and enable reuse over a wide

spectrum of technologies as well as over multiple design environments.

Professor Lienig
Schreibmaschinentext
 Please quote as: B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich, J. Lienig "IIP Framework: A Tool for Reuse-Centric Analog Circuit Design," Proc. of the Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD 2016), Lisbon, Portugal, 27-30 June 2016.

which can either be used by an optimization-based framework
or directly by a designer:

• An abstract programming interface is provided to ease
technology independence. Additionally, an abstract
placement graph representation is created automatically.

• The generator code programmed using the IIP

Framework is independent from the design environment.

• Each (parameterizable) generator produces persistent
library cells similar to manually designed cells instead of
parameterized cells.

This paper is organized as follows. In Section II the IIP

Framework is presented. A generator-based design example is
discussed in Section III and finally, Section IV summarizes
and concludes this work.

II. THE IIP FRAMEWORK

Our new IIP Framework (IIP: Intelligent Intellectual
Property) is focused on the procedural generator-based
approach. It provides a programming interface, the IIP API,
used for the development of generic generators (IIPs) for all
views of an analog circuit. The IIP API is based on the object-
oriented programming language Python which eases both
modularization of the circuit description and the development
of generators. The modularization of our IIP Framework
targets the design of flexible (reusable) analog circuit
generators which are highly technology-independent as well as
independent from the design environment (DE). Such highly
generic generators are suitable to reduce the design time due
to improved reuse both for a particular design task as well as
for another design project and other technologies (porting).
According to our former work [12] and other approaches [10,
20], we target a complex generator library—however, for a
much wider range of technologies.

A. Abstraction of Technologies

For our IIP approach we have implemented a separate
command layer called TAL (Technology Abstraction Layer),
which separates detailed technology-dependent tasks
concerning parameterization and detail placement from the
particular procedural generator code. These technology-
dependent tasks are executed by a dedicated part of the IIP

Framework leading to a clear separation between generator
code and technological details which results in a high degree
of technology independence of our generators. Instead of
defining generator code which calculates layout locations, the

TAL syntax allows the definition of detailed relative

placement relations (cardinal directions) and creates an
abstract graph representation of these relations during run
time. Technology data will then be used internally to calculate
the final DRC-compliant locations of layout entities depending
on the TAL commands (please refer to [22] for more details).
The graph is an abstract representation of the designer’s intent
which can later be used either for visual code checking (GML
files are created and can be visualized) or for the application
of algorithms which can check and/or modify the design. New
technology data and new design rules are implemented in the
separated TAL layer which prevents changes at any existing
generator code.

B. Abstraction of Design Environments (DE)

The idea of DE-independence is already followed on a
rather low (device) level to create interoperable PDKs, so-
called iPDKs [23]. The IIP Framework is implemented in a
way which allows simple addition of interfaces to further
design tools and databases (also interaction with OpenAccess
databases would be possible). Fig. 2 shows the concept of this
modularity. The API used by IIP Generators allows a rather
high level and object-oriented, thus compact, generator
description which, therefore, results in a comparably large
number of script commands in the design environment (= high
IIP code efficiency). If a new design environment is used, only
the related low-level interfaces must be developed. Currently,
interfaces for both Cadence Virtuoso® and Synopsys Custom
Designer® exist.

This flexibility is an advantage when providing or porting
analog IP for different teams or projects and is not possible
with DE-specific soft IP solutions such as in [8, 11, 24].

C. Generator Structure

Each generator is programmed in the same structural way
using class inheritance. The following methods are always
utilized. First, in param_spec() parameters and their constraints
are defined which either are automatically shown in a
parameter mask (used by the designer) or hierarchically
utilized by higher-level generators. Second, in param_check()
cross-dependencies of parameters are defined which are
considered automatically. Third, the generator parameters are
prepared using method prepare() to maintain coherent data for
all views of a generated cell. This includes that identical
parameters for both schematic and layout (e.g. transistor width)
are stored only once to improve LVS-compliance and code
compactness. Finally, separate methods are implemented to
describe the circuit representations (views) for schematic,
layout, and symbol (as well as optionally a testbench).

D. Generator-Based Design Flow for Improved Reuse

Instead of fixed, sized designs, parameterizable IIP

Generators describe all required views in a flexible way. They

may provide initial sizing values for each technology based on

formulas which utilize access to process parameters from the

technology interface through TAL (see Section II.A), as e.g.

mobility factors. Of course, these initial values must be

subsequently refined either by a designer and/or optimizer.

The particular development flow is as follows. First, a

schematic is designed manually. Then, using our Schematic

II
P

 F
r
a
m

e
w

o
r
k

IIP Core:
IIP API, Abstract Generator Classes, Database Classes, Technology Abstraction Layer TAL

IIP Generators

D
E

Cadence DE API Synopsys DE API

IIP DE Interface (Syn.)

Python-based IIP API

Synopsys Custom DesignerCadence Virtuoso

IIP DE Interface (Cadence)

IPC IPC

Other DE

IPC

Fig. 2 Layer model of the IIP Framework to access the design database
of the corresponding design environment (DE). IIP Generators and IIP
core software can be used unchanged for further design environments.
Only the DE-specific interfaces need to be developed.

Importer, the existing schematic is converted into an initial

generator code template which exactly replicates the input

schematic design (using the input data as default parameters,

which can be adapted). Moreover, TAL is used to convert

particular technology-dependent parameters into their generic

representation (which may not be a bijection, thus, the initial

generator might require few changes to correct ambiguities).

The code template is the basis to integrate additional

functionality into the generator. Moreover, the layout is

programmed in this step. Once the procedural generator code is

finished, it can be instantiated together with other generators or

PDK devices into a new analog block. Using the Schematic

Importer again, this block can be imported into another

generator template followed by the aforementioned procedure.

This way, hierarchical IIP Generators are built efficiently.

III. DESIGN EXPERIMENT

We have designed a 12 bit current-steering digital-to-

analog converter (CS-DAC) in the STM 28 nm FD-SOI

process as part of a test chip. Its current mirror stage is large in

size but has a very regular structure. Contrary to the general

reuse concept presented in [12], we have decided to develop a

dedicated generator for this particular task. Even such

(structurally fixed) dedicated generators are likely to be

reused, since the chosen DAC topology is frequently utilized

in many designs. Moreover, the regular structure of the CS-

DAC can be implemented efficiently using iterative generator

code. Therefore, the overall design effort including the next

test chip and the final chip is reduced. In addition, our flexible

IIP can be reused in future designs for other specifications and

other technologies.

A. Topology of the DAC Output Stage

A segmented current method is adopted in our
implementation, wherein eight MSBs (most significant bits)
are realized by 255 thermometer code units with a weight of
16 each. The remaining four LSBs (least significant bits) are
binary weighted (1, 2, 4, and 8). This segmentation targets the
trade-off between minimized silicon area while still achieving
the required non-linearity specification. A total of 4095
cascode current mirror stages (plus one dummy) are required
and must be matched. All cascode unit cells are placed using
the so-called Q² random walk switching scheme [25] to
achieve high intrinsic matching. This scheme is instantiated 16
times in the DAC matrix. Additionally, we used the back-gate
contact available in the 28 nm FD-SOI process to lower the
threshold voltage of the cascode transistors, which decreases
by about 85 mV/V [26]. In contrast, the body connection in
bulk technologies is typically tied to a static voltage. The
consideration of this structural technological difference is
important in order to achieve robust and reusable generator
descriptions since it cannot be mapped through TAL.

B. Abstract and Concrete DAC Layout

Using our IIP API, we defined the DAC matrix layout in an
abstract and hierarchical way which is highly independent from
the technology (see layouts in Fig. 3). This means that the
cascode current mirror output itself and its hierarchical

instantiation within the matrix structure is defined in a
parameterizable manner. The procedural generator code is
transformed into an abstract graph representation during the
generator run (see the graph for one element of a cascode in
Fig. 3a; the overall graph is not shown due to its complexity).

The implementation of the generator is subdivided into two
steps. First, the matrix arrangement is defined in a dedicated
class implementation storing the Q² random walk scheme with
instance rotation. In the second step, this representation is used
to place each cascode cell. These cells contain a predefined and
unconnected routing mesh in order to connect their output net.
For each placement of a particular cell it is calculated which
routing channels of this mesh (horizontal or vertical) are to be
connected, meaning that vias are created on a higher hierarchy
level in a way comparable to switch boxes. Once each cascode
cell is placed and connected, the overall “random” (but regular)
array is finished (see Figures 3d, e).

C. Design Results

The DAC matrix generator was executed for multiple
parameter sets. Especially width and spacing of the routing
tracks were varied. This strongly affects the parasitic
resistance of metal lines (and parasitic capacitances in-
between) in the 28 nm process in a way, which can hardly be
estimated, since sheet parasitics vary greatly depending on the
absolute size of layout shapes. Table 1 summarizes the
estimated manual design effort, the IIP Generator

a) Placement graph of a cascode element (with congruent shape)

b) Cascode with routing (28 nm) c) Cascode (180 nm)

d) DAC matrix with vias e) Q² random walk matrix with vias

Fig. 3 Illustration of the design experiment. In (a) the abstract placement
graph representation of one folded MOS transistor which is a part of the
cascode is illustrated. Solid edges represent placement relations while
dashed edges represent hierarchical relations (more details can be found
in [22]). Figures (b) and (c) depict examples of the cascode in 28 nm
(with routing mesh) and 180 nm, respectively. Figures (d) and (e) show
the complete DAC matrix and the Q² random walk matrix, respectively;
both in 28 nm with vias marked black.

development effort, the number of IIP code lines, the number
of generated DE commands (here: SKILL [8], cf. Fig. 2), the
quotient of DE commands divided by IIP code lines (IIP code
efficiency), minimal required reuse for amortization
(cumulative IIP Generator development time over cumulative
manual design time), and the runtimes in both 180 nm and
28 nm. The reason for the difference of the runtimes is that in
the more advanced process node more complex design rules
are to be considered. The table shows that numerous DE
commands (they are approximately proportional to the manual
effort) were executed which results in high IIP code efficiency
especially for regular structures. The initial IIP development
effort pays out with the first reuse (minimal required reuse is
1.8). Although the generator development is less efficient in
lower hierarchy levels (more reuse is required), it is very
efficient in the higher ones.

The DAC matrix IIP Generator was initially developed
with focus on a 28 nm bulk technology. With an effort of only
one day, including related changes on TAL and the back-gate,
we made the generator compatible with the 28 nm FD-SOI
technology in which we finally taped out. In addition, our IIP
Generator was tested in a 180 nm bulk technology. Currently,
six different technologies ranging from 350 nm down to
28 nm are available through TAL (22 nm is planned). Other
approaches with such high reusability are not known to us.

TABLE 1 COMPARISON OF THE EFFORT OF MANUAL AND

GENERATOR-BASED LAYOUT DESIGN INCLUDING RUNTIMES
 Two cascode

elements (one IIP)

Cascode Q² random

walk matrix

Overall

DAC matrix

Est. manual time

block (cumulative)

0.25 Days

(0.5 Days)

0.5 Days

 (1.0 Day)

1 Week

(1.2 Weeks)

1 Week

(2.2 Weeks)

IIP Generator

development time

block (cumulative)

1 Week

(1 Week)

1 Week

(2 Weeks)

1.5 Weeks

(3.5 Weeks)

0.5 Weeks

(4 Weeks)

IIP code lines

layout (schematic)

700 (80)

1300 (40) 750 (70) 175 (550)

DE commands

block (all blocks)

1314, 1356

(2470)

359

(3029)

3954

(6983)

17151

(24134)

DE commands/

IIP code

1.9 0.3 5.3 98

Min. required reuse 10 6.7 2.9 1.8

CPU runtime

IIP @ 180 nm

1.9 s 4.3 s 21.6 s 110 s

CPU runtime

IIP @ 28 nm

2.2 s 5.1 s 30.0 s 117.4 s

IV. SUMMARY AND CONCLUSION

In this work we have presented a new tool to ease analog
integrated circuit design and design reuse. Our IIP Framework
(IIP: Intelligent Intellectual Property) enables the development
of highly technology-independent, parameterizable, and
hierarchical procedural circuit generators which can be
executed in multiple design environments. Utilizing our reuse-
centric method, we have designed the complex current mirror
stage of a 12 bit current steering DAC as parameterizable
generator in about one month. This generator was tested in
three very different technologies and was utilized in an out-
taped DAC design in 28 nm FD-SOI.

In our opinion, fast and robust generators are essential in
advanced processes due to the high amount of hardly estimable
parasitics and complex design rules. Although generators are
structurally static, especially regular layouts can be realized
very efficiently. Moreover, abstract generator descriptions
allow a high degree of parameter flexibility and technology

independence. We believe that advanced generators are key
elements in order to address the bottom-up part of future
automation in leading-edge analog integrated circuit design.

ACKNOWLEDGEMENTS

We would like to thank Andreas Krinke for his valuable
suggestions and comments on this paper. The presented work
was partly supported by the European Union and the Free State
of Saxony within the project THINGS2DO (Ref. No.
16ES0240).

REFERENCES

[1] J. Scheible and J. Lienig, "Automation of Analog IC Layout – Challenges and Solutions,"
Proc. Int. Symp. on Physical Design, pp. 33–40, 2015.

[2] G. G. E. Gielen and R. A. Rutenbar, "Computer-Aided Design of Analog and Mixed-Signal
Integrated Circuits," Proc. IEEE 88.12, pp. 1825–1854, December 2000.

[3] R. A. Rutenbar, "Analog Synthesis (and Verification) Revisited: Whats's Missing?," Int.

Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit

Design, SMACD, Sep. 2012, http://rutenbar.cs.illinois.edu/publication/. [Accessed May
2016]

[4] H. Graeb, et. al., "Analog Layout Synthesis - Recent Advances in Topological
Approaches," Proc. Conf. on Design, Automation and Test in Europe, 2009.

[5] R. Martins, N. Lourenco, S. Rodrigues, J. Guilherme and N. Horta, "AIDA: Automated
Analog IC Design Flow from Circuit Level to Layout," Proc. Int. Conf. on Synthesis,

Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD),
2012.

[6] G. Jerke and J. Lienig, "Constraint-driven Design — The Next Step Towards Analog
Design Automation," Proc. 2009 Int. Symp. on Physical Design, pp. 75–82, 2009.

[7] A. Krinke, G. Jerke and J. Lienig, "Constraint Propagation Methods for Robust IC Design,"
Proc. ZuE 2015; 8. GMM/ITG/GI-Symp. Reliability by Design, pp. 1–8, 2015.

[8] Cadence, "Virtuoso Parameterized Cell Reference Product Version 6.1.6," 2015.

[9] Synopsys, "PyCell Studio," [Online]. Available:
https://www.synopsys.com/Tools/Implementation/Customimplementation/Pages/pycell-
studio.aspx. [Accessed May 2016].

[10] J. Crossley, et. al., "BAG: A Designer-Oriented Integrated Framework for the Development
of AMS Circuit Generators," Proc. IEEE/ACM Int. Conf. on Computer-Aided Design

(ICCAD), pp. 74–81, 2013.

[11] IPGen 1Stone Developer, [Online]. Available: http://www.ipgenme.de/eda-and-ip-
products/1stone-developer.html. [Accessed May 2016].

[12] T. Reich, U. Eichler, K.-H. Rooch and R. Buhl, "Design of a 12-bit Cyclic RSD ADC
Sensor Interface IC Using the Intelligent Analog IP Library," Proc. ANALOG 2013 –

Entwicklung von Analogschaltungen mit CAE-Methoden, March 2013.

[13] T. Reich, H. D. B. Prautsch, U. Eichler and R. Buhl, "Silicon Proof of the Intelligent
Analog IP Design Flow for Flexible Automotive Components," Proc. Design, Automation

& Test in Europe Conf. & Exhibition, pp. 403–404, 2015.

[14] R. Castro-López, O. Guerra, E. Roca and F. V. Fernández, "An Integrated Layout-Synthesis
Approach for Analog ICs," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 27, no. 7, pp. 1179–1189, Jul 2008.

[15] R. Castro-López, F. V. Fernández, F. Medeiro and A. Rodriguez-Vazquez, "Generation of
Technology-Independent Retargetable Analog Blocks," Proc. Analog Integrated Circuits

and Signal Processing, vol. 33, no. 2, pp. 157–170, 2002.

[16] A. Unutulmaz, G. Dündar and F. V. Fernández, "A Template Router," Proc. 20th European

Conf. on Circuit Theory and Design (ECCTD), pp. 334–337, 2011.

[17] R. Martins, N. Lourenco and N. Horta, "LAYGEN II—Automatic Layout Generation of
Analog Integrated Circuits," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pp. 1641–1654, 2013.

[18] N. Jangkrajarng, S. Bhattacharya, R. Hartono and C.-J. R. Shi, "IPRAIL—Intellectual
Property Reuse-Based Analog IC Layout Automation," Integration, the VLSI Journal, vol.
36, no. 4, pp. 237–262, 2003.

[19] H. Habal and H. Graeb, "Constraint-Based Layout-Driven Sizing of Analog Circuits," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 8,
pp. 1089–1102, 2011.

[20] X. Jingnan, J. Vital and N. Horta, "A SKILL-based Library for Retargetable Embedded
Analog Cores," Proc. Conf. on Design, Automation and Test in Europe, pp. 768–769, 2001.

[21] K. Lampaert, G. Gielen and W. Sansen, "Module Generation," Analog Layout Generation

for Performance and Manufacturability, Boston, ISBN 0-7923-8479-2, 1999, pp. 53–69.

[22] B. Prautsch, U. Eichler, T. Reich, A. Puppala and J. Lienig, "Abstract Technology Handling
for Generator-Based Analog Circuit Design," Proc. ZuE 2015; 8. GMM/ITG/GI-Symp.

Reliability by Design, pp. 1–6, 2015.

[23] IPL (Interoperable PDK Libraries) Alliance, "IPLnow," [Online]. Available:
https://www.iplnow.com/. [Accessed May 2016].

[24] A. Graupner, R. Jancke and R. Wittmann, "Generator Based Approach for Analog Circuit
and Layout Design and Optimization," Proc. Design, Automation & Test in Europe Conf. &

Exhibition (DATE), IEEE, 2011, pp. 1–6.

[25] G. A. Van der Plas, J. Vandenbussche, W. Sansen, M. S. Steyaert and G. G. Gielen, "A 14-
Bit Intrinsic Accuracy Q² Random Walk CMOS DAC," IEEE Journal of Solid-State

Circuits, pp. 1708–1718, 1999.

[26] P. Flatresse, "UTBB-FDSOI Design & Migration Methodology," [Online]. Available:
http://cmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf. [Accessed
May 2016].

