
Generators, Templates, and Code Generation for
Flexible Automation of Array-Style Layouts

Benjamin Prautsch*, Reimund Wittmann†, Uwe Eichler*, Uwe Hatnik*, Jens Lienig§
*Fraunhofer IIS/EAS, Institute for Integrated Circuits, Division Engineering of Adaptive Systems, Dresden, Germany

{Benjamin.Prautsch, Uwe.Eichler, Uwe.Hatnik}@eas.iis.fraunhofer.de
†IMST GmbH, Kamp-Lintfort, Germany, reimund.wittmann@imst.de

§Dresden University of Technology, Dresden, Germany; jens@ieee.org

Abstract—The design of integrated circuits from the
specification onward aims at the successful validation by
silicon measurements. One key milestone in this process
is the completion of the layout. This, however, is very
challenging as many iterations are usually necessary due
to parasitic effects. In order to address this challenge in
analog layout design, our work extends procedural
generator-based automation. A declarative array
template is embedded into the common generator
structure. Following this structure, generator code is
automatically generated with a schematic as the input.
Using this approach, a flexible generator is created
immediately that allows automatic design of array-style
layouts with template-based flexibility and at generator-
based execution speed. In addition, the template enables
early and fast parasitic estimates. Our combined
approach contributes to analog layout automation by
bridging the gap between generators and templates.

Keywords—Analog automation, generator, template, array
layout, reuse, design migration, analog layout

I. INTRODUCTION

Analog integrated circuit design is a very sophisticated
task that requires much expertise and consumes considerable
efforts. Contrary to digital design, analog suffers from a lack
of automation which results in long design time and limited
reuse. As technologies evolve and become more advanced
while cycle times are getting ever shorter, analog design
engineers must meet increasingly challenging schedules.
Thus, several approaches are followed to accelerate design.

Most pragmatically, design engineers concentrate on few
types of designs so that they become very familiar with them.
This increases productivity as they can then take known best-
practice decisions (e.g., hierarchical organization or additional
unconnected layout devices). However, such steps are all
manually done. Thus, in the last decades several additional
features were included into common design environments in
order to improve productivity. Well-known examples are
schematic-driven layout (SDL), placement tools for matching
structures, visually-assisted automation, or instant design rule
check (DRC). These environments are of great help, however,
still most parts of analog are implemented manually.

Lately, tools that support more automation through reuse
and generation of cells begin to find their ways into design
environments. For layout reuse, flexible templates are used
[1, 2]. They usually represent the layout arrangement in an
abstract way and guide layout creation through optimization
approaches [3, 4, 5]. Subsequently, the actual layout
generation step follows which, depending on the capability of
the generation engine, might support multiple process
technologies. At this level, procedural layout generators come
into picture [6, 7, 8, 9, 10] that automate generation of devices

and building blocks. The advantage of generators is that they
provide fast and parameterizable solutions to known problems
employing expert knowledge [11]. However, their drawback
is that they often lack flexibility and hardly allow structural
changes as adapting their source code often requires
significant development time. Templates, on the other hand,
allow much flexibility in layout definition; they also help
considering (geometric) constraints that are essential for
analog layout automation [12, 13, 14].

We believe that the combination of templates and
generators is very promising to tackle the aforementioned
shortcomings. In [15], generators are combined with
optimization based on swarm intelligence showcasing the
advantage of combining flexible techniques with generator-
based approaches. More generally, [11] proposes a bottom-up
meets top-down design flow approach besides a continuous
layout design flow in order to tackle analog layout automation.

In this work, we combine the bottom-up generator
approach with the top-down template approach and add
automatic schematic-to-code creation, which, to the best of
our knowledge, has not been done before. This way,
generators are automatically derived from an input schematic
while incorporating the known flexibility of a template for
user-defined placement. As the result, generator-based
automation with more flexibility and faster generator
development becomes possible. Our approach combines the
following contributions into a single flow (Fig. 1):
• Generator framework that is technology-agnostic [16],
• Template approach for flexible placement and routing,
• Automated source code creation for fast generator

availability (that can also be extended manually).

Cadence® Cadence®Generator Framework

Generator
Creator

Generator
Code

Optional Generator
Programming

(Adds Features)
Generated

Design Data

Input Design Generalization Utilization

Static Input
Design

Technology
Abstraction (TAL)

Template-based
Layout API

User
Parameters

Flexible
Generator

Figure 1 Illustration of the flow for automated generator code
creation and utilization (with our contributions highlighted in blue).
First, a static schematic is analyzed by the Generator Creator. All
PDK devices are then mapped through technology abstraction (TAL
[16]) and assigned to initial positions of the array template in the
generator code. The resulting generator can be executed by the user.
It allows to (re)arrange and adapt the layout generated for
appropriate results across sizing and PDKs. Optionally, the
generator code can be extended in order to implement additional
functionality.

Please quote as: B. Prautsch, R. Wittmann, U. Eichler, U. Hatnik, J. Lienig "Generators, Templates, and Code Generation for Flexible Automation of Array-
Style Layouts," Proc. of the SMACD'21, Erfurt, Germany, July 2021.

II. OUR DESIGN FLOW APPROACH

When utilizing generators, the analog design flow is often
extended by an additional hierarchy of (generated) building
blocks. Instead of designing static blocks, procedural
generators describe and create the required views flexibly. As
designers might be required to programing code, it has even
been called a “paradigm shift in AMS circuit design” [17]. So
far, however, generator programming has been the
bottleneck.

A. Automated Generator Creation
As designers are usually not into programming and as

every design differs, automated generator code creation is
desirable. Therefore, we follow an automated approach that
creates flexible generators for schematic, symbol, and layout
automatically based on a static input design. Our approach
standardizes the code structure, thus, simplifies generator
development and code creation. At the same time, valuable
expert knowledge (being a key aspect of generators [11]) is
stored in an executable way in order to accelerate both design
and reuse.

In Fig. 1, the automatic process of generator creation is
shown. Using our Generator Creator, an existing schematic
(and symbol) is converted into parameterizable generator
code. It can exactly replicate the input schematic through a
default parameter set, creates a similar symbol (or a standard
symbol), and assigns the instances found in the schematic to
the abstract array-style template (see Section II.B).
Moreover, a technology abstraction layer (TAL) [16] is used
in order to map particular technology-dependent parameters
to a generic representation (e.g. adaptation of the name of the
width parameter of a transistor or the type of a transistor). The
generator code created is the basis to include additional
functionality into the generator. Programming the initial code
manually would consume significant development time.

Once the generator is created, it can be parameterized and
executed in order to create variants of building blocks of a
design including the related array-style layouts. As the result,
the created generator can be used for designs with different
specifications or process technologies. This, in turn, enables
fast layout prototyping and design.

B. Template-based Layout
Templates are widely used in optimization-based

approaches in order to define floorplanning and partly
placement and/or routing. They are abstract definitions of the
target layout. In contrast to generators, they are not
executable. Examples are LDS [1], dynamically generated
templates in AIDA [18], as well as methods that use
templates for porting like IPRAIL [4] or the fast prototyping
approach in [5]. Templates have different appearances. They
can be described in a flexible way [1, 19] or represent regular
structures, such as arrays [20] or “streets” [21]. Some EDA
approaches also use templates for both placement and routing
[21, 22].

Inspired by the template approach, this work follows the
idea of structuring procedural generator code using flexible
layout templates for the layout description (currently limited
to array-styles). This is beneficial as programming
structural/topological variants, flexible sizing, placement
options, and routing at the same time is hard to maintain in
procedural code. Instead, our approach first describes the

abstract layout arrangement declaratively using a template
(that has to be implemented before). In the next step, this
description is analyzed and translated into positions for each
element of the template.

Based on a given placement, the following routing strategy
is applied to the array. The regions between instance columns
form the routing channels. Their size is not static but an
adaptive result from the routing contained (implemented as
composite pattern). The routing approach assumes unit
devices but is not limited to it and connects two nets each.
The method first prioritizes cohesive unit devices available
on either side of a routing channel. The algorithm prevents
occupying neighboring routing channels (which means that
only two in three routing channels will be used to connect
similar devices). Then, the remaining devices are collected
and assigned to the routing channels in the same way while
starting with the least filled ones. Subsequently, vertical wires
are drawn to each unit device (from bottom to the most distant
logical device) and a horizontal trunks plus vias follow.
Finally, a procedural command sequence translates all these
abstract elements defined in the template to “real” instances,
wires, and vias in the actual layout.

As a result, layout description and program flow are
structured separately which improves flexibility and eases
generator development. Utilization of the Generator Creator
also reduces faults significantly as the code is generated
automatically and as checks for logical errors are included
using callbacks (see III.B). This means that it is possible to
promptly detect fatal LVS errors such as missing instances in
case of wrong user inputs or faulty (manual) code updates. A
valid LVS finalizes the verification of a generated building
block.

As the template controls the first part of the layout
sequence (see III.B), it can afterwards be combined with
procedural code. This way, much effort for placement can be
automated in order to reduce overall code development time
of custom generators. Additional generator code can, among
others, include details of the layout generation such as
additional shapes, vias, well contacts, or routing details.

III. APPLICATION IN OUR GENERATOR FRAMEWORK

This work extends the functionality of our generator
framework in [9]. The Layout API (application programming
interface) is included into the generator structure adding
array-style template flexibility. Our Generator Creator has
been adapted in order to automatically create generator code
that controls this template via the generator GUI.

A. Layout API
The Layout API is an extension to the generator API that

adds template capability. It allows to use declarative and
procedural code within the same generator. In this work, it
uses (among others) a grid-based approach comparable to the
approach in [20], meaning the layout area is segmented into
rows and columns. Each row’s height can vary as well as each
column’s width. Fields of the grid can be defined to represent
a device or a hierarchical template recursively. The generator
that utilizes this API requires only few code lines to define and
interpret a template in order to create the actual layout at the
level of the design environment.

B. Programming Interface and Generator Structure

Generators implemented with our method apply a similar
code structure using class inheritance. Particular tasks are
separated in specialized methods which are then executed by
the base class for each generator (Fig. 2). First, the code
defines user parameters which are shown in a parameter mask
(for interaction with the designer) or hierarchically passed
through the generator hierarchy. Second, callbacks are defined
that automatically consider cross-dependencies between
parameters in order to validate user inputs. Third, common
properties of all views of the generated cell(s) are defined in
the prepare() method in order to ensure consistency. Finally,
respective methods are implemented to describe the circuit
representations (views) for schematic, layout, and symbol.

The template has been included into this structure in order
to enable user configuration (param_spec()), run checks
(param_check()), and control the layout process layout().
class Generator(gen.HierBlock):
 def param_spec(self): # parameters and constraints
 self.template = Template(…)
 def param_check(self):# parameter updates & callbacks
 self.template.update(…)
 def prepare(self): # common data for all views
 self.template.evaluate(…)
 def schematic(self, cv):
 # procedural schematic description
 def layout(self, cv):
 self.template.draw(cv) # template execution
 myShape = cv.create_shape(…) # optional code

Figure 2 Basic structure of (hierarchical) generator code. The
names of the class methods are predefined in the abstract base class
that implements the general execution order of all methods when
run. In addition to schematic and layout, also methods for symbol
and testbench creation can be defined in the generator code.

C. Design Reuse with the Generator Creator
Our Generator Framework [9] interfaces with the

Cadence® Virtuoso® design environment where the
Generator Creator can be run in order to translate existing
schematics into generator code. The Generator Creator
executes the following steps: (1) the schematic is read and all
elements of it are stored, (2) all data fetched is converted into
a PDK-independent description, (3) the generic data is
translated into generator code fragments that represent the
generator structure given in Section III.B., and (4) the
fragments are merged to a complete generator file. This
method tremendously accelerates generator development as
thousands of lines of code are created within seconds.

Each created generator can be run immediately or
whenever required. As the generator code links parameter
mask and Layout API, entry fields allow to modify the
template. As default, an (almost) quadratic array is defined
with the devices assigned. Based on user input, the
arrangement can be adapted (e.g. number of matrix rows or
the placement algorithm). All parameters entered into the
generator GUI can be saved, too, in order to reuse them across
projects and even PDKs along with the generator. For
example, the placement definition can be reused this way.

IV. DESIGN EXPERIMENT

We validated our presented approach on a capacitor
arrangement that has a regular structure based on unit devices.
It is part of a SAR ADC architecture [23, 24] that we intend to
build for very complex matching constraints. Such structures

cannot efficiently be designed manually by following best
practices (see Section I). This prevents close to optimal unit
capacitor placement with minimal influence of the
interconnects. The main unit capacitor array of the popular
differential split-cap architecture consists of 2 sub arrays, each
again split into two arrays for MSB and LSB (most and least
significant bit) values. So, in total, 4 sub DACs have to be
combined into a single layout for high sub DAC linearity, high
MSB accuracy, N channel and P channel symmetry, and
matching requirements. The capacitor ratios have to match in
presence of inherent layout parasitics in order to meet the SAR
target resolution requirements. It is not easy to find a well-
working layout arrangement, as the unit capacitor size and
total capacitor array configuration strongly influence both
random and systematic errors of the circuit.

Using our combined template and generator approach, we
are able to fast try placement options and estimate the related
parasitic effects. While manual placement would be very
time-consuming, the Generator Creator combined with the
template approach results in a flexible generator to allow fast
early analyses. An example schematic with 1024 capacitors
(twice 256 for LSB and 252 for MSB plus eight coupling
capacitors) was defined. They represent the capacitances of
the block diagram shown in Fig. 3. In order to achieve a well-
matched placement, the logical devices must be split into unit
devices which are arranged close and with sufficient size [25].
At the same time, a common-centroid pattern compensates
process gradients [26]. In order to achieve a good
arrangement, we adapted the common-centroid algorithm
from [27] which creates a highly dispersed placement.

Output

S
w
i
t
c
h
e
s

+

-

Vcm1

VpC6, … C11

Vcm2

VpC5, … C0, C0’

VnC23, … C18

Vcm3

VnC17, … C12, C12’

Vcm4

MSB
(N-1)C, … C

LSB
(N-1)C, … C, C’

Pos

Neg

Input and
references

Clock and
control Ccn

Ccp

Figure 3 Coarse block diagram of the SAR ADC core. The capacitor
array instantiates the capacitors C0 to C23 (and dummies C0’ and
C12’) for MSB and LSB on both positive (Pos) and negative (Neg)
channel. The split cap coupling capacitors are indicated, too.

Additionally, systematic errors from the routing are to be
considered, too, as even a perfectly matched placement will
be degraded significantly by parasitic routing capacitances
[28], especially with very small capacitances [29].

The overall time from schematic import to initial layout
generation is only a few minutes, with an overall layout
generation run time of about 70 seconds. A reusable generator
is created, too. This way, large parts of the layout can be
generated much faster than manually possible, which enables
optimization over parameter variants and arrangements. A
generated capacitor arrangement is shown in Fig. 4.

(a) (b)

Figure 4 Generated capacitor arrangement. (a) shows the abstract
layout template with each logical device colored identically among
unit devices and (b) depicts the generated layout with the capacitor
instances of logical device C4, C10, C16, and C22 being marked.

In order to support design decisions, we included a method
into the template that quickly estimates the effective
capacitance ratio of the logical capacitors with routing. Based
on the areas of both unit devices and routing, estimates of the
effective capacitance ratio are calculated (Fig. 5). The
influence of routing is estimated by the template using the
cumulative routing area per logical device over substrate. In
the PDK used, both capacitor area and routing area contribute
by about the same amount. Thus, the curves of both device
area and routing area over logical capacitor (that should be
congruent) can be added. The overall ratio is already
acceptable, especially when considering the fast generation
speed. Some extensions of the routing options might still be
included in order to further improve the result.

Figure 5 Areas of both capacitors (dash-dotted) and routing
(dashed) that contribute to the capacitance ratio (solid). While the
capacitors realize the exact target ratio, the routing causes
deviations. Still, a good overall ratio is achieved quickly.

V. CONCLUSION AND OUTLOOK
Our presented approach enables accelerated and more

flexible generator-based layout creation. It combines a
template-based Layout API with generators which, in
addition, are created automatically through a Generator
Creator. This novel combination allows flexible array-style
layout automation that is user-driven as designers have full
control over the placement. In addition, our approach eases
generator-based reuse across design projects and process
technologies. We validated our methodology using a
capacitor arrangement for later use in a SAR ADC. With this,
a flexible, template-driven generator is automatically created
which both helps to accelerate layout design and eases
parasitic estimation (that would not be possible this fast
manually). We believe that the combination of templates and
generators is a valuable automation approach to meet both
flexibility and fast generation speed in a user-driven way.

As next step, we will extend the Layout API to support
more template types. In addition, we will include more
routing options in order to provide higher flexibility and to
further extend parasitic trade-off estimations.

ACKNOWLEDGMENT
This work was enabled by the project AnastASICA (grant

no. 16ES0990 and 16ES0989) which is funded by BMBF.
Many thanks to Christian Albrecht who significantly
improved and extended the Generator Creator and many
thanks to the reviewers for providing detailed feedback.

REFERENCES

[1] A. Unutulmaz, G. Dündar and F. V. Fernández, "LDS - A Description Script for
Layout Templates," 2011 20th European Conf. on Circuit Theory and Design
(ECCTD), pp. 857-860, 2011.

[2] R. Castro-López, O. Guerra, E. Roca and F. V. Fernández, "An Integrated
Layout-Synthesis Approach for Analog ICs," IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1179-1189, 2008.

[3] R. Martins et al., "AIDA: Robust Layout-Aware Synthesis of Analog ICs
Including Sizing and Layout Generation," 2015 Int. Conf. on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), pp. 1-4, 2015.

[4] N. Jangkrajarng et al., "IPRAIL—Intellectual Property Reuse-based Analog IC
Layout Automation," Integration, the VLSI Journal, vol. 36, pp. 237-262, 2003.

[5] P. Pan et al., "A Fast Prototyping Framework for Analog Layout Migration With
Planar Preservation," IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 9, pp. 1373-1386, 2015.

[6] A. Graupner, R. Jancke and R. Wittmann, "Generator Based Approach for
Analog Circuit and Layout Design and Optimization," 2011 Design, Automation
& Test in Europe (DATE), pp. 1-6, 2011.

[7] D. Payne, "A Review of an Analog Layout Tool Called HiPer DevGen," Nov. 28
2011. [Online]. Available: https://semiwiki.com/x-subscriber/tanner-eda/885-a-
review-of-an-analog-layout-tool-called-hiper-devgen/. [Accessed 14 05 2021].

[8] E. Chang et al., "BAG2: A Process-Portable Framework for Generator-Based
AMS Circuit Design," 2018 IEEE Custom Integrated Circuits Conf. (CICC), pp.
1-8, 2018.

[9] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich and J.
Lienig, "IIP Framework: A Tool for Reuse-Centric Analog Circuit Design," 13th
Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD 2016), pp. 1-4, 2016.

[10] T. Reich, U. Eichler, K.-H. Rooch and R. Buhl, "Design of a 12-bit Cyclic RSD
ADC Sensor Interface IC Using the Intelligent Analog IP Library," ANALOG
2013 - Entwicklung von Analogschaltungen mit CAE-Methoden, 2013.

[11] J. Scheible und J. Lienig, „Automation of Analog IC Layout – Challenges and
Solutions,“ Proc. of Int. Symp. on Physical Design (ISPD'15), pp. 33-40, 2015.

[12] A. Krinke, M. Mittag, G. Jerke and J. Lienig, "Extended Constraint Management
for Analog and Mixed-Signal IC Design," 2013 European Conf. on Circuit
Theory and Design (ECCTD), pp. 1-4, 2013.

[13] A. Krinke, "Constraint Propagation for Analog and Mixed-Signal Integrated
Circuit Design," Fortschritt-Berichte VDI, vol. 20, no. 474, Dissertation. 2020.

[14] A. Nassaj, J. Lienig and G. Jerke, "A New Methodology for Constraint-Driven
Layout Design of Analog Circuits," Proc. of the 16th IEEE Int. Conf. on
Electronics, Circuits and Systems (ICECS 2009), pp. 996-999, 2009.

[15] D. Marolt, Layout Automation in Analog IC Design with Formalized and
Nonformalized Expert Knowledge, Dissertation. Stuttgart, 2018.

[16] B. Prautsch, U. Eichler, T. Reich, A. Puppala and J. Lienig, "Abstract
Technology Handling for Generator-Based Analog Circuit Design," GMM-
Fachbericht 83, Reliability by Design (ZuE 2015), VDE Verlag, pp. 56-61, 2015.

[17] J. Crossley et al., "BAG: A Designer-Oriented Integrated Framework for the
Development of AMS Circuit Generators," Computer-Aided Design (ICCAD),
2013 IEEE/ACM Int. Conf., pp. 74-81, 2013.

[18] R. Martins, A. Canelas, N. Lourenço and N. Horta, "On-the-fly Exploration of
Placement Templates for Analog IC Layout-Aware Sizing Methodologies," 2016
13th Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD), pp. 1-4, 2016.

[19] B. Prautsch, U. Hatnik, U. Eichler and J. Lienig, "Template-Driven Analog
Layout Generators for Improved Technology Independence," Proc. of ANALOG
2018, pp. 156-161, 2018.

[20] B. Prautsch, U. Eichler, T. Reich and J. Lienig, "MESH: Explicit and Flexible
Generation of Analog Arrays," 2017 14th Int. Conf. on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design (SMACD),
pp. 1-4, 2017.

[21] A. C. Kammara and A. König, "Absynth: A Comprehensive Approach for Full
Front to Back Analog Design Automation," 2018 15th Int. Conf. on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), pp. 165-168, 2018.

[22] A. Unutulmaz, G. Dündar and F. V. Fernández, "A Template Router," 2011 20th
European Conf. on Circuit Theory and Design (ECCTD), pp. 334-337, 2011.

[23] L. Sun, Q. Dai, C. Lee and G. Qiao, "The Analysis on the Parasitic Capacitors
Effect of the Fully Differential Architecture of SAR ADC," Applied Mechanics
and Materials, vol. 20–23, pp. 342-345, 2010.

[24] Y. Zhu, U.-F. Chio, H.-G. Wei, S.-W. Sin, S.-P. U and R. P. Martins, "Linearity
Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs," VLSI
Design, 2010.

[25] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, "Matching
Properties of MOS Transistors," IEEE Journal of Solid-State Circuits, vol. 24,
no. 5, pp. 1433-1439, 1989.

[26] A. Hastings, The Art of Analog Layout, 2. ed., Pearson Prentice Hall, 2006.
[27] J. Chen, P. Luo and C. Wey, "Placement Optimization for Yield Improvement of

Switched-Capacitor Analog Integrated Circuits," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 2, pp. 313-318,
2010.

[28] M. P. Lin, Y. He, V. W. Hsiao, R. Chang and S. Lee, "Common-Centroid
Capacitor Layout Generation Considering Device Matching and Parasitic
Minimization," IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, pp. 991-1002, 2013.

[29] H. Omran, H. Alahmadi and K. N. Salama, "Matching Properties of Femtofarad
and Sub-Femtofarad MOM Capacitors," IEEE Trans. on Circuits and Systems I:
Regular Papers, vol. 63, no. 6, pp. 763-772, 2016.

	I. Introduction
	II. Our Design Flow Approach
	A. Automated Generator Creation
	B. Template-based Layout

	III. Application in Our Generator Framework
	A. Layout API
	B. Programming Interface and Generator Structure
	C. Design Reuse with the Generator Creator

	IV. Design Experiment
	V. Conclusion and Outlook
	Acknowledgment
	References

