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Abstract—The design of integrated circuits from the 
specification onward aims at the successful validation by 
silicon measurements. One key milestone in this process 
is the completion of the layout. This, however, is very 
challenging as many iterations are usually necessary due 
to parasitic effects. In order to address this challenge in 
analog layout design, our work extends procedural 
generator-based automation. A declarative array 
template is embedded into the common generator 
structure. Following this structure, generator code is 
automatically generated with a schematic as the input. 
Using this approach, a flexible generator is created 
immediately that allows automatic design of array-style 
layouts with template-based flexibility and at generator-
based execution speed. In addition, the template enables 
early and fast parasitic estimates. Our combined 
approach contributes to analog layout automation by 
bridging the gap between generators and templates. 
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I. INTRODUCTION

Analog integrated circuit design is a very sophisticated 
task that requires much expertise and consumes considerable 
efforts. Contrary to digital design, analog suffers from a lack 
of automation which results in long design time and limited 
reuse. As technologies evolve and become more advanced 
while cycle times are getting ever shorter, analog design 
engineers must meet increasingly challenging schedules. 
Thus, several approaches are followed to accelerate design.  

Most pragmatically, design engineers concentrate on few 
types of designs so that they become very familiar with them. 
This increases productivity as they can then take known best-
practice decisions (e.g., hierarchical organization or additional 
unconnected layout devices). However, such steps are all 
manually done. Thus, in the last decades several additional 
features were included into common design environments in 
order to improve productivity. Well-known examples are 
schematic-driven layout (SDL), placement tools for matching 
structures, visually-assisted automation, or instant design rule 
check (DRC). These environments are of great help, however, 
still most parts of analog are implemented manually. 

Lately, tools that support more automation through reuse 
and generation of cells begin to find their ways into design 
environments. For layout reuse, flexible templates are used 
[1, 2]. They usually represent the layout arrangement in an 
abstract way and guide layout creation through optimization 
approaches [3, 4, 5]. Subsequently, the actual layout 
generation step follows which, depending on the capability of 
the generation engine, might support multiple process 
technologies. At this level, procedural layout generators come 
into picture [6, 7, 8, 9, 10] that automate generation of devices 

and building blocks. The advantage of generators is that they 
provide fast and parameterizable solutions to known problems 
employing expert knowledge [11]. However, their drawback 
is that they often lack flexibility and hardly allow structural 
changes as adapting their source code often requires 
significant development time. Templates, on the other hand, 
allow much flexibility in layout definition; they also help 
considering (geometric) constraints that are essential for 
analog layout automation [12, 13, 14].  

We believe that the combination of templates and 
generators is very promising to tackle the aforementioned 
shortcomings. In [15], generators are combined with 
optimization based on swarm intelligence showcasing the 
advantage of combining flexible techniques with generator-
based approaches. More generally, [11] proposes a bottom-up 
meets top-down design flow approach besides a continuous 
layout design flow in order to tackle analog layout automation. 

In this work, we combine the bottom-up generator 
approach with the top-down template approach and add 
automatic schematic-to-code creation, which, to the best of 
our knowledge, has not been done before. This way, 
generators are automatically derived from an input schematic 
while incorporating the known flexibility of a template for 
user-defined placement. As the result, generator-based 
automation with more flexibility and faster generator 
development becomes possible. Our approach combines the 
following contributions into a single flow (Fig. 1): 
• Generator framework that is technology-agnostic [16],
• Template approach for flexible placement and routing,
• Automated source code creation for fast generator

availability (that can also be extended manually).
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Figure 1  Illustration of the flow for automated generator code 
creation and utilization (with our contributions highlighted in blue). 
First, a static schematic is analyzed by the Generator Creator. All 
PDK devices are then mapped through technology abstraction (TAL 
[16]) and assigned to initial positions of the array template in the 
generator code. The resulting generator can be executed by the user. 
It allows to (re)arrange and adapt the layout generated for 
appropriate results across sizing and PDKs. Optionally, the 
generator code can be extended in order to implement additional 
functionality. 
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II. OUR DESIGN FLOW APPROACH

When utilizing generators, the analog design flow is often 
extended by an additional hierarchy of (generated) building 
blocks. Instead of designing static blocks, procedural 
generators describe and create the required views flexibly. As 
designers might be required to programing code, it has even 
been called a “paradigm shift in AMS circuit design” [17]. So 
far, however, generator programming has been the 
bottleneck. 

A. Automated Generator Creation
As designers are usually not into programming and as

every design differs, automated generator code creation is 
desirable. Therefore, we follow an automated approach that 
creates flexible generators for schematic, symbol, and layout 
automatically based on a static input design. Our approach 
standardizes the code structure, thus, simplifies generator 
development and code creation. At the same time, valuable 
expert knowledge (being a key aspect of generators [11]) is 
stored in an executable way in order to accelerate both design 
and reuse. 

In Fig. 1, the automatic process of generator creation is 
shown. Using our Generator Creator, an existing schematic 
(and symbol) is converted into parameterizable generator 
code. It can exactly replicate the input schematic through a 
default parameter set, creates a similar symbol (or a standard 
symbol), and assigns the instances found in the schematic to 
the abstract array-style template (see Section II.B). 
Moreover, a technology abstraction layer (TAL) [16] is used 
in order to map particular technology-dependent parameters 
to a generic representation (e.g. adaptation of the name of the 
width parameter of a transistor or the type of a transistor). The 
generator code created is the basis to include additional 
functionality into the generator. Programming the initial code 
manually would consume significant development time. 

Once the generator is created, it can be parameterized and 
executed in order to create variants of building blocks of a 
design including the related array-style layouts. As the result, 
the created generator can be used for designs with different 
specifications or process technologies. This, in turn, enables 
fast layout prototyping and design.  

B. Template-based Layout
Templates are widely used in optimization-based

approaches in order to define floorplanning and partly 
placement and/or routing. They are abstract definitions of the 
target layout. In contrast to generators, they are not 
executable. Examples are LDS [1], dynamically generated 
templates in AIDA [18], as well as methods that use 
templates for porting like IPRAIL [4] or the fast prototyping 
approach in [5]. Templates have different appearances. They 
can be described in a flexible way [1, 19] or represent regular 
structures, such as arrays [20] or “streets” [21]. Some EDA 
approaches also use templates for both placement and routing 
[21, 22]. 

Inspired by the template approach, this work follows the 
idea of structuring procedural generator code using flexible 
layout templates for the layout description (currently limited 
to array-styles). This is beneficial as programming 
structural/topological variants, flexible sizing, placement 
options, and routing at the same time is hard to maintain in 
procedural code. Instead, our approach first describes the 

abstract layout arrangement declaratively using a template 
(that has to be implemented before). In the next step, this 
description is analyzed and translated into positions for each 
element of the template. 

Based on a given placement, the following routing strategy 
is applied to the array. The regions between instance columns 
form the routing channels. Their size is not static but an 
adaptive result from the routing contained (implemented as 
composite pattern). The routing approach assumes unit 
devices but is not limited to it and connects two nets each. 
The method first prioritizes cohesive unit devices available 
on either side of a routing channel. The algorithm prevents 
occupying neighboring routing channels (which means that 
only two in three routing channels will be used to connect 
similar devices). Then, the remaining devices are collected 
and assigned to the routing channels in the same way while 
starting with the least filled ones. Subsequently, vertical wires 
are drawn to each unit device (from bottom to the most distant 
logical device) and a horizontal trunks plus vias follow. 
Finally, a procedural command sequence translates all these 
abstract elements defined in the template to “real” instances, 
wires, and vias in the actual layout.  

As a result, layout description and program flow are 
structured separately which improves flexibility and eases 
generator development. Utilization of the Generator Creator 
also reduces faults significantly as the code is generated 
automatically and as checks for logical errors are included 
using callbacks (see III.B). This means that it is possible to 
promptly detect fatal LVS errors such as missing instances in 
case of wrong user inputs or faulty (manual) code updates. A 
valid LVS finalizes the verification of a generated building 
block. 

As the template controls the first part of the layout 
sequence (see III.B), it can afterwards be combined with 
procedural code. This way, much effort for placement can be 
automated in order to reduce overall code development time 
of custom generators. Additional generator code can, among 
others, include details of the layout generation such as 
additional shapes, vias, well contacts, or routing details. 

III. APPLICATION IN OUR GENERATOR FRAMEWORK

This work extends the functionality of our generator
framework in [9]. The Layout API (application programming 
interface) is included into the generator structure adding 
array-style template flexibility. Our Generator Creator has 
been adapted in order to automatically create generator code 
that controls this template via the generator GUI. 

A. Layout API
The Layout API is an extension to the generator API that

adds template capability. It allows to use declarative and 
procedural code within the same generator. In this work, it 
uses (among others) a grid-based approach comparable to the 
approach in [20], meaning the layout area is segmented into 
rows and columns. Each row’s height can vary as well as each 
column’s width. Fields of the grid can be defined to represent 
a device or a hierarchical template recursively. The generator 
that utilizes this API requires only few code lines to define and 
interpret a template in order to create the actual layout at the 
level of the design environment. 



B. Programming Interface and Generator Structure

Generators implemented with our method apply a similar
code structure using class inheritance. Particular tasks are 
separated in specialized methods which are then executed by 
the base class for each generator (Fig. 2). First, the code 
defines user parameters which are shown in a parameter mask 
(for interaction with the designer) or hierarchically passed 
through the generator hierarchy. Second, callbacks are defined 
that automatically consider cross-dependencies between 
parameters in order to validate user inputs. Third, common 
properties of all views of the generated cell(s) are defined in 
the prepare() method in order to ensure consistency. Finally, 
respective methods are implemented to describe the circuit 
representations (views) for schematic, layout, and symbol.  

The template has been included into this structure in order 
to enable user configuration (param_spec()), run checks 
(param_check()), and control the layout process layout(). 
class Generator(gen.HierBlock): 
  def param_spec(self): # parameters and constraints 
    self.template = Template(…) 
  def param_check(self):# parameter updates & callbacks 
    self.template.update(…) 
  def prepare(self):    # common data for all views 
    self.template.evaluate(…) 
  def schematic(self, cv): 
    # procedural schematic description 
  def layout(self, cv):  
    self.template.draw(cv) # template execution 
    myShape = cv.create_shape(…) # optional code 

Figure 2  Basic structure of (hierarchical) generator code. The 
names of the class methods are predefined in the abstract base class 
that implements the general execution order of all methods when 
run. In addition to schematic and layout, also methods for symbol 
and testbench creation can be defined in the generator code. 

C. Design Reuse with the Generator Creator
Our Generator Framework [9] interfaces with the

Cadence® Virtuoso® design environment where the 
Generator Creator can be run in order to translate existing 
schematics into generator code. The Generator Creator 
executes the following steps: (1) the schematic is read and all 
elements of it are stored, (2) all data fetched is converted into 
a PDK-independent description, (3) the generic data is 
translated into generator code fragments that represent the 
generator structure given in Section III.B., and (4) the 
fragments are merged to a complete generator file. This 
method tremendously accelerates generator development as 
thousands of lines of code are created within seconds. 

Each created generator can be run immediately or 
whenever required. As the generator code links parameter 
mask and Layout API, entry fields allow to modify the 
template. As default, an (almost) quadratic array is defined 
with the devices assigned. Based on user input, the 
arrangement can be adapted (e.g. number of matrix rows or 
the placement algorithm). All parameters entered into the 
generator GUI can be saved, too, in order to reuse them across 
projects and even PDKs along with the generator. For 
example, the placement definition can be reused this way. 

IV. DESIGN EXPERIMENT

We validated our presented approach on a capacitor 
arrangement that has a regular structure based on unit devices. 
It is part of a SAR ADC architecture [23, 24] that we intend to 
build for very complex matching constraints. Such structures 

cannot efficiently be designed manually by following best 
practices (see Section I). This prevents close to optimal unit 
capacitor placement with minimal influence of the 
interconnects. The main unit capacitor array of the popular 
differential split-cap architecture consists of 2 sub arrays, each 
again split into two arrays for MSB and LSB (most and least 
significant bit) values. So, in total, 4 sub DACs have to be 
combined into a single layout for high sub DAC linearity, high 
MSB accuracy, N channel and P channel symmetry, and 
matching requirements. The capacitor ratios have to match in 
presence of inherent layout parasitics in order to meet the SAR 
target resolution requirements. It is not easy to find a well-
working layout arrangement, as the unit capacitor size and 
total capacitor array configuration strongly influence both 
random and systematic errors of the circuit. 

Using our combined template and generator approach, we 
are able to fast try placement options and estimate the related 
parasitic effects. While manual placement would be very 
time-consuming, the Generator Creator combined with the 
template approach results in a flexible generator to allow fast 
early analyses. An example schematic with 1024 capacitors 
(twice 256 for LSB and 252 for MSB plus eight coupling 
capacitors) was defined. They represent the capacitances of 
the block diagram shown in Fig. 3. In order to achieve a well-
matched placement, the logical devices must be split into unit 
devices which are arranged close and with sufficient size [25]. 
At the same time, a common-centroid pattern compensates 
process gradients [26]. In order to achieve a good 
arrangement, we adapted the common-centroid algorithm 
from [27] which creates a highly dispersed placement.  
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Figure 3  Coarse block diagram of the SAR ADC core. The capacitor 
array instantiates the capacitors C0 to C23 (and dummies C0’ and 
C12’) for MSB and LSB on both positive (Pos) and negative (Neg) 
channel. The split cap coupling capacitors are indicated, too. 

Additionally, systematic errors from the routing are to be 
considered, too, as even a perfectly matched placement will 
be degraded significantly by parasitic routing capacitances 
[28], especially with very small capacitances [29].  

The overall time from schematic import to initial layout 
generation is only a few minutes, with an overall layout 
generation run time of about 70 seconds. A reusable generator 
is created, too. This way, large parts of the layout can be 
generated much faster than manually possible, which enables 
optimization over parameter variants and arrangements. A 
generated capacitor arrangement is shown in Fig. 4. 

(a)  (b) 

Figure 4  Generated capacitor arrangement. (a) shows the abstract 
layout template with each logical device colored identically among 
unit devices and (b) depicts the generated layout with the capacitor 
instances of logical device C4, C10, C16, and C22 being marked. 



In order to support design decisions, we included a method 
into the template that quickly estimates the effective 
capacitance ratio of the logical capacitors with routing. Based 
on the areas of both unit devices and routing, estimates of the 
effective capacitance ratio are calculated (Fig. 5). The 
influence of routing is estimated by the template using the 
cumulative routing area per logical device over substrate. In 
the PDK used, both capacitor area and routing area contribute 
by about the same amount. Thus, the curves of both device 
area and routing area over logical capacitor (that should be 
congruent) can be added. The overall ratio is already 
acceptable, especially when considering the fast generation 
speed. Some extensions of the routing options might still be 
included in order to further improve the result. 

 
Figure 5  Areas of both capacitors (dash-dotted) and routing 
(dashed) that contribute to the capacitance ratio (solid). While the 
capacitors realize the exact target ratio, the routing causes 
deviations. Still, a good overall ratio is achieved quickly. 

V. CONCLUSION AND OUTLOOK 
Our presented approach enables accelerated and more 

flexible generator-based layout creation. It combines a 
template-based Layout API with generators which, in 
addition, are created automatically through a Generator 
Creator. This novel combination allows flexible array-style 
layout automation that is user-driven as designers have full 
control over the placement. In addition, our approach eases 
generator-based reuse across design projects and process 
technologies. We validated our methodology using a 
capacitor arrangement for later use in a SAR ADC. With this, 
a flexible, template-driven generator is automatically created 
which both helps to accelerate layout design and eases 
parasitic estimation (that would not be possible this fast 
manually). We believe that the combination of templates and 
generators is a valuable automation approach to meet both 
flexibility and fast generation speed in a user-driven way. 

As next step, we will extend the Layout API to support 
more template types. In addition, we will include more 
routing options in order to provide higher flexibility and to 
further extend parasitic trade-off estimations. 
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