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Abstract

Further automation of analog and mixed-signal integrated circuit design requires the consistent consideration of a growing
number of design constraints through all design stages. However, the verification of system-level constraints is only possible
towards the end of the design process when all necessary parameters are known. In this paper, we present a method
for constraint state prediction in the early stages of an analog IC design project. This allows constraint consideration
already during system-level design. By modeling yet unknown design parameters as random variables, the probability of a
constraint to be fulfilled can be estimated. Constraint sensitivity analysis is used to identify design parameters with the
most influence on a constraint’s state. Finally, design parameters are optimized to maximize the probability of fulfilling all
constraints.

1 Introduction

The very first step of every design process is to specify
all requirements known at the time. The same applies to
the design of analog and mixed-signal integrated circuits
(AMS ICs). In this case, the objective is to create a circuit
design that fulfills all requirements in the specification.
As a first step, this set of requirements is translated into
formal constraints that restrict the values of target design
parameters.
Right from the start, all phases of the design process should
consider these constraints to create a valid end result [1],
[2]. Hence, it is necessary to calculate a constraint’s state,
which in turn depends on the values of all its target design
parameters. However, these values are not known until
later stages. As a consequence, constraint verification and
consideration are not possible until these later stages are
finished.
Early stages, such as system-level design, have an enormous
impact on the quality of the result because corresponding
design decisions influence all following design steps. In
order to enable constraint consideration in these early stages,
we propose a method forconstraint state prediction. The
key is to model yet unknown design parameters as random
variables. Afterwards, a constraint’s probability of being
fulfilled can be calculated. This allows well-informed
decisions in early stages despite unknown exact design
parameter values.
In addition, ourconstraint sensitivity analysisranks de-
sign parameters with regard to their impact on constraint
states. This allows early identification of critical design
parameters requiring particular attention later on. Finally, a
novel method fordesign parameter optimizationgenerates
suggestions for design parameter values that maximize the
probability of constraints being fulfilled.
After presenting related work in Section 2, we explain
our constraint modeling approach in Section 3. Section 4
describes the method of predictive constraint verification,

while Sections 5 and 6 give details on constraint sensitivity
analysis and optimization. After presenting experimental
results in Section 7, the paper ends with a summary and
conclusion.

2 Related Work

Our work combines procedures from two main areas:
(a) sampling of multidimensional distributions, and (b) sen-
sitivity analysis.
The simplest method for sampling of multidimensional
distributions is random sampling, where new samples are
generated while ignoring all previous samples. Stratified
sampling improves this approach by allowing to divide the
value range in so-called stratas from which the samples are
generated. This allows fine-grained control of the level of
detail with which each range should be sampled. [3]
Latin Hypercube sampling is a compromise between (sim-
ple) random sampling and stratified sampling. It divides
the value range automatically and creates samples for each
interval. [4]
The second main area is sensitivity analysis which creates a
link between changes of a model’s output and changes of its
inputs. On the one hand, there are methods for local sensitiv-
ity analysis, e.g., differential sensitivity analysis. Methods
for global sensitivity analysis include multi-parametric sen-
sitivity analysis (MPSA) and variance-based methods, such
as Fourier amplitude sensitivity testing (FAST). [5]

3 Constraint Modeling

Constraints define requirements on design parameters. Fol-
lowing the approach from [6], we model a constraintcas
function of design parameters that returns a Boolean value
representing the state of the constraint: True if it is fulfilled,
or False if it is violated.

c:P→ B,(p1,p2,...,pn) → b (1)
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Table 1Examples of Probability Distributions

Probability
Distribution

Support
supp(·)

Di
sc
re
te
 
Di
st
ri
bu
ti
on
s Bernoulli k∈{0,1}

Finite Binomial k∈{0,...,n}
Support Degenerate k=k0

Uniform k∈{a,...,b}

Geometric k∈{1,...,∞}
Infinite Logarithmic k∈{1,...,∞}
Support Negative Binomial k∈{0,...,∞}

Poisson k∈{0,...,∞}

C
on
ti
nu
ou
s 
Di
st
ri
bu
ti
on
s

Dirac Delta x=x0
Bounded Kumaraswamy x∈[0,1]
Interval Triangular x∈[a,b]

Uniform x∈[a,b]

Semi- Chi x∈(0,∞)
Infinite Gamma x∈(0,∞)
Interval Log-normal x∈(0,∞)

Laplace x∈ (−∞,∞)
Infinite Logistic x∈ (−∞,∞)
Support Normal x∈ (−∞,∞)

Student’st x∈ (−∞,∞)

Therefore, the codomain ofcisB={True,False}. The
function arguments are the constraint’s target parameters
p1,p2,...,pn. The values of these parameters determine
the constraint’s state.
Constraints can be created by logical combination of
Boolean criteria. These criteria may be constructed from
general, e.g. real-valued functions by introducing upper
and/or lower bounds, conditions like inequality, equality,
existence in a set, and so on. Equation (2) shows an example
constraint on the widthwand aspect ratio of an IC.

c(w,h)=(w<700 μm)∧ 0.8<
w

h
<1.4 (2)

The “Global Constraint Catalog” [7] lists about 350 different
constraints that may be used as criteria in a constraint
function definition.

4 Constraint State Prediction

4.1 Estimation of Unknown
Design Parameters

In order to determine the state of a design constraint, the
values of all its target parameters have to be known. However,
these values are likely to be unknown in early stages of the
design process. Therefore, to predict a constraint’s state
early on, we model unknown design parameters as random
variables to reflect this uncertainty.
Each random variable is described by some probability
distribution (PD), the so-calledprior probability distribution,
or justprior1. A random variable can be (a) discrete (its

1cf. Bayesian inference
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Figure 1(a) Probability density function (PDF) and (b)
cumulative distribution function (CDF) for an exemplary
design parameter that was estimated using a triangular
distribution with lower bounda=1, upper boundb=6
and modec=4. The maximum probability isf(c)=
2·(b−a)−1=0.4.

PD is described by a probability mass function (PMF)),
(b) continuous (its PD is described by a probability density
function (PDF)), or (c) a mixture of both types. Any PD may
be used to define an unknown design parameter.Table 1
gives examples of common probability distributions and
their respective supports, i.e. the set or range where the
distribution is not zero-valued. Choosing a PD depends
on (a) the design parameter’s type: discrete or continuous,
(b) the set or range where this parameter has non-zero values,
and (c) the knowledge about the shape of its PMF or PDF. A
simple example is a continuous design parameter for which
lower bound, upper bound and mode, i.e. the value with
maximum probability, can be estimated. In general, such
an estimation is based on design experience. In this case, a
continuous triangular distribution may be used, as shown in
Figure 1.

4.2 Predictive Constraint Verification

Constraint functions can be very complex. In order to predict
whether or not a constraint will be satisfied later, we calculate
the constraint state for large number of possible combinations
of design parameter values. We use either Monte Carlo
simulations (MCS) or Latin hypercube sampling (LHS) to
generate a large number of random values for each design
parameter’s PMF or PDF.
MCS allows fast calculation of random samples for given
parameter distributions. For each samplesi, a random
numberrifrom a uniform distribution in the range[0,1]
is sampled independently. Then, we use the inverse CDF
to convert this value to a random number of the target
distribution (cf.Figure 2a). However, depending on the
number of samples, the histogram deviates from the PDF,
as shown inFigure 3a. Ranges with low probability might
be underrepresented.
In contrast, LHS promises a more evenly sampling of the
parameter distribution. The key is to divide the range of each
variable inNdisjoint intervals of equal probabilityp=1/N.
Using the inverse CDF, each probability interval boundary
1/N,2/N,...,(N−1)/Nis transformed into the equivalent
interval boundary within the variable range.Figure 2b
shows these interval boundaries as solid lines. Afterwards,
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Figure 2Sampling of a random variable based on its
cumulative distribution function (CDF, cf.Figure 1b)
using (a) Monte Carlo sampling and (b) Latin hypercube
sampling. Both methods use random numbers from a
uniform distribution that are transformed using the inverse
CDF. However, Latin hypercube sampling divides the
variable range in intervals of equal probability at first and
gets one sample from each interval.
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Figure 3Comparison of the original probability density
function (PDF, cf.Figure 1a) and the frequency distri-
butions resulting from (a) Monte Carlo sampling and (b)
Latin hypercube sampling.

one value is selected randomly from each interval exactly
as in MCS. Therefore, the complete value range is covered
more evenly, as shown inFigure 3b. [3]
In case of multiple variables, theirNindividual samples are
combined in a random manner without replacement. For
MCS and LHS, this results inNtuples, each comprising
one random sample of each variable. Correlated variables
are not supported in our current implementation. However,
previous work describes a method for sampling random
variables with a desired rank correlation matrix [3], [8].
This approach could be easily integrated.
After generating theNrandom parameter sets (i.e. tuples,
as described above), we calculate each constraint’s state
(fulfilled or violated) for each sample. As a result, we
can estimate the probability that a single constraint or all
constraints are satisfied simultaneously.

5 Constraint Sensitivity Analysis

The goal of constraint sensitivity analysis is to calculate
the sensitivity of a constraint’s state to parameters. In this
work we use multi-parametric sensitivity analysis (MPSA)
which is a sampling-based method forglobalsensitivity

1:procedureParameterOptimization(P,C,pth)
2: M←ParameterSampling(P) MCS or LHS
3: calculate constraint fulfillment probabilityp
4: p←ConstraintStatePrediction(C,M)
5: whileTruedo
6: v←MPSA(P,C,M) sensitivity analysis
7: P←TranslatePDF(P,v) move PDF l/r
8: M←ParameterSampling(P) MCS or LHS
9: p←ConstraintStatePrediction(C,M)
10: ifp−p>pththen
11: P← P
12: p← p
13: else
14: break
15: end if
16: end while
17: returnP
18:end procedure

Figure 4Iterative algorithm for parameter optimization.
The goal is to maximize the probability that all constraints
are fulfilled by horizontal translation of individual parame-
ter’s probability density function (PDF) to the left or right.
Arguments are the setPof all parameters, the setCof all
constraints and the probability change thresholdpth. The
setMholds tuples of parameter samples.

analysis [9]–[11]. This method classifies the random pa-
rameter sets described in the previous section asacceptable
orunacceptable. When performing MPSA for a single
constraintc, a parameter set is acceptable ifcis fulfilled for
this set; otherwise it is unacceptable. Afterwards, we can
evaluate the sensitivity to each parameterxiby using the
Kolmogorov-Smirnov two sample test [9], [12]:

da,u(xi)=sup
xi

|Sa(xi)−Su(xi)| (3)

with “sup” being the abbreviation for supremum, which
describes the least upper bound of its argument.Sa,u(xi)
are normalized cumulative frequency distributions:
•Sa(xi)is the distribution of the parameter samples that
belong to acceptable sets, and
•Su(xi)is the one of the samples that belong to unac-
ceptable sets.

Therefore,da,u(xi)“can be measured directly as the greatest
vertical distance between the two distribution functions
plotted on the same graph” [12]. The resulting value is
in the range[0,1]and represents the similarity between
the two distributions. It is a measure for the sensitivity of
the constraint’s state to the parameter.Figure 5shows an
example for two uniformly distributed parametersx1andx2.
As can be seen,x1has great influence, whilex2has nearly
no influence on the constraint state.
It is also possible to analyze multiple constraints by per-
forming a logical conjunction of all constraints:

ctot=
i

ci=c1∧c2∧...∧ci (4)
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Figure 5Frequency distributions (a, b) and normalized cumulative frequency distributions (c, d) of two parametersx1
andx2(both uniformly distributed). Solid dark green lines denote frequency of (accepted) parameter samples which led to
fulfilled constraints. Dashed light red lines denote frequency of (unaccepted) parameter samples which led to violated
constraints. Sensitivity analysis using Kolmogorov-Smirnov two sample test calculates the maximum vertical distance
da,u(xi)between normalized cumulative frequency distributions for accepted and unaccepted parameter samplesSa(xi)
andSu(xi). Due toda,u(x1) da,u(x2), the probability that all constraints are fulfilled is very sensitive tox1and very
insensitive tox2.

As a result,ctotenforces that all other constraintscihave to
be fulfilled simultaneously. Then, sensitivity analysis can
be performed as described above.

6 Design Parameter Optimization

The results of sensitivity analysis form the basis for param-
eter optimization. The goal is to optimize parameters in
order to maximize the probability thatallconstraints are
fulfilled. Our approach is to change the parameter density
functions iteratively by moving them to the left or the right
without changing the shape of the distribution.
Figure 4shows the iterative algorithm for parameter opti-
mization. We define a probability change thresholdpthas
stop criterion for the optimization. At the beginning, we
perform an initial sampling of all parameters and estimate
the probabilitypthat all constraints are fulfilled (lines 2–4).
In each iteration, we use multi-parametric sensitivity anal-
ysis (MPSA) to identify the parametervwith the greatest
influence on that probabilityp. Then, this parameter is
moved to the left or the right in order to increasep. We
calculate the movement direction by comparing the values
of parametervthat have maximum probability of being
accepted or unaccepted. In other words, we determine the

position of the maxima in the frequency distributions of ac-
cepted and unaccepted values of parameterv(cf.Figures 5a
and5b). If the most likely unaccepted value is greater than
the most likely accepted value, we movev’s distribution to
the left by10 %of that difference. Otherwise, we move the
distribution to the right.
Afterwards, new samples are generated for parametervand
the probability that all constraints are fulfilled is re-estimated.
In case the improvement of the constraint fulfillment prob-
ability is smaller thanpth, the optimization stops. The
optimized parameter setPis returned.

7 Experimental Results

We implemented our algorithm using the programming lan-
guage Python and the libraries NumPy, SciPy, and Numexpr
[13], among others.Figure 6shows the main window of
the graphical user interface (GUI).
The first step for the user is to enter the parameters by
choosing one of the supported probability distributions and
entering the corresponding values. Currently supported are:
(a) normal distributions (meanμ, standard deviationσ),
(b) uniform distributions (lower bound, upper bound), and
(c) triangular distributions (minimum, maximum, mode).
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Figure 6Screenshot of Opticon, the tool we developed for constraint state prediction and optimization. The interface
for parameter and constraint definition is on the right. This example shows a constraint that limits the total power con-
sumption of an integrated circuit containing five instances of three modules. The power consumptionsP1,P2andP3of
these modules are modeled as triangular distributions. The large graph shows the distribution of the constraint function
c=P1+3P2+P3<1100 when ignoring the limit. Samples for whichcis fulfilled are highlighted in dark green.
In addition, the frequency distributions and normalized cumulative frequency distributions for the accepted and unac-
cepted samples ofP1,P2andP3are shown (cf.Figure 5). The constraint’s probability of fulfillment and the results of the
sensitivity analysis are given as percentage above the graphs.

Figure 7Screenshot of Opticon after optimization of the problem fromFigure 6. The probability of the constraint being
fulfilled increased from26.5 %to89.2 %. This was achieved by moving the PDF of the triangular distributed parameter
P2to the left byΔP2=100 as can be seen on the right.
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Adding new distribution types to the program is easy. In
parallel, the user can decide on the sampling method and
number of samples used for constraint state prediction and
sensitivity analysis later on. Afterwards, constraints can be
defined using these parameters.
In order to visualize the constraint state in a more mean-
ingful way, we divide the constraint definition in two parts:
(a) definition of a real-valued function, and (b) specification
of a lower and/or upper bound. This second step transforms
the real-valued function into a constraint that is either True
or False—fulfilled or violated.
After parameter and constraint definition, the user is able
to select one of the constraints and perform constraint
state prediction. This results in a frequency distribution
(histogram) of the constraint’s real-valued function (on the
left inFigure 6). The bars of the histogram are colored in
dark green and light red depending on the proportion of
values that fulfill or violate the constraint.
When performing sensitivity analysis, the graphs of fre-
quency distributions and normalized cumulative frequency
distributions for the accepted and unaccepted samples of all
parameters are calculated and shown on the right of the con-
straint state prediction histogram. In addition, the sensitivity
to all parameters is evaluated using the Kolmogorov-Smirnov
two sample test and given as a percentage above the graphs.
Finally, parameter optimization can be performed as de-
scribed in Section 6. After modification of the parameters’
PDFs, all graphs are updated.Figure 6shows an example
of a constraint that limits the total power consumption of
an integrated circuit containing five instances of three mod-
ules. The parameter with the greatest influence is the power
consumptionP2of the module instanced three times. The
results after optimization are shown inFigure 7.

8 Summary and Conclusion

In this paper, we presented a novel approach for predictive
constraint verification to support well-informed decisions
during system-level IC design. This addresses the problem
that constraint verification is only possible after all design
parameters are known. Based on a design team’s experience,
we model design parameters as random variables with
specific probability density functions. Subsequent sampling
of parameters allows us to estimate the probabilities that
constraints will be fulfilled at the end of the design process.
Furthermore, constraint sensitivity analysis tells us which
design parameters have the greatest influence on these
probabilities. This helps to focus attention on those design
aspects that are crucial for compliance with the specification.
In addition, parameter optimization gives suggestions for
design parameter changes that improve probability of con-
straint fulfillment. Our tool Opticon gives easy access to all
the aspects of this work and allows easy experimentation
with different scenarios.
Future research will focus on support of correlated design
parameters and investigation of variance-based sensitivity
analysis methods.

References

[1] G. Jerke and J. Lienig, “Constraint-driven Design —
The Next Step Towards Analog Design Automation”,
inProc. Int’l Symp. on Phys. Design, 2009, pp. 75–
82.

[2] J. Scheible and J. Lienig, “Automation of Analog IC
Layout – Challenges and Solutions”, inProc. Int’l
Symp. on Phys. Design, 2015, pp. 33–40.

[3] J. C. Helton and F. J. Davis, “Latin hypercube sam-
pling and the propagation of uncertainty in analyses of
complex systems”,Reliability Engineering & System
Safety, vol. 81, no. 1, pp. 23–69, 2003.

[4] M. D. McKay, R. J. Beckman, and W. J. Conover,
“A comparison of three methods for selecting values
of input variables in the analysis of output from
a computer code”,Technometrics, vol. 21, no. 2,
pp. 239–245, May 1979.

[5] A. Saltelli, M. Ratto, T. Andres, F. Campolongo,
J. Cariboni, D. Gatelli, M. Saisana, and S. Taran-
tola,Global sensitivity analysis: The primer.New
York, NY: John Wiley & Sons, 2008, isbn: 978-
0-470-05997-5.

[6] A. Krinke, G. Jerke, and J. Lienig, “Constraint Prop-
agation Methods for Robust IC Design”, inProc. 8th
Symp. on Reliability by Design, ZuE, 2015, pp. 7–14.

[7] N. Beldiceanu, M. Carlsson, and J.-X. Rampon,
“Global Constraint Catalog”, Swedish Institute of
Computer Science (SICS), Kista, Sweden, Tech. Rep.
T2010:07, Nov. 2010.

[8] R. L. Iman and W. J. Conover, “A distribution-free
approach to inducing rank correlation among input
variables”,Communications in Statistics - Simulation
and Computation, vol. 11, no. 3, pp. 311–334, 1982.

[9] G. M. Hornberger and R. C. Spear, “An approach
to the preliminary analysis of environmental sys-
tems”,Journal of Environmental Management, vol.
12, pp. 7–18, 1981.

[10] K.-H. Cho, S.-Y. Shin, W. Kolch, and O. Wolkenhauer,
“Experimental design in systems biology, based on
parameter sensitivity analysis using a monte carlo
method: A case study for the TNFα-mediated NF-κB
signal transduction pathway”,Simulation, vol. 79, no.
12, pp. 726–739, Dec. 2003.

[11] Z. Zi, “Sensitivity analysis approaches applied to
systems biology models”,IET Syst. Biol., vol. 5, no.
6, pp. 336–346, Nov. 2011.

[12] D. M. Hamby, “A review of techniques for param-
eter sensitivity analysis of environmental models”,
Environmental Monitoring and Assessment, vol. 32,
pp. 135–154, 1994.

[13] T. E. Oliphant, “Python for scientific computing”,
Computing in Science Engineering, vol. 9, no. 3,
pp. 10–20, May 2007.

ITG-Fachbericht 274: Zuverlässigkeit und Entwurf    18. – 20.09.2017 in Cottbus

ISBN 978-3-8007-4444-2 © VDE VERLAG GMBH  Berlin  Offenbach45




