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Abstract

Interconnect with an insufficient width may be subject
to electromigration and eventually cause the failure of the
circuit at any time during its lifetime. This problem has
gotten worse over the last couple of years due to the
ongoing reduction of circuit feature sizes. For this
reason, it is becoming crucial to address the problems of
current densities and electromigration during layout
generation. Here we present two new methodologies
capable of routing analog multi-terminal signal nets with
current-driven wire widths. Our first approach computes
a Steiner tree layout satisfying all specified current
constraints before performing a DRC- and current-
correct point-to-point detailed routing. The second
methodology is based on a terminal tree which defines a
detailed terminal-to-terminal routing sequence. We also
discuss successful applications of both methodologies in
commercial analog circuits.

1. Introduction

The recent booming market share for large-scale
analog and mixed-signal circuits in automotive,
telecommunication, consumer and computer applications
has resulted in a significant increase in the complexity of
these circuits. Despite this increase in complexity, these
circuits are often painstakingly designed and laid out by
hand. A primary reason for the lack of automation is the
vast amount of expert knowledge typically required to
meet constraints such as symmetry, current densities
(including electromigration), voltage drops, temperature
gradients, etc.

Despite these problems, there has been recently an
increase in attempts to make custom analog layout tools a
practical reality [14]. Here we present two new routing
methodologies which address for the first time the
problems of current densities and electromigration in
analog circuits.

Unlike digital circuits, analog circuits must handle a
multitude of different current levels, including extremely
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large currents in some applications (such as automotive
circuits). Hence, the interconnect must be designed with
the current that will be imposed on it in mind.
Interconnect with an insufficient width (we assume the
height to be a constant as given with many processes) may
be subject to electromigration and eventually cause the
failure of the circuit at any time during its lifetime
[1],[4],[16]. Unfortunately, there does not exist any
commercial routing tool which considers current densities
during routing of analog signal nets.

A current-driven router must address the problem of
unknown currents in net topologies during a sequential
routing process. For example, the width of a net
connecting only two terminals can be easily derived from
the terminals’ currents. However, if a third terminal is
subsequently connected with this net using a Steiner point,
the current would change and might make the previous
route obsolete (e.g., if the wire cannot be widened).
Generally speaking, any new connection to a previously
routed sub-net may alter the currents imposed on the sub-
net’s paths and hence alter the correctness of its
topological layout.

To the best of our knowledge, current-driven routing
has been applied so far only to routing of power and
ground nets in digital circuits, where the problem of
unknown currents is addressed with a separate post-
processing step that includes layout modifications
[BLI71,[111,[12],[13],[15]. While this is feasible in power
and ground routing due to its planar nature, limited
number of nets and (still) unoccupied layers, current-
driven routing of signal nets requires a different approach.
Theoretical solutions might range from pure source-to-
sink routing (and thus avoiding any links to previously
routed segments of the same net) to a worst-case routing,
where all connections are first routed with the maximum
width and later reduced to the current-correct size.

We believe a practical solution lies somewhere
between the extremes of these two approaches. In this
paper we present two methodologies for current-driven
routing that have been successfully tested in industrial
design flows. A first approach separates the routing phase
into two steps, Steiner tree routing and detailed routing.
During Steiner tree routing, the estimated routing path of
a net is determined by calculating the position of Steiner
points. Since currents have already been considered



during this global routing phase, the detailed routing can
then be limited to two-point routing, with known currents
at both end points, thus avoiding the above mentioned
problems. Our second methodology is based on a terminal
tree, which defines a detailed terminal-to-terminal routing
sequence with known terminal currents.

Our paper is structured as follows: First we present the
overall design flow, our current characterization method
and the equations we used to calculate the wire widths.
Then we describe both our Steiner tree global routing and
our second methodology, terminal tree global routing.
Next, we present details of our detailed routing method
(applied for both global routing methodologies). We
finish this paper with some experimental results.

2. Design Flow

The design flow of our approach is illustrated in
Figure 1.
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Figure 1. Design flow

During current characterization, current values
attached to each terminal are obtained. These values are
transferred to the routing tools either as part of the
schematic netlist or as an ASCII file.

Our current-driven routing approaches have been
integrated into the Mentor Graphics IC Station
environment which reads the netlist from the schematic
tool. After the initial placement of the cells is generated,
the main layout components (cells, instances, blockage
areas and nets) are forwarded to the routing tool.

The first methodology consists of Steiner tree routing
followed by a detailed routing phase. During Steiner tree
routing, a connection graph of the next net to be routed is
generated. A Steiner tree is then established which
represents both a valid topological route and a current-
correct design. The resulting Steiner points and the

calculated path widths are transferred to the detailed
router. Here all layout elements are oversized in
accordance with the wire width of the interconnection to
be routed next. Afterwards, a point-to-point (Steiner point
or terminal point) path generation is performed. The
routing path, which has been initially generated with a
“default” width, is then widened to the current-correct
size. (No further layout modifications are needed due to
prior oversizing.)

The second methodology essentially uses the same
detailed router. However, instead of splitting up nets to
“Steiner point level,” it determines an optimized terminal-
to-terminal routing sequence with known terminal
currents. If a Steiner point is encountered during detailed
routing, its “validity” is first checked by a re-calculation
of the maximum currents occurring on the wires attached.

Both routing methodologies return the generated paths
and vias to the main layout tool (IC Station).

3. Current Characterization

We utilize two approaches for the determination of
realistic current values for each terminal. One method
uses a standard circuit simulator for simulation of the
circuit netlist ignoring parasitic wiring resistances. The
second approach uses current values manually attached to
the terminals in the schematic netlist by the designer.

The results from one or more simulations are post-
processed by calculating a set of current vectors satisfying
Kirchhoff’s current laws. They represent a snapshot of the
circuit’s operation at the time of minimum and maximum
currents at each terminal. This reduces the simulation
results to a set of “worst case” current vectors. For a net
with n terminals this may lead to up to 2n current vectors.
Hence, up to 2n current values are attached to each
terminal.
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Figure 2. Current values assigned to terminals are their
respective minimum/maximum values (shown in italic) and
the current values at the other terminals’ minimum and
maximum point of time. Every current vector satisfies
Kirchhoff’s current law, i.e., its current sum is zero. (Only
four current values are assigned per terminal for simplicity.)

Additionally, every terminal is labeled with its root
mean square (RMS) current value which is derived from
all simulation values. (The RMS current is responsible for
Joule heating which greatly influences the effects of
electromigration.)



4. Wire Width Determination

For a given temperature 7./, the minimum wire width
Wpin 18 derived from the maximum and the root mean
square current value as follows:
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JpeakiLayer . dLayer '
Wmin_ process (3)
where
Iy = the root mean square (RMS) current on this path,
K = safety factor (s = 1.1 .. 1.2),
dLayer = thickness of routing layer,

Jna(Tre) = maximum current density allowed by this manufacturing
process for temperature Ty Jnax(150°C) = 1 .. 2 mA/].unZ),

Lnax = the maximum current on this path,

Jpeak_Layer = layer dependent peak current density (process dependent),

Wanin_process = Minimum wire width determined by manufacturing
process.

The safety factor s is used to account for (1) terminal
currents not caught during simulation, (2) small deviations
of dj4e due to process variations and (3) reduced
accuracy due to our limitation to the maximum/minimum
currents at each terminal.

5. Method 1: Steiner Tree Global Routing
5.1. Connection Graph

A connection graph G,, similar to the one presented in
[17], is used for layout representation during Steiner tree
routing. G. can be obtained by generating horizontal and
vertical lines through all terminals of the net to be
connected. Additionally, all horizontal and vertical edges
of each obstacle encountered are extended until another
obstacle or the boundary is reached (Figure 3). It has been
shown in [10],[17] that the shortest path between two
terminals in rectilinear metric is a path on the connection
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Figure 3. Construction of a connection graph
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Using G. we developed a line-search algorithm in
order to find a path of minimum length between two
points on this connection graph. Our approach is similar
to the one presented in [17]. It is basically a line-search

version of the Minimum Detour (MD) algorithm [6] with
a generalized detour number concept.

5.2. Steiner Tree Generation

Generally, the current flow on wires connecting two
Steiner points (e.g., ST1 and ST2 in Figure 4) is unknown
prior to topology construction and has to be computed
afterwards in order to widen all wires according to the
currents imposed on them. However, this may lead to im-
proper layouts due to design rule violations. In the exam-
ple shown in Figure 4, obstacles O2/03 and O4/05 would
have to be moved to generate the final layout.
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Figure 4. A conventional Steiner tree topology (Steiner
points ST1 — ST4) with three current sources (T3, T5, T6) and
three current sinks (T1, T2, T4, indicated with positive
current values). Branches with unknown currents are
marked with “?”. Attached current values are only examples,
in reality all current values must be considered.

In order to compute the unknown wire widths
concurrently during Steiner tree construction, the Steiner
tree must be built in a greedy, one-directional fashion.

Our algorithm calculates the Steiner tree layout by
repeatedly computing an optimum Steiner point for three
vertices at a time.

At first calc_steiner() computes the optimum Steiner
point for the first three terminals using a modification of
the strategy presented in [9]. After that Steiner point has
been found, detour() is used to connect the first and the
second terminal to the calculated Steiner point. After-
wards, calc_steiner() is called repeatedly to connect the
last found Steiner point to the next two unconnected
terminals, etc. The remaining two terminals are then
connected to the last Steiner point calculated using
detour().

SteinerTreeRouting()

label all terminals in increasing x-order o
i:=0; source:= terminals]i]; source_width:= width[i]
for (i<num_of terminals-2; i++)

steiner_point:= calc_steiner(source, terminals]i+1],
terminals[i+2], source_width,width[i+1],
width[i+2]) . .

detour(source, steiner_point, source_width)

detour(terminals[i+1], steiner_point, width[i+1])

source:= steiner_point L

source_width:= source_width+width[i+1]

detour(source, terminals[i], width iR )
detour(source, terminals[i+1], width[i+1])




The algorithm is a special variant of the rectilinear
Steiner tree (RST) problem which is known to be NP-
complete [5]. Our algorithm can be solved in
O(n-m-(l+m)logl) time where n is the number of
Steiner points to be connected, m is the number of
candidate Steiner points evaluated during Steiner point
search, and / is the number of obstacle edges.

Using this greedy Steiner tree construction, the Steiner
tree planner is able to compute “on the fly” the unknown
current flow in connections between two Steiner points by
simply adding up the current values of the two wires
connecting with the Steiner point.
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Figure 5. Our Steiner tree global routing solution avoiding
post-routing modifications of the routing problem in Figure
4. The numbers in circles are current flows between Steiner
points (unknown prior to Steiner tree routing) that have been
taken into account already during Steiner tree generation.

6. Method 2: Terminal Tree Global Routing

A current-driven detailed router must solve the
problem of altering current strengths in a prior routed sub-
net whenever a new terminal is linked to it. In order to
allow for a current calculation based on Kirchhoftf’s
current laws prior to detailed routing, at least the
sequence of all terminals to be connected must be known.
Added detailed routing connections which directly link a
“new” (not yet connected) terminal with its respective
target terminal will then have no influence on current
strengths calculated in the prior routed sub-net (with the
calculation based on all terminals).

Hence, the most “coarse grain” approach possible for
current-driven routing without post-routing layout
modification is based on a pre-defined terminal-to-
terminal routing sequence. Our second methodology
investigates this approach, i.e., instead of using a Steiner
tree to split up nets into “fine grain” two-point segments
(as done in our first methodology) here only the terminal-
to-terminal routing sequence is defined during global
routing.

The routing sequence of terminals is based on a
terminal tree which has been derived from the terminal
locations and their respective distances relative to each
other. The terminal tree is established in a one-directional
fashion by iteratively connecting the nearest
“unconnected” terminal with the set of already connected
terminals. This terminal tree not only enables a near-
optimum routing tree (based on distances) to be

generated, but also provides a straightforward method of
calculating the branch currents by applying Kirchhoff’s
current laws.

TerminalTreeRouting()

label all terminals in increasing x-order
i:=1; source:= terminal[i]
for (i:=2; iSnum_of_terminals; i++)

for terminalli]: find nearest terminal among terminals[1..i-1]
derive terminal tree

from leaves inbound: calculate currents / of branches
from leaves inbound: route terminal-to-terminal connection

A simple routing example of our terminal-tree-based
approach is shown in Figure 6.
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Figure 6. Graphical illustration of our second methodology
based on a terminal tree. Steps 4 to 8 are presented only for
illustration, they are part of the detailed routing process (see
Section 7). Depicted current values are only examples, in
reality all current values must be considered. Circled
numbers symbolize the strength of current flows (in mA).




7. Detailed Routing

During detailed routing the exact paths and layer
allocations of the wire segments are determined. These
wire segments are simple two-point connections, linking
either terminals and Steiner points (methodology 1) or
only terminals (methodology 2). Furthermore, current-
correct wire sizing has also been performed, i.e., any two-
point connection “knows” its current-correct wire width.

The presented detailed routing strategy has been
specifically developed in order to address numerous
special characteristics of analog circuit routing as well as
to support an efficient implementation of current-driven
wire widths.

7.1. Oversizing

Our path search algorithm (see Section 7.4.) uses a
fixed routing width in order to allow time-efficient path
generation. Therefore, all polygons have to be oversized
prior to each route. This strategy guarantees that the
calculated “default-width path” can be replaced by a path
of width w without violating any design rules.

The amount of oversizing s is given by

§= dmin +w/2 (4)
where d,,;, = minimum spacing on this layer, and w =
current wire width.

7.2.  Direction-dependent Spacing Rules

A current-driven router has to favor 45-degree routing
because the current density at 45-degree corners is
significantly reduced when compared to 90-degree
corners. Using 45-degree routing requires distance rules
that are direction dependent (with a larger spacing
between diagonal wires). Furthermore, all corner
coordinates have to be on a “manufacturing grid” with the
consequence that diagonal wires must be widened to bring
the corners of their edges on the grid.

Oversized
Obstacle —> ...... 'k | Wog

Obstacle

Figure 7. Transforming 90-degree angles to 45-degree angles
during sizing (left) and the use of direction-dependent sizing
values (right) [18]. Note that the 90- and 45-degree outline of
the sized obstacle becomes the center line of the wire.

The use of diagonal path segments can be
accommodated by using a sizing procedure which
transforms 90-degree angles to 45-degree angles (Figure
7, left). The use of direction-dependent sizing values sgy,
S45, Sany €nables direction-dependent distances and wire
widths with dgy < dys < d,y and wgy < wys (Figure 7,
right) [18].

7.3. Sizing of Arbitrary Polygons

Many tools for analog circuit design suffer from
inadequate handling of polygons with arbitrary angles. We
have developed a polygon-specific sizing strategy that
guarantees the fulfillment of direction-dependent distance
rules without wasting any space.

Polygons are sized by their corners, where each corner
is replaced by one or more corners of an octagon (Figure
8). The number of octagon corners used is determined by
the angles of the corresponding edges. The size of the
octagon is derived from the direction-dependent sizing
values 599 and sy5. (Standard sizing algorithms with one
oversizing value have to use sys5 or s,,, for sizing in order
to fulfill all distance rules. This leads to a waste of space
in orthogonal directions since sg < s45.)

Original polygon

Sized polygon

Figure 8. Oversizing of an arbitrary polygon using octagons
to accommodate direction-dependent distance rules

7.4. Final Path Generation

We have developed a path search algorithm that
combines a maze routing strategy (similar to [8]) with
search area restrictions — so called “tunnel polygons.”
These tunnel polygons significantly reduce the search
space (and run time) by restricting the search to an area
derived from the appropriate wire geometry established
during global routing.

It is known that the distance D between two points
(x;, y1) and (x,, y,) is defined as

(%)
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with n=] representing Manhattan metric and n=2
representing Euclidean metric. In order to realize HVD
(horizontal, vertical, diagonal) routing, orthogonal
neighbors in the search grid should have a distance of
D=1 and diagonal neighbors D=.2. Hence, we label
orthogonal neighbors of a grid point i with i+2 and
diagonal neighbors with i+3. This leads to a wave front
nearly shaped as a circle.

After a point-to-point connection has been established,
the current-correct wire width w is implemented by
widening the routing path on each side by w/2. Layer
changes are realized by vias extracted from a pre-sorted
list according to the wire width.




7.5. Steiner Point Handling

Special consideration must be given to new
connections linking to any other point than the target
point, such as new Steiner points (as in Figure 6,
connection (T3-T;)). Whenever a Steiner point (or any
other point of the same net other than the target point) is
encountered during path generation, the algorithm must
re-calculate the maximum current through the previously
routed net in order to determine if the Steiner point is
feasible (i.e., if the previous route with the new Steiner
point can be re-used for the new connection, as shown in
Figure 9 (b)). If subsequent wire widening is needed but
cannot be performed, then the respective net segment (on
which the Steiner point would have been placed) is
excluded from the current path search (Figure 9 (c)).
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Figure 9. Path generation between source (S) and target (T)
terminal with different strategies when encountering Steiner
points (SP). Note that attached currents are only symbolic
values, in reality all current values must be considered
every time a new connection is established.

7.6. Connecting Arbitrary Polygons

Routing polygons of different widths combined with
various cell layouts available in analog circuits may cause
specific design rule violations in the region where the wire
polygon connects to the cell polygon. Examples of two
possible DRC violations are shown in Figure 10.

d<m/2 d < minSpacing

Figure 10. Possible design rule violations

These and similar design rule violations can be
avoided by defining connectable regions on the source
and target polygon as indicated in Figure 11. Arrows
symbolize allowed directions for end segments of wires.
The “width” of the connectable region depends on the
current-correct wire width w of the net segment to be
connected: Since wires are considered by their center
lines, the width of a connectable region is reduced by w/2
on both ends.

w/2 Allowed directions
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. Oversized ¢
%/ source or
target

Source or

target target

Connectable regions

Figure 11. Defining connectable regions and directions
around source and target polygons

8. Implementation and Results

Both methodologies have been integrated into the
Mentor Graphics IC Station environment. The algorithms
were implemented using C/C++ and the Mentor Graphics
built-in programming language AMPLE.

Several commercial analog circuits (ranging from 90
to 380 devices per cell) were routed using both
methodologies (Table 1). To ensure a proper comparison,
we used only circuits that have been previously manually
routed and current density adjusted by experienced
designers.

Table 1. Characteristics of some commercial circuits routed
with both methodologies

Circuits Devices Terminal-to-terminal Nets
connections (“flylines”)
analogl 90 116 68
analog2 132 192 52
analog3 132 220 96
analog4 176 266 100
analog5 380 370 174

The results of both methodologies are compared in
Table 2. It can be seen that both approaches deliver
similar routing lengths and numbers of wvias. (The
relatively high number of Steiner points in the Steiner-tree
based approach is due to the Steiner tree routing algorithm
which favors the creation of Steiner points.) The routing
area consumption of both approaches is slightly less when
compared to layouts that have been manually routed and
current-density adjusted, with the Steiner-tree-based
approach providing a slightly larger reduction.



Table 2. Comparison of routing results

Routing Area
Circuit | Method StP* lengths Vias | Reduc-
(wm) tion™
analogl | Steiner tree 48 24342 142 -0.4 %
Terminal tree 14 23921 138 0.0 %
analog? | Steiner tree 122 44710 138 -0.6 %
Terminal tree | 23 44714 144 -0.5 %
analog3 | Steiner tree 116 37201 266 -0.3 %
Terminal tree | 27 36403 252 -0.1 %
analog4 | Steiner tree 132 26302 188 -1.0 %
Terminal tree | 24 26748 186 -0.6 %
analog5 | Steiner tree 234 45585 458 -1.1%
Terminal tree | 44 45548 456 -0.9 %

* StP = Number of generated Steiner points
Area Reduction = Routing area compared to manual design
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Figure 12. Excerpt of the routed circuit “analog5”

The presented approaches can be used in either semi-
automatic mode (with specific nets selected for routing) or
full-automatic mode (where all nets within a window are
routed). Analog circuit designers usually prefer the first
method, hence, run times vary widely. Using an
UltraSPARC 10 workstation, routing of specific nets is
performed within seconds; full-automatic routing of the
entire layout requires a run time of minutes (up to one
hour) with slightly shorter run times for the terminal-tree-
based approach. (In comparison, experienced designers
used one to two days to manually route and current-
density adjust these circuits.)

In summary, while the terminal-tree-based approach is
much easier to implement and provides to some extent
shorter run times, its routing quality is similar to the
Steiner-tree-based approach.

9. Conclusion

We have proposed two new methodologies for
current-driven routing of non-planar signal nets. These
approaches are to our knowledge the first routing
algorithms capable of constructing multi-terminal signal
nets with current-correct wire widths without the need for
a separate layout post-processing step.

Both methods have been successfully used to generate
current-correct designs of “real world” circuits. Currently,
both approaches are being integrated into commercial
design flows of analog circuits for automotive
applications where further tests and comparisons will be
performed. As future work, we are optimistic that the
presented methodologies may be useful in addressing
electromigration in deep-sub-micron designs of digital
circuits, and plan to investigate this further.
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