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Abstract—Three-dimensional integrated circuits rely on opti-
mized interconnect structures for blocks which are spread among
one or multiple dies. We demonstrate how 2D and 3D block align-
ment can be efficiently utilized for structural planning of differ-
ent interconnects. To realize this, we extend the corner block
list and provide effective techniques for 3D layout generation, i.e.,
block placement and alignment. Our techniques are made avail-
able in an open-source, simulated-annealing-based tool. Besides
block alignment, it accounts for key objectives in 3D design like
fast thermal management and fixed-outline floorplanning. Exper-
imental results on GSRC and IBM-HB+ circuits demonstrate the
capabilities of our tool for both planning 3D-IC interconnects by
block alignment and for 3D floorplanning in general.

I. INTRODUCTION

Three-dimensional (3D) stacking of active dies is recog-
nized as a promising approach to meet demands on todays’
and future chips regarding their performance, functionality
and power consumption. Vertical plugs connecting through
separate dies, mainly the through-silicon vias (TSVs), facili-
tate short and low-power interconnects and thus enable high-
performance 3D integrated circuits (3D ICs). 3D network on
chip (NoC) architectures have been proposed to increase com-
munication capabilities for logic integration [1] or memory
integration [2]. Complementing such approaches, the well-
known concept of bus planning, i.e., grouping multiple signals
into adjacent wires, remains also relevant for 3D-IC design.

Although the concept of block alignment has been success-
fully applied in 2D layout representations for bus planning
[3, 4], it has been every so often neglected in 3D representa-
tions. Some studies, e.g., [5–7], enable fixed alignment, i.e.,
blocks are to be aligned (possibly across several dies) such that
their relative positions fulfill fixed distances. However, an ap-
plication to vertical-bus planning is only indicated in [6]. To
the best of our knowledge, none of the existing studies consid-
ers alignment ranges, i.e., blocks are to be aligned such that
their relative positions fulfill upper and/or lower distance lim-
its. Thus, “flexible” block alignment is not supported so far.
We observe that utilizing these different alignment approaches
enables structural planning of interconnects for 3D ICs—as il-
lustrated in Figs. 1 and 2, processing block alignment allows
one to design dedicated, straight interconnect structures.

To address previously inadequate support for such intercon-
nect structures during 3D floorplanning, we present a method-
ology based on orchestrated block placement and alignment.
In our study, we consider interconnects for different practical
scenarios in 3D ICs, as further motivated in Section II.

Our contributions can be summarized as follows.

1. We propose an extension of the corner block list (CBL)
(Section IV). Our extension can (i) encode both fixed
alignment and alignment ranges, as well as (ii) handle
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(A) a1 = (s1, s2, (40, 1), (40, 1))

(C) a3 = (s9, s10, (150, 2), (0, 0)),
       a4 = (s9, s11, (150, 2), (0, 0))

Alignment Encoding (Subsection IV-A):

(B) a2 = (s7, s8, (0, 0), (0,0))
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Fig. 1. Interconnect structures in a 3D IC and related block-alignment config-
urations. Vertical buses (A) are essential to connect (split-up) blocks among
adjacent dies. TSV stacks (B) comprise aligned bundles of TSVs, are passing
two or more dies, and are for example used in 3D NoCs. Both interconnect
structures rely on inter-die alignment, i.e., blocks spread among several dies
are to be aligned. Regular 2D buses with fixed or flexible pins (C, D) are tra-
ditionally considered to optimize datapaths or similar structures; they require
blocks to be aligned within one die, i.e., rely on intra-die alignment.

inter- and intra-die alignment in a unified manner. (See
Section II for these terms and related background.)

2. We develop effective techniques for 3D layout genera-
tion, i.e., block placement and alignment as well as layout
packing (Subsection IV-B).

3. We provide an open-source 3D-floorplanning tool based
on our CBL extension and simulated annealing (SA) (Sec-
tion V). Besides block alignment, our tool considers these
key objectives: fixed outlines, fast thermal management,
layout packing, and wirelength optimization.

II. BUS AND VIA STRUCTURES IN 3D ICS AND RELATED
BLOCK ALIGNMENT

As for the 3D design style, we consider block-level integra-
tion of 2D blocks. This style is acknowledged as a reliable and
efficient approach, especially for first commercial 3D-IC ap-
plications [8, 9]. In such 3D ICs, routing paths for (massively
parallel) interconnect structures can be enabled by means of
block alignment (Figs. 1, 2). Block alignment in 3D ICs can be
generally classified into inter-die alignment, i.e., blocks spread
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Fig. 2. Die shots of two macroblocks, partitioned across adjacent dies for delay
and power optimization [14]. Embedded vertical buses require the macros to
be aligned such that TSVs and related landing pads can be included.

among several dies are to be aligned, and intra-die alignment,
i.e., blocks are aligned within one die. The variety of alignment
specifics arise from different scenarios for 3D integration and
interconnects, which are reviewed next. Note that we focus on
signal interconnects in this work. For optimized planning of
other interconnect types refer to, e.g., [10].

Monolithic integration has recently gained more interest due
to advances in manufacturing processes; for block-level inte-
gration, this technology is advantageous in terms of improved
interconnectivity [11]. In the general context of massively-
interconnected dies, planning vertical buses which connect par-
ticular (split-up) blocks spread on separate dies is critical and
should thus be considered from early design phases on. It is im-
portant to note that TSV-based integration can also exploit such
buses, assuming that blocks can be adapted to include TSVs.
For example, consider the two macroblocks in Fig. 2: this ar-
rangement of tightly interconnected (for delay and power con-
sumption optimized) modules relies on vertical buses, which
are implemented by groups of TSVs. Accounting for such ver-
tical buses during floorplanning requires capabilities for inter-
die alignment. That is, in order to include a large number of
vertical interconnects, the related blocks have to exhibit some
intersecting regions.

A special case of vertical buses are aligned TSV stacks, i.e.,
TSVs are grouped and placed such that straight interconnects
are passing through multiple dies. TSV stacks are relevant
for different applications, e.g., to realize regular 3D NoCs, or
to limit power-supply noise and to improve thermal distribu-
tion [12,13]. Consideration of aligned TSV stacks during floor-
planning requires inter-die alignment with fixed offsets.

Regular (2D) bus structures connecting blocks within dies
are independent of the 3D-integration technology. These buses
are traditionally considered for several scenarios, e.g., to op-
timize datapath interconnects. Note that such structures rely
on intra-die alignment of related blocks. Depending on fixed /
flexible block pins, the planning of 2D buses requires support
for fixed alignment / alignment ranges.

III. BASIC PRINCIPLES OF CORNER BLOCK LIST

The corner block list (CBL) [15] is a topological 2D layout
representation. In our work, we utilize it mainly for its effi-
ciency (layout generation has a O(n) complexity) and feasible
expandability towards a 3D representation (Section IV).

The CBL encodes a floorplan solution as tuple (S,L, T )
where S is the block-insertion sequence, L the insertion-
direction sequence, and T the sequence of covered T-junctions
(see next paragraph). Note that conceptual rooms, i.e., dimen-

sionless entities, are encoded in S. Each block is associated
with a room; to obtain the physical layout, a transformation
from the room topology to block coordinates is required.

During sequential layout generation, two criteria are to be
considered for each block (within a room) si ∈ S: first, the in-
sertion direction where li = 0 encodes vertical placement and
li = 1 horizontal placement, respectively; second, the number
ti of T-junctions to be covered. The notion of T-junctions is a
verbatim encoding; for example, ti = 1 requires to (perpendic-
ularly) cover the common boundary of two adjacent blocks.

IV. CORBLIVAR: CORNER BLOCK LIST FOR VARIED
ALIGNMENT REQUESTS

To enable interconnect structures during 3D floorplanning,
we propose an extension of the classical 2D CBL. Our ex-
tension is named corner block list for varied alignment re-
quests (Corblivar). It encodes a 3D-IC design integrated on n
dies using an ordered sequence {CBL1, . . . , CBLn} of CBL
tuples and one global alignment sequence A. (Thus, Corblivar
is a so-called 2.5D layout representation. Refer to [16] for an
investigation of several previous 2.5D and 3D representations.)
The alignment tuples ak ∈ A = {a1, . . . , an} are designed to
encode different types of alignment requests as defined below
and illustrated in Fig. 1. Like any layout representation, we
need to embed Corblivar in a floorplanning tool; core parts and
main features are outlined in Fig. 3.

A. Alignment Tuples

Definition of alignment tuples – Assume the placement
of block sj has to consider some alignment request with re-
gard to (w.r.t.) si. The request is then defined as tuple ak =
(si, sj , (ARx, ARTx), (ARy, ARTy)) where (ARx, ARTx)
and (ARy, ARTy) denote the partial requests with respect
to the x- and y-coordinate. These requests can be indepen-
dently defined as fixed offset (ART = 0), as minimal overlap
(ART = 1), as maximal distance (ART = 2) or as don’t care
(ART = −1); the meaning of these types is explained next.

Alignment types – Given a fixed offset, sj is to be placed
ARx/ARy units to the right/top (ARx/ARy ≥ 0) or to the
left/bottom (ARx/ARy < 0) of si, respectively, w.r.t. the
blocks’ lower-left corners. Fixed-offset alignment is required
for restricted placement, e.g., of blocks with fixed pins.

For a (positive) minimal overlap, the projected intersection
of blocks si and sj must be at least ARx units wide and/or
ARy units high. The intention of such alignment is to ensure
straight but locally flexible paths for subsequent bus routing /
placement of vertical interconnects.

An alignment request defining a maximal distance requires
that the center points of blocks si and sj are at mostARx/ARy
units apart. This way, interconnects structures can be easily
limited in their length and/or width.

It may not be necessary to define a request for both x- and
y-coordinates; we label the unrestricted coordinate’s request
simply as don’t care.

Dynamic interpretation of requests – Note that the intro-
duced tuples can be easily utilized for both intra- or inter-die
alignment by assigning related blocks to one common or to
separate CBLs (dies). In other words, the proposed encoding
does not restrict blocks to particular dies. For requests span-
ning multiple blocks (discussed next), it is also possible to com-
bine intra- and inter-die alignment for several blocks.

Definition of tuples to align multiple blocks – For 3D-IC
interconnects, implementing links among multiple blocks
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Fig. 3. Corblivar’s components, embedded in a SA-based floorplanning tool.
Orchestration of Block Placement and Alignment interacts with the SA heuris-
tic for layout optimization, monitors the overall layout process, and delegates
to Block Placement and Block Alignment in a synchronized manner.

is an essential scenario. Thus, let us assume the place-
ment of blocks s1 . . . sn has to consider several, combined
alignment requests for interconnects planning. The required
set of tuples can be derived in any desired fashion. For
example, for requests requiring one reference block s1 (e.g.,
to represent one specific end of a bus), the tuples would
be defined as (s1, s2, (ARx2 , ARTx2), (ARy2 , ARTy2)),
. . . . . . . . . . . . . . . , (s1, sn, (ARxn

, ARTxn
), (ARyn , ARTyn)).

To give another example, we can encode alignments in
a chain-like fashion to enable flexible interconnect struc-
tures (i.e., allowing local deviations from a straight,
global path): (s1, s2, (ARx2 , ARTx2), (ARy2 , ARTy2)),
(s2, s3, (ARx3

, ARTx3
), (ARy3 , ARTy3)), . . . . . . . . . . . . . . . ,

(sn−1, sn, (ARxn , ARTxn), (ARyn , ARTyn)).

B. Layout Generation

We extend the CBL technique [15] in order to (i) han-
dle inter- and intra-die alignment simultaneously, (ii) consider
fixed offsets as well as alignment ranges, and (iii) perform ef-
fective layout packing. In the following subsections, we first
discuss the orchestration of block placement and alignment and
then provide techniques for these steps themselves.

B.1 Orchestration of Block Placement and Alignment

We next discuss the overall process of 3D layout generation.
As illustrated in Fig. 3, this requires to (i) manage the layout-
generation progress on all dies, (ii) handle the alignment re-
quests, and (iii) interact with block placement and alignment
(Subsections B.2 and B.3). In the following, we label “calls”
to latter techniques as PLACE and ALIGN, respectively.

Auxiliary data structures – We memorize alignment re-
quests in progress using the alignment stack AS. Progress
pointers pi = sj denote the currently processed block sj for
each die di. A die pointer p = di is used to keep track of the
currently processed die.

Process flow (Algorithm 1) – We perform the following
steps for each block si. Initially, we check whether the as-
sociated die d is currently marked as stalled (line 5), i.e.,
layout generation is halted due to another alignment request
in progress—this occurs for intersecting requests, i.e., related

blocks are arranged in the CBL sequences such that their place-
ment is interfering. To resolve this, we need to unlock die d—
we PLACE the current block si, mark related changes, and
proceed with the next block (lines 6–9). Otherwise (for non-
stalled dies), we check if some alignment requests ak are ap-
plying to si (line 11). If no ak are found, we directly PLACE
si and proceed with the next block (lines 28–29). If some re-
quest(s) ak are defined, we need to handle them appropriately
(lines 12–23), as described next. For any given ak, we search
the stack AS for it and continue accordingly. Case a: if ak is
found, it was previously handled while processing sj , that is
the block to be aligned with si. Thus, it is assured that pre-
ceding blocks on both related dies are placed at this point. We
can now safely ALIGN both si and sj , mark them as placed,
and drop the request ak (lines 14–17). Note that only in cases
where all requests for si are handled, we proceed on the current
die d (line 25). Otherwise, we continue layout generation with-
out loss of generality (w.l.o.g.) on sj’s die d′ (line 21). Case
b: if ak is not found in AS, sj was not processed yet. We then
memorize ak as in progress, halt layout generation on d, and
continue on d′ (lines 19–21). Finally, if layout generation is
done on d, we proceed on yet unfinished dies until the whole
3D layout is generated (lines 32–38).

Be aware that deadlock situations, i.e., layout generation on
different dies is waiting for each other until particular blocks
can be aligned, cannot occur due to resolving of stalled dies.
This is true for any alignment request; see also Subsection B.3
for implications on block alignment.

B.2 Block Placement

To maintain a valid layout during placement, it is necessary
to consider previously placed blocks. We propose a technique
which allows us to (i) efficiently keep track of relevant blocks,
(ii) fix CBL tuples w.r.t. exceeding T-junctions, and (iii) virtu-

Algorithm 1 Orchestration of Block Placement and Alignment
1: p← d1 . start without loss of generality on bottom die
2: pi ← s1
3: loop
4: si ← pi ← p
5: if die d← p is stalled then
6: PLACE(si)
7: mark si in any ai′ ∈ A as placed
8: mark d as not stalled
9: pi ← pi+1

10: else . d is not stalled
11: if some ak are defined for si then
12: for all ak do . consider ak w/ placed blocks first
13: if ak inAS then
14: ALIGN(ak)
15: remove ak fromAS
16: mark si, sj in any ai′ ∈ A as placed
17: mark dj = die(sj) as not stalled
18: else
19: add ak toAS
20: mark d as stalled
21: p← die(sj)
22: end if
23: end for . all ak considered
24: if d is not stalled then
25: pi ← pi+1

26: end if
27: else . no ak defined for si
28: PLACE(si)
29: pi ← pi+1

30: end if
31: end if . si processed
32: if pi = end then
33: if some pj 6= end then
34: p← pj
35: else
36: return done
37: end if
38: end if
39: end loop
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Fig. 4. Placement steps, to be performed for exemplary vertical insertion of
block s4 while covering 2 T-junctions.

ally adapt CBL tuples for implicit layout compaction. Our ap-
proach differs from [15] in these features but follows the same
principle of sequential block placement into dissected rooms.

Auxiliary data structures – We keep track of placed blocks
using two stacksHj / Vj for eachCBLj . More precisely, these
stacks are governed to contain CBLj’s blocks currently cover-
ing the vertical right / horizontal upper front of die dj ; these
are considered as the boundary fronts for further placement.

Placement flow – We determine each blocks’ si ∈ Sj lower-
left coordinates (xi, yi) as follows. (See Fig. 4 for an exam-
ple.) First, we retrieve ti + 1 previously placed blocks from
the respective stacks Hj / Vj . These blocks are referred to
as relevant blocks in the following. Note that in cases where
only tmax < ti + 1 blocks are available, the related CBL tu-
ple is technically infeasible [15]. To fix such invalid tuples, we
simply consider all tmax blocks in order to fulfill the desired
covering of T-junctions as best as possible. Second, we deter-
mine si’s y / x-coordinates (orthogonal to the horizontal / ver-
tical insertion direction) by considering the structural change
of CBLj’s room dissection. In case a new column / row is
implicitly defined due to covering all relevant blocks during
placement of si, we set the respective y / x-coordinate to 0.
In the remaining cases, we derive the coordinate from the rel-
evant blocks’ lower / left front. This can be also thought of as
placing a new column / row into the existing room dissection.
Third, we determine si’s x / y-coordinates (along the insertion
direction) by considering the right / upper front of previously
placed blocks which are intersecting with si in its orthogonal,
recently determined y / x-coordinates. Fourth, we update the
placement stacks to follow the changed layout’s fronts as fol-
lows. We push si onto the insertion-direction-related stack Hj

/ Vj . In case si is not covered by some relevant block to its top
/ right front, we also push si to the (unrelated) stack Vj / Hj .
Finally, we push relevant blocks not covered by si back to Hj /
Vj ; these blocks remain part of the layout’s boundary front and
are thus to be furthermore considered.

Virtual CBL adaption – For any block smaller than the
room it is supposed to cover, the next, adjacent block(s) will
be packed “into the room” of this smaller block (Fig. 5). We
refer to this feature as virtual CBL adaption since it results in
practice in different CBL tuples encoding the same (compact)
layout. Note that virtual CBL adaption is generally applied
during block placement.

B.3 Block Alignment: Inter- and Intra-Die Alignment

Recall that our alignment tuples support different alignment
types and can be interpreted as inter- or intra-die requests.

s3s1

s4

s2

s4'

CBL Encoding:

S = {s1, s2, s3, s4}
L = {1, 1, 1, 0}
T = {0, 0, 0, 2}

Equivalent Encoding
Example:
S = {s1, s4, s2, s3}
L = {1, 0, 1, 1}
T = {0, 0, 1, 0}

Fig. 5. Implications of virtual CBL adaption. Rooms and their assigned blocks
are similarly colored. Block s4 is placed “into the room” of s1, thereby en-
abling a more compact layout. Without applying virtual CBL adaption, s4
would be placed as s4′ . Virtual CBL adaption can result in different, equiv-
alent encodings for the same, compact layout; hence, it supports an efficient
solution-space exploration towards compact layouts.

We observe that such diverse requests all depend on their as-
signed blocks’ planar offsets, i.e., relative distances consider-
ing their projections onto a plane. This implies that we can
rely on adjusting the blocks’ offsets in order to handle align-
ment requests. Such adjustments are practical since our layout-
generation process is synchronized across the whole 3D IC, i.e.,
blocks to be aligned “wait for each other’s die to be ready”, that
means until preceding blocks are placed. This “waiting” might
result in circular dependencies; layout generation handles such
cases by resolving stalled dies (Subsection B.1).

It is also important to note that, depending on particular
alignment and CBL configurations, it may be infeasible to ful-
fill all requests.1 One resolution (exclusively applying) for
failing intra-die alignments includes preprocessing CBL tuples
and adjusting topologically infeasible configurations [17]. Yet,
such preprocessing is not warranted in the presence of different
alignment requests—the applicability of inter-die alignments
depends on the layout of all dies, that is on the entire layout-
generation process. The flow described below includes layout-
aware techniques, i.e., enables alignment in some cases of pre-
viously placed blocks.

Alignment flow – Remember that alignment tuples always
cover two blocks; requests spanning more blocks (and tuples)
are thus (implicitly) handled stepwise. Initially, we need to
check whether one or both blocks have been previously placed.
Depending on preceding placement, three different scenarios
are to be distinguished for handling request ak.
Scenario I: both blocks are placed – In this case, we cannot
fulfill ak since we omit post-placement shifting.2
Scenario II: one block is yet unplaced – Here, we assume
w.l.og. that si ∈ ak is yet unplaced and sj ∈ ak was previ-
ously placed. Depending on both the coordinates of (placed)
sj and the properties of ak, we may be able to fulfill ak as
follows. First, we determine si’s y / x-coordinates orthogo-
nal to its horizontal / vertical insertion direction (“Second”,
Subsection B.2). Next, based on both the inherent offset be-
tween si and sj and the defined alignment of ak, we derive
the required shifting range rsy(si, sj) / rsx(si, sj), i.e., the re-
maining offset of si w.r.t. sj in order to fulfill ak. Note that
rs(si, sj) = −rs(sj , si), i.e., the shifting range is directed and
invertible. In cases rs(si, sj) = 0, ak is already fulfilled. In
cases rs(si, sj) < 0, we would need to shift si downward / left-
ward which is trivially prohibited while maintaining a valid lay-
out. Alternatively, we could shift placed sj upward / rightward;

1We would like to stress that this limitation only applies to particular con-
figurations. That means, adapting the CBL configurations during alignment-
aware 3D floorplanning (as proposed in Section V) can resolve this issue.

2Based on our observations, shifting placed blocks most likely requires ad-
jacent (or nearby) blocks to be shifted as well in order to maintain a valid lay-
out. This is impractical in the presence of different alignment requests—such
shifting can then undermine handling of remaining requests and even invalidate
previously processed ones.
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Fig. 6. Examples for required shifting ranges. During alignment of block s7
with previously placed s4, shifting s7 to the right was applicable such that
rs(s7, s4) is resolved. In contrast, we cannot shift previously placed s5 (in
order to align it with s8) since we omit post-placement shifting. Also, the
inverted shifting range rs(s8, s5) = −rs(s5, s8) cannot be resolved since
this would require a shift of s8 to the left, which is hindered by s2.

however, this is not applicable, as mentioned before. (See also
Fig. 6 for illustration.) Third, if and only if rsy/x(si, sj) ≥ 0,
we can perform a corresponding forwards shift of si in y / x-
direction and thus satisfy ak’s partial request. Next, we per-
form above steps similarly for si’s x / y-coordinates along its
insertion direction. Finally, we handle the placement stacks. In
case block shifting was conducted, we need to rebuild them,
i.e., the stacks’ current blocks along with si are sorted by their
coordinates in descending order; afterwards uncovered (rele-
vant) blocks redefine the stack. In case block shifting was not
required, we simply update the stacks (Subsection B.2).
Scenario III: both blocks are yet unplaced – We are free to
shift both blocks, thus we can satisfy ak. Depending on the
blocks’ insertion direction and coordinates, we process block
shifting in parallel or sequentially (similar as described above).

V. 3D-FLOORPLANNING TOOL

We provide Corblivar along with our C++ implementation of
a SA-based 3D-floorplanning tool [18]. Our holistic concept of
(orchestrated) block placement and alignment differs notably
from previous works. Applying SA-based floorplanning dur-
ing initial experiments, we observe limitations of existing tech-
niques w.r.t. solution-space exploration for block alignment as
well as for “classical” 3D floorplanning. Thus, some effective
extensions are needed; notable features of our tool are (i) a SA
framework including two optimization phases and specific cost
models, (ii) an adaptive SA cooling schedule, and (iii) a fast
yet sufficiently accurate thermal analysis.

A. Optimization Criteria & Cost Models

We next discuss applied optimization criteria along with
their cost functions/models. Note that cost functions are formu-
lated for SA’s classical cost-minimization approach, i.e., lower
cost correspond to more optimized layouts.
Outline – This criteria unifies evaluation of the layout’s bound-
ing boxes, i.e., packing density, as well as fixed-outline fitting.
This is achieved by extending Chen and Chang’s aspect-ratio-
based cost model [19]. Our model is defined as

cOL = cPD + cARV

cPD = 1
2α(1 +

nfeasible

n )×maxdi

(
Aoutline(b∈di)
Aoutline(di)

)
cARV = 1

2α(1− nfeasible

n )×maxdi

(
∆AR(di)

2
)

∆AR(di) = ARoutline(b ∈ di)−ARoutline(di)

where cPD and cARV denote the respective cost terms for pack-
ing density and aspect-ratio violation. Functions Aoutline and
ARoutline determine the outline’s area and aspect ratio w.r.t. a
set of blocks b ∈ di / a die di, respectively. Note that we per-
form cost calculation for previous n layout operations where
nfeasible ≤ n operations resulted in a valid layout, i.e., blocks
on all dies are fitting into the fixed outline.
Wirelength and TSV count – We assume that the lowermost
die d0 is connected to the package board. For each net n, we
determine the half-perimeter wirelength (HPWL) on each re-
lated die di separately, denoted as HPWL(n, di). To do so,
we construct the bounding box by encircling connected termi-
nal pins (only for d0) and assigned blocks on di and on the
upper die dj , j > i as well. The latter is required to model
wires for connecting blocks with TSV landing pads in upper
dies. Overall cost terms are defined as

cWL =
∑
n

(
lTSV × TSV s(n) +

∑
di∈nHPWL(n, di)

)
cTSV s =

∑
n TSV s(n)

where TSV s(n) denotes the required TSV count for net n.
Note that we also account for “TSV wirelength” lTSV in cWL.
Thermal management – Cost cT is the estimated maximal
temperature of the critical die furthest away from the heatsink.
Details on thermal modelling are given in Subsection E.
Alignment mismatch – For an alignment tuple ak, we de-
scribe the spatial mismatch between desired alignment and
actual layout as cost cAMM (ak) = |rs(si, sj)| (Subsec-
tion IV-B.3). Overall cost is then calculated as cAMM =∑
ak∈A cAMM (ak).

B. Optimization Phases

We consider two different phases for SA optimization; these
phases support efficient solution-space exploration and layout
optimization for 3D floorplanning with block alignment.
Phase I, “Fixed-Outline Fitting” – The cost function is de-
fined as cFOF = cOL. Note that we do not perform align-
ment (Subsection IV-B.3) in this phase. The reason for ini-
tially focusing SA’s search solely on the fixed-outline is sim-
ply that non-fitting layouts are a “knock-out”, regardless of any
achieved block alignment and layout optimization. The transi-
tion to phase II is made when the SA search triggers the first,
fixed-outline fitting layout.
Phase II, “Alignment and Layout Optimization”– We com-
pose the cost function as

cALO = cOL + (1− α)×
∑
c′∈C′ c

′

C ′ : {β(cWL/cWLinit), γ(cTSV s/cTSV sinit),
δ(cT /cTinit

), ε(cAMM/cAMMinit
)}

with β + γ + δ + ε ≤ 1. Note that we memorize initial cost
terms like cWLinit

during transition to phase II, i.e., we derive
them from the first valid solution. Furthermore, note that we
consider cOL as essential term in this phase as well; based on
our experiments, the SA search for comprehensively optimized
layouts still depends on outline fitting/optimization.

C. Layout Operations

We consider the following set of layout operations to support
the SA heuristic in effective exploration of Corblivar’s solution
space: swapping blocks within or across dies (CBL sequences),
swapping or moving whole CBL tuples within or across CBL
sequences, switching a block’s insertion direction, switching a
block’s T-junctions, rotating hard blocks, and guided shaping
of soft blocks as proposed in [19].



For optimization phase I, operations and blocks / CBL tuples
are selected randomly. In phase II, blocks related with failed
alignment requests are particularly selected. These blocks are
swapped with adjacent blocks such that |rs(si, sj)| is reduced,
i.e., such that the alignment is more likely to be fulfilled.

D. Cooling Schedule

As indicated earlier, we require an adaptive cooling sched-
ule for improved efficiency of solution-space exploration. Our
schedule is capable of (i) guiding the SA search within the
global phases and (ii) escaping local minima. The schedule is
composed of three different phases, explained below. Note that
i labels the current step of imax total temperature steps.
Phase “Adaptive Cooling” – We apply this cooling phase dur-
ing SA phase I, which is aiming for fixed-outline fitting.
Ti+1 =

(
cf1 + i−1

imax−1 × (cf2 − cf1)
)
× Ti

The cooling rate slows down (given that cf1 < cf2 < 1.0); our
intention here is to achieve initially fast cooling for the global
scope, followed by slower cooling in a confined, “local” solu-
tion space.
Phase “Reheating and Freezing” – This is applied for SA
phase II, i.e., after a fitting layout was found in step ifirst.

Ti+1 =
(

1− i−ifirst

imax−ifirst

)
× cf3 × Ti

The cooling rate increases steadily; however, setting cf3 > 1.0
results in an initial reheating for i ≥ ifirst. This way, the
SA search has an increased flexibility for accepting high-cost
solutions in this “interesting solution-space region” covering
the first fitting layout. According to experiments, this limits the
risk for being subsequently trapped in solution-space minima.
Phase “Brief Reheating” – This phase enables a somewhat
“autonomous” and robust cooling schedule.
Ti+1 = cf4 × Ti, cf4 > 1.0

It is applied in alternation with the phase “reheating and freez-
ing” for individual temperature steps during SA phase II. Such
brief reheating helps the SA search to escape local minima; it
is applied when we observe σ(cALO) ∼ 0 during previous k
steps, that is when the search reached a local “cost plateau”.
This technique is inspired by Chen and Chang’s study [19];
their approach, however, proposes reheating solely at one par-
ticular temperature step, which we believe is not as effective as
our cost-controlled reheating.

E. Fast Evaluation of Thermal Distribution

For fast yet accurate (steady-state) temperature analysis, we
extend the work of Park et al. on power blurring [20]. Instead
of using computationally intensive finite-differences or finite-
elements analysis (FEA), power blurring is based on simple
matrix convolution of thermal impulse responses and power-
density distributions. (Park et al. reveal promising results when
comparing to ANSYS FEA runs; they achieve maximal errors of
less than 2% with computation speedups of ∼ 60×.)

For improved efficiency and to provide an integrated floor-
planning tool [18], we refrain from time-consuming FEA runs
for retrieving thermal masks [20]. Instead, we model the
masks’ underlying thermal impulse responses as 2D gauss
functions g(x, y, w, s) = w exp

(
− 1
sx

2
)

exp
(
− 1
sy

2
)

with w
as amplitude-scaling factor and s as lateral-spreading factor.
To obtain the whole set of required masks [20], we need some
scaling measure for g. We thus adapt w for each die di’s mask
such that wi = w/(iws), where max(i) represents the upper-
most die next to the heatsink and ws denotes a scaling param-
eter. For actual parametrization of w, ws and s, we determine

for each different 3D-IC setup (w.r.t. die count and dimensions)
(i) an exemplary thermal distribution using a 3D-IC extension
of HotSpot [21], a state-of-the-art academic thermal analyzer,
and (ii) a best fit for above parameters based on a local search
using HotSpot’s solution as reference model.

VI. EXPERIMENTAL RESULTS

We conduct several experiments described below to vali-
date Corblivar’s capabilities. Relevant configuration details are
given in Subsection A; results are discussed in Subsection B.
Structural planning of interconnects – We consider a set of
several interconnects running both within and across dies; the
(arbitrarily defined) set contains 10 width- and length-limited
buses, each covering up to 5 blocks, along with 3 block pairs to
be vertically aligned. We assume that each interconnect struc-
ture bundles 64 signals. For structural planning of these inter-
connects, in total 18 blocks have to be aligned simultaneously;
related alignment tuples can be retrieved from [18]. Such sce-
nario has not been considered in previous studies, thus we can-
not meaningfully compare to other work.3

Regular and large-scale 3D floorplanning – To evaluate
Corblivar’s efficiency w.r.t. key 3D floorplanning objectives,
we look into layout packing, wirelength and thermal optimiza-
tion. (Note that we refrain from deriving alignment tuples for
the considered benchmarks’ nets. In other words, here we do
not apply block alignment for interconnects planning and/or
wirelength optimization.) We compare our work to relevant
previous studies [22, 23]. Furthermore, we demonstrate Corb-
livar’s scalability by utilizing the IBM-HB+ benchmark suite
[24]. To the best of our knowledge, this is the first time that
these large-scale circuits are considered for 3D floorplanning.

A. Configuration

3D-IC configuration and benchmarks – We assume face-to-
back stacking of two or three dies. Dies are 100µm thick; fur-
ther properties are given in [18]. Terminal pins are only avail-
able on the lowermost die which is assumed to be connected
to the package board. Practical (i.e., stackable) fixed outlines
are ranging from 10mm × 10mm up to 15mm × 15mm. We
consider GSRC [25] and IBM-HB+ [24] circuits. For reason-
able utilization of die outlines, benchmarks are enlarged. In
this context, power-density values are scaled down by factor
10. Also, results are referring to packed layouts where feasi-
ble, i.e., reduced outlines are reported. Deadspace utilization
by 10µm × 10µm-sized TSVs was negligible in most cases,
we thus refrain from optimizing and reporting TSV counts.
Setup – We conduct all experiments on a Intel Core 2 system;
reported runtimes are thus comparable. Corblivar and [23] are
embedded in SA-based tools; best results are chosen from 5
up to 25 runs. Applied Corblivar parameters are retrievable
from [18]. For HotSpot, default settings are applied [21].

3Previous studies on block alignment for 3D ICs have looked into differ-
ing scenarios. Nain and Chrzanowska-Jeske [5] propose techniques to split up
and align (sub-)modules among adjacent dies with fixed (zero) offsets. They
neglect to provide derived benchmarks containing split-up blocks, thus a com-
parison is hindered. Law et al. [6] consider a more flexible problem formula-
tion; for vertical bus planning, they define sets of blocks for each die separately
and require (at least) one block from each set to be vertically aligned with one
block from the other sets. This simplified alignment problem is not compati-
ble with our approach where we require all specified blocks to be aligned. Li
et al. [7] indicate capabilities for block alignment but refrain from providing
further details and related experimental results. Finally note that all aforemen-
tioned studies exclusively consider vertical alignment with fixed offsets.



B. Results

Structural planning of interconnects – We observe that the
entire set of interconnects is successfully integrated, i.e., all
related blocks can be simultaneously aligned (upper part of
Table I). Compared to experiments where planning of inter-
connects is ignored (lower part of Table I), we expect and ob-
serve an increase of die outlines and deadspace—block align-
ment limits the flexibility of layout packing. More impor-
tantly, however, we observe notable wirelength increases in
case of neglected interconnects planning; these overheads arise
from routing detours for interconnects embedded in unaligned
blocks. Finally, fixed die outlines were fulfilled in any case,
i.e., the proposed SA optimization phases are effective.

An example for successful interconnects planning with cor-
responding block alignment is illustrated in Fig. 7.
Regular 3D floorplanning – Next, we discuss results on con-
ducting floorplanning with applied layout packing and (equal)
consideration of thermal and wirelength optimization (Ta-
ble III). We observe that Corblivar is competitive with a force-
directed tool [22] and superior to a SA-based tool [23]; both
represent state-of-the-art academic works. In particular, we
achieve comparable wirelengths and temperatures as [22] but
with reduced die outlines and deadspace ratios. This indicates
the efficiency of layout packing, which is most likely achieved
by the proposed virtual CBL adaption. Comparing to [23],
however, we note that Corblivar’s layouts exhibit larger dead-
space ratios and thus reduced packing densities. Nonetheless,
we achieve reduced wirelengths in most cases. Also, the high
packing density of [23] comes at a price; maximal temperatures
are notably increased by tens of Kelvins compared to Corbli-
var. Thus, our tool effectively addresses the trade-off between
packing density and maximal temperature. Furthermore, fixed
outlines were fulfilled in these experiments as well.

As for our temperature analysis, we observe that it shows
some local deviations compared to HotSpot-verification runs
(Fig. 8). As indicated in [20], convolution-based thermal
analysis particularly induces estimation errors at die bound-
aries. Thanks to our proposed mask parametrization, the actual
thermal-distribution scale (i.e., the scale w.r.t. HotSpot runs) is

TABLE I
RESULTS ON ENLARGED GSRC BENCHMARKS FOR APPLIED

INTERCONNECTS PLANNING, I.E., BLOCK ALIGNMENT (UPPER PART),
COMPARED TO RESULTS FOR FLOORPLANNING WITHOUT

INTERCONNECTS PLANNING (LOWER PART)
2 Dies 3 Dies

Metric n100 n200 n300 n100 n200 n300

Wirelength (cm× 103) 1.18 1.81 1.97 1.10 1.93 2.07
Die Outlines (cm2) 1.14 1.14 1.14 0.73 0.84 0.91
Total Deadspace (%) 29.21 30.39 31.14 26.81 37.20 42.06

Runtime (s) 80 359 891 81 360 858

Wirelength (cm× 103)∗ 1.83 2.60 2.53 1.34 2.59 2.76
Die Outlines (cm2) 1.00 1.08 1.07 0.77 0.82 0.35
Total Deadspace (%) 18.82 27.04 26.39 29.81 36.00 32.19

Runtime (s) 59 304 726 59 304 734
∗Estimated routing detours for (unaligned) interconnect structures are included.

TABLE II
RESULTS ON ENLARGED IBM-HB+ BENCHMARKS FOR LAYOUT

PACKING AND WIRELENGTH OPTIMIZATION
2 Dies 3 Dies

Metric ibm01 ibm03 ibm07 ibm01 ibm03 ibm07

Wirelength (cm× 103) 4.77 7.29 1.77 4.67 7.39 1.67
Die Outlines (cm2) 0.64 0.65 0.79 0.46 0.48 0.57
Total Deadspace (%) 17.24 19.26 18.59 24.97 27.86 24.88

Runtime (s)∗ 1195 3611 3081 1285 3792 3895
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Fig. 7. Planned interconnect structures with corresponding block alignment,
for enlarged benchmark n100. Vertical-bus sites are indicated by green, verti-
cally extended rectangles; sites for 2D buses are colored as dark-brown. For
interconnects planning aligned blocks are colored orange. For illustration pur-
poses, we consider a reduced set of buses, covering blocks sb1 to sb9.
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Fig. 8. Thermal maps of the critical die (furthest away from the heatsink),
benchmark n300. The temperature scale of our fast analysis (a) matches with
the scale obtained by running HotSpot (b); yet, local deviations are visible.

matched nevertheless. For analysis during layout optimization,
i.e., maximal-temperature estimation, our approach is thus ap-
plicable. It is also efficient due to fast computation; one run can
be conducted in∼20ms. (For comparison, one HotSpot run can
take tens of seconds up to a few minutes.)
Large-scale 3D floorplanning – The IBM-HB+ suite does not
include power information; we thus configured Corblivar only
for wirelength and packing optimization (including successful
consideration of fixed-outline constraints). Results on arbi-
trarily selected circuits are provided in Table II. We observe
that total deadspace for these experiments is on average larger
than for experiments on some GSRC circuits. This is expected
and likely due to the fact that IBM-HB+ circuits contain up to
∼1,500 blocks where largest blocks are ∼33,000 times bigger
than smallest ones; such designs are difficult to floorplan [26].

VII. SUMMARY

In this work, we extend 3D floorplanning towards structural
planning of interconnects—an important yet inadequately ad-
dressed scenario for (future) massively interconnected 3D ICs.
To tackle this omission of previous works, we promote block
alignment. We initially discuss how 3D (inter-die) and 2D
(intra-die) alignment can be applied for planning of diverse in-
terconnects like vertical buses connecting (split-up) blocks on
separate dies or classical 2D buses. We then introduce Corb-



TABLE III
COMPARATIVE RESULTS ON GSRC BENCHMARKS FOR LAYOUT PACKING WITH THERMAL AND WIRELENGTH OPTIMIZATION – BENCHMARKS ARE

NOT ENLARGED FOR FAIR COMPARISON
Corblivar, 2 Dies Corblivar, 2 Dies Corblivar, 3 Dies Corblivar, 3 Dies

Metric n100 n200 n300 Avg ami33 xerox Avg n100 n200 n300 Avg ami33 xerox Avg

Wirelength (µm× 105) 3.70 6.57 9.07 6.45 2.02 13.89 7.96 4.24 7.19 10.28 7.24 2.06 16.36 9.21
Die Outlines (µm2 × 105) 1.01 0.99 1.61 1.20 10.38 143.15 76.77 0.75 0.68 1.08 0.84 8.98 117.48 63.23

Total Deadspace (%) 11.98 12.01 15.65 13.21 44.31 32.41 38.36 20.53 14.62 16.27 17.14 57.08 45.09 51.09
Max Temp [21] (◦K) 313.81 314.53 315.95 314.76 309.14 353.85 331.49 355.62 363.94 363.35 360.97 333.17 416.61 374.89

Runtime (s) 108 286 548 314 50 14 32 154 380 704 413 71 22 47

[22], 2 Dies [23], 2 Dies [22], 3 Dies [23], 3 Dies
Metric n100 n200 n300 Avg ami33 xerox Avg n100 n200 n300 Avg ami33 xerox Avg

Wirelength (µm× 105) 3.65 6.18 9.53 6.45 1.81 17.14 9.48 4.59 7.17 10.61 7.46 2.22 21.86 12.04
Die Outlines (µm2 × 105) 1.19 1.21 2.15 1.52 9.65 125.17 67.41 0.97 0.82 1.48 1.09 7.54 88.93 48.24

Total Deadspace (%) 25.02 27.87 36.69 29.86 40.09 22.70 31.40 38.89 28.64 38.65 35.39 48.87 27.47 38.17
Max Temp [21] (◦K) 313.31 313.74 314.63 313.89 336.36 366.48 351.42 348.55 360.60 361.35 356.83 384.39 482.16 433.28

Runtime (s) 439 446 526 470 193 47 120 266 497 574 446 193 48 121

livar, a 3D layout representation based on an extended corner
block list with novel alignment tuples. To this end, we also de-
velop effective techniques for block placement and alignment.
We note that it is essential to synchronize alignment across
the whole 3D IC—in particular, inter-die alignment requires to
consider each die’s layout in progress. Our techniques handle
this appropriately for different scenarios of blocks to be aligned
and/or to be placed. We embed Corblivar into an open-source,
SA-based floorplanning tool; we also develop necessitated ex-
tensions like adaptive SA cooling and convolution-based fast
thermal analysis. Experimental results on GSRC and large-
scale IBM-HB+ benchmarks demonstrate Corblivar’s applica-
bility for structural planning of interconnects, i.e., block align-
ment, as well as its competitive performance for “classical” 3D
floorplanning while considering fixed outlines, layout packing,
thermal and wirelength optimization.
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