Reliability-Driven Layout Decompaction for Electromigration Failure Avoidance in Complex Mixed-Signal IC Designs

41th Design Automation Conference

June 8, 2004

Goeran Jerke, Robert Bosch GmbH, Germany Jens Lienig, IFTE, Dresden University of Technology, Germany Juergen Scheible, Robert Bosch GmbH, Germany

Outline

- Motivation
- Design Flow
- Reliability-Driven Layout Decompaction
- Results
- Conclusion

Motivation

Electromigration is a reliability problem:

- Creation of voids \rightarrow drift of parameters, open circuits
- Hillocks and whiskers \rightarrow short circuits

Motivation (2)

Electromigration is a design problem:

- Percentage of current-density-critical (signal) nets increases
- Overall number of nets increases

Solutions ?

- "Net classes":
 - Current-density-correct layouts cannot be guaranteed
 - Either route space wasting or insufficient wire and via sizing
- Current-driven routing strategies:
 - Current-density-correct layouts due to "correct-by-construction"
 - Must solve a cyclic design problem: topology \leftrightarrow segment currents

Our Solution:

- Post-route modification of the existing physical layout
- Net topology is known → segment currents can be derived easily (no cyclic design problem exists)

Design Flow

Layout Decomposition

- Given: Net layout with terminal currents
- Objective: Determination of all independent net segments

1) Original net layout

 Sub-element creation (Triangulation and Mid-point connections)

Layout Decomposition (2)

- Given: Net layout with terminal currents
- Objective: Determination of all independent net segments

- 3) Tree pruning, retrieval of SP and net segment objects
- 4) Independent net segments with current sources and sinks

Wire and Via Array Sizing

- Given: Net segments + current-density distribution j(x, y)
- Objective: Determination of net segment currents i_s

Addition of Support Polygons

- Given: Net layout and current-density distribution j(x, y)
- Objective: (1) Resolve current-density problems within terminals
 (2) Current-flow homogenization

Layout Decompaction

- Given: Net layout and decompaction information
- Objective: Current-density-correct layout modification

(a) / Wire and Via Adjustments(b) / Added Support Polygons

Conclusion

- Our approach automatically adjusts current-density-critical layout sections of P&G and signal nets after layout generation
 - No cyclic design conflict to solve
 - Wire and via dimensions are exactly known:
 - Electromigration robust layouts
 - o No wasting of route space
 - Represents a cornerstone towards a fully automated layout generation of analog- and mixed-signal ICs
- Future:
 - Net topology optimization can further improve this approach (requires additional terminal current values)
 - Current-driven layout generation (current-driven routing)