

Novel Pin Assignment Algorithms for Components with Very High Pin Counts

Tilo Meister, Jens Lienig
Dresden University of Technology

Dresden, Germany
tilo@ieee.org, jens@ieee.org

Gisbert Thomke
IBM Research & Development

Boeblingen, Germany
thomke@de.ibm.com

Abstract

The wiring effort and thus, the routability of electronic
designs such as printed circuit boards, multi chip modules
and single chip modules largely depends on the
assignment of signals to component pins. For modern
components that have as many as several thousand pins,
this pin assignment cannot be optimized manually. This
paper presents four novel pin assignment algorithms that
automatically create optimized pin assignments for wiring
substrate designs with components that have very high pin
counts. We also present and evaluate quality estimation
metrics that enable fast assessment of the pin assignment
results. The efficiency of our algorithms allows the
creation of optimized pin assignments using only minutes
of computation time. We show the applicability of all four
algorithms, including their strengths and weaknesses, in
specific design applications.

1. Introduction

Pin counts and operation frequencies of electronic
components constantly increase and so the layout
synthesis of wiring substrates (on which these
components are to be placed) becomes ever more
complex. The typical basic steps of layout synthesis for
wiring substrates, such as printed circuit boards (PCBs),
multi-chip modules (MCMs) and single-chip modules
(SCMs), are placement of components, interconnect
routing and verification.

The high I/O counts and low pitches of the
components push the wiring capacities of the substrates to
their limits. Also, the increasing complexity of integrated
circuits (ICs) makes the delays of signals external to ICs a
bottleneck for operation speeds of electronic devices. Pin
assignment, i.e., the optimized assignment of signals to
the pins of the components, has become a crucial step in
the layout process in order to reduce the subsequent
wiring effort and improve routability. Furthermore,
electrical characteristics can be improved as well due to
reduced wirelengths, signal intersections and a smaller
number of routing layers.

Figure 1 (a) shows a pin assignment task for a graphics
processor unit (GPU) placed on an AGP (Accelerated
Graphics Port) board. The AGP specification exactly
defines the pin assignment of the AGP connector, which
is at the bottom edge of the board in Figures 1 (a) and (b).

On the other side, the GPU design allows the flexibility to
optimize the signal allocation of its pins. Since the
assignment of the AGP signals to the GPU pins massively
influences the necessary wiring effort between the AGP
connector and the GPU, this pin assignment must be
optimized. Figure 1 (b) shows one possible pin
assignment illustrated by the shortest connections
between the two pins of each net (flylines).

This paper concerns the optimization of pin
assignments from the viewpoint of wiring substrates in an
isolated stage, following the placement of the components.
Specifically, the position of all components is fixed during
the pin assignment process. Interconnect routing (wiring)
takes place in a subsequent stage.

There is a significant difference to the related pin
assignment algorithms for VLSI design, which typically
deal with millions of components each having only a few
pins. In contrast to those algorithms, the pin assignment
algorithms presented in this paper handle pin assignment
tasks with components that each have several thousand
pins.

Producing an optimized pin assignment without
creating the final wiring geometry represents a challenge

100 Pins

100 Pins
100 Signals

(a)

100 Signals

100 Pins

100 Pins

(b)

Figure 1. Illustration of a simple pin assignment for a
graphics processor unit (GPU). (a) Pin assignment task
for the roughly 100 signals of a GPU. (b) One possible pin
assignment for the signals of the GPU, illustrated by the
shortest connections (“flylines”) between the two pins of
each net.

978-3-9810801-3-1/DATE08 © 2008 EDAA

because performing detailed routing for the sole purpose
of evaluating the pin assignment quality is not feasible.
Instead, we have developed metrics for the quality
estimation of a pin assignment that represent the expected
quality of the actual detailed routing. We have verified
our quality estimation metrics by comparing them with
the actual routing results.

In summary, the contributions of this paper are four
novel pin assignment algorithms that automatically
generate optimized pin assignments for components with
very high pin counts. Previously these pin assignments
had to be created manually which requires an effort of
months. Our algorithms reduce the required effort to days.
To the best of our knowledge, our approach allows for the
first time an automatic pin assignment of components
with several thousand pins each.

2. Previous works

Early work on pin assignment concerned topological,
heuristic algorithms to reduce routing intersections, thus
improving routability [1] [2] [3] [4]. This work focused
on discrete components with small pin counts of no more
than approximately 20 pins.

The evolution of ICs led to new pin assignment
challenges. One typical VLSI pin assignment task is
channel pin assignment [5] [6]. Another problem is to
optimize the pin assignment in standard cell and macro
cell VLSI designs [7]. Furthermore, pin assignment is an
important stage in FPGA designs [15]. All referenced
approaches on pin assignment have been able to improve
the design quality, often evaluated by wirelength and/or
routing congestion.

While recent work has been focusing on pin
assignment in VLSI designs, little attention has been paid
to pin assignment from the viewpoint of wiring substrates,
such as PCBs and MCMs [8] [9] [10]. In contrast to VLSI
designs, which have up to millions of cells with few pins
each, designs of wiring substrates can contain hundreds of
components with up to thousands of pins per component.
In addition, pin assignment algorithms for VLSI
commonly map pins to the outline of cells. This however,
is impractical for area array components with very high
pin counts placed on a wiring substrate. These significant
differences make it impractical to adapt VLSI pin
assignment algorithms to current designs of wiring
substrates.

3. Definition of the pin assignment problem
Pins are the electric transitions of signals between

different components of the design. They are mainly
introduced for two reasons. First, pins serve as the well
defined interfaces between different components, which
allows us to cope with design complexity by applying a
hierarchical design approach. Second, pins are the electric
joints between components of different technologies.

In either case, the assignment of a specific net (signal)
is generally not constrained to a certain pin (location). In
most cases, a signal can be assigned to any pin within a
certain area. Depending on which pin location is chosen,
electrical properties for the respective signal differ. In
particular, the wiring effort both within the component as

well as external to the component can change
significantly.

The general pin assignment problem is to assign all
nets (signals) to unique, valid pin locations so that the
overall design is optimized. In most cases, the
optimization is judged by routability and electrical
characteristics.

The algorithms we present in this paper solve a
subproblem of the general pin assignment problem which
is highly relevant for PCB, MCM and SCM designs.
Please note that for the sake of simplicity, we refer to
assigning pins to fixed pin locations (rather than signals to
fixed pins) in the remainder of this paper. As we will
show in the following, this allows an easier explanation of
the algorithms without modifying the pin assignment
problem itself. Taking this into account, the pin
assignment problem can be formulated as follows:
Input data:
• Two independent sets of predefined pin locations,

defined as FROM pin location set and TO pin
location set. Both sets contain exactly p pin locations
each.

• n=p two-terminal (two-pin) nets.
Output data:
• Assignment of the 2·n pins of the n given two-

terminal nets to the 2·p=2·n given pin locations.
Objective:
• Routability of the design (as defined in Section 5).
Constraints:
• Each net must have exactly one pin at any one FROM

pin location and one pin at any one TO pin location.
• There is exactly one pin at each pin location.
• All nets (signals) are of the same priority and nets do

not prefer or refuse a pin location.
From the above definition it follows that the pin

assignment problem is equivalent to finding exactly one
TO pin location and one FROM pin location for the pins
of any one net. During pin assignment, an objective
function is minimized (see Section 5).

Please note that it is irrelevant which particular net is
assigned to a pair of pin locations because a net does not
prefer a certain pin location. In other words, the
subsequent assignment of the specific nets to the pairs of
pin locations has no effect on the objective and could as
well be created randomly.

Figure 1 shows an example for this pin assignment
problem. The package of the GPU defines one set of pin
locations. The second set of pin locations is defined by
the AGP connector. The pin assignment problem is to find
an assignment between the pin locations of the GPU and
the pin locations of the AGP connector that optimizes the
routability of the AGP signals on the AGP board.

With n being the number of two-terminal nets, the
number of possible pin assignments is n!. Even for the
small number of n=25 nets, this results in the vast number
of 1.55·1025 possible pin assignments to choose from. For
current designs n is in the magnitude of thousands, thus
making it unlikely that the pin assignment problem can be
solved comprehensively.

4. Algorithms for pin assignment

We have developed four pin assignment algorithms
based upon the input data as defined in Section 3. Due to
the complexity of the pin assignment problem, the
algorithms of Sections 4.1, 4.2, and 4.3 are heuristic. The
algorithm presented in Section 4.4 uses linear
optimization with optimal solutions but limits
optimization to properties that can be formulated as a
linear objective function.

4.1. Recursive bisectioning of pins

Both pin location sets are recursively split using a
horizontal or vertical cut line. First, the entire set is cut
into halves. Then the half set below/left and the half set
above/right are each split with a cut line of the other
orientation. If an odd number of pin locations has to be
split, the subset above/left will contain one location more
than the subset below/right. The alternating vertical and
horizontal cuts are repeated until each subset of pin
locations contains only one location. Figures 2 (a) – (d)
show this recursive bisectioning of both sets.

The relative position between a pin location and each
cut defines a unique binary sequence (position number)
for each pin location. Here, the digit “0” denotes that a
pin location is above/right a cut line, while the digit “1”
means that a pin location is below/left. The pin
assignment is created based on these position numbers,
i.e., the FROM pin location and TO pin location with the
same position number are assigned to each other.
Figure 2 (d) shows the resulting pin assignment.

4.2. Projection of pins onto a line

The pin locations of both pin location sets are
projected on a line. This line is oriented perpendicular to
the virtual line that connects the medians of the two sets.
Based on the order of the projected pin locations, the pin
assignment is created. The locations of each set are
numbered from 1 to p according to the order of their
projected positions (Figure 3 a). The FROM pin location
and the TO pin location with the same location number
are assigned to each other (Figure 3 b).

The line of projection does not need to be the same for
both pin location sets. If a preferred direction of fan out is
known for a bus, the line of projection can be oriented to
be perpendicular to this preferred direction. This creates a
pin assignment with minimum intersections within the
wiring of the bus. Using this methodology, routing
intersections can easily be reduced even if a bus is wired
around a component in order to approach it from the “far
side”.

4.3. Removal of signal intersections

Here, the crossings of the flylines of nets are used to
model the signal intersections in the real layout that are to
be minimized. First, an initial pin assignment is created.
Any random pin assignment may be used for this. Based
on this initial solution, crossings of two flylines are

located. The pin assignment of the two intersecting nets is
then swapped to remove the flyline crossing. This process
is iterated until all flyline crossings are removed.

Figure 4 shows an unambiguous example. However, in
general more than one pin assignment without flyline
crossings may exist. As shown in Section 5, the resulting
pin assignment as well as the number of iterations depend
on (1) the initial pin assignment and on (2) the processing
sequence of nets.

0
1

0
1

(c)

To pin
location set

(a)

From pin location set

0
1

1
0

1
0

1
0

(d)

0
1

0
1

(b)

11

01

0

11
0

0

11

0

0
11

01

001

01

0

0
0

01

11

11 0

01

0

0

0
111

0

111

1
0

0
1

0

0

1

101

000

010

1010

000

011
1

1
0111

0

1

111
101

000

010

011
101

000
0 1

0

0

0

0
0

0101

0

0

0

0

0
0

0

0
0

0100

0

Figure 2. Pin assignment by recursive bisectioning of pin
location sets. The binary numbers denote whether a
subset of pin locations is above/right (0) or below/left (1)
of each cut.

Line of
Projection

From pin
location set

To pin
location set

(b)(a)
8765421 3 9

312 456789

Figure 3. Pin assignment by projection. (a) Ordering of
pin locations by projection. (b) Pin assignment.

4

6 75 8

2 31 42 31

6 75 8

2 31 4

6 75 8

2 31 4

6 75 8

From pin
location set

To pin
location set

(d)(c)(b)(a)
Figure 4. (a) Initial pin assignment. (b) In the upper set of
pins, pins at locations 1 and 2 are swapped. (c) Pins 2
and 3 are swapped. (d) Pins 6 and 7 are swapped.

4.4. Pin assignment as linear assignment problem

In [11] and [12], the authors describe an approach to
create a pin assignment by solving a linear assignment
problem (LAP) on a cost matrix. The elements of the cost
matrix are calculated from estimated wirelengths, logical
design structure and signal timing.

In our work we use an enhanced approach to create
optimized pin assignments for very high pin counts that
additionally is able to minimize flyline crossings. The
used cost matrix K is of size p × p and represents the cost
of all possible pin assignments.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

pppp

p

p

kkk

kkk
kkk

K

L
MOMM

L

L

21

22221

11211

Element kij is the cost if the FROM pin location i is
assigned to the TO pin location j. The pin assignment is
given by the assignment matrix X.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

pppp

p

p

xxx

xxx
xxx

X

L
MOMM

L

L

21

22221

11211

 where
{ }

11

10

11
==

∈

∑∑
==

p

j
ij

p

i
ij

ij

x;x

,x

for all i and j.
Element xij is 1 if FROM pin location i is assigned to

TO pin location j, else xij = 0. By solving the linear
assignment problem on the cost matrix K, the optimal pin
assignment which minimizes the sum of all costs

 ()∑∑
= =

⋅=
p

i

p

j
ijij kxstOverall Co

1 1

can be found in O(p2·log p) time. An overview of suitable
algorithms is given in [13]. We use the Hungarian
algorithm [16] which solves the linear assignment
problem in O(p3) time.

In contrast to previous works using linear assignment,
we include flyline crossings in the cost of the pin
assignment with the following cost function:

kij = TargetLength · α · Diffij + lij
Here, lij is the net length which is minimized in parallel

with the estimated number of flyline crossings Diff (see
below). TargetLength is the distance between the medians
of both pin location sets. Finally, α (≥0) is the parameter
to adjust the weight between length minimization and
minimization of flyline crossings.

TargetLength and lij are either calculated as half-
perimeter wirelength (HPWL) or in Euclidean geometry.
The coordinates of the pin locations are (xi ,yi) and (xj ,yj).
The medians of the two pin location sets are ()FromFrom y,x
and (). y,x ToTo We define ,xxdx ji −=

,yydy ji −= FromTo xxdx −= and .yydy FromTo −= Then
TargetLength and lij are either one of the following:

1. Euclidean net length:

TargetLength
22

dydx += ; 22 dydxlij +=

2. HPWL net length:
TargetLength dydx += ; dydxlij +=

The estimated number of flyline crossings Diffij is
calculated based on a target pin assignment without these
crossings. This target pin assignment is created once. First,
our linear assignment methodology with α = 0 is used to
create an initial pin assignment. The initial pin assignment
is optimal with respect to the sum of the lengths of all nets.
Since α is set to zero, Diff is not needed to calculate the
cost matrix K. Second, this initial pin assignment is fed to
the algorithm of Section 4.3 to create the target pin
assignment without flyline crossings.

For the target pin assignment, either a circle around the
center of a pin location set or a straight line intersecting
all flylines are determined. All nets and consequently all
FROM and TO pin locations are numbered from 1
through p according to the order they are intersected by
the line/circle. Let Fi be the number assigned to the
FROM pin location i. Accordingly, let Tj be the number
assigned to the TO pin location j. Using the above
definitions, Diffij is calculated as follows:

Diffij = |Fi – Tj|
Since the target pin assignment is free from flyline

crossings, Diffij and thus the cost function increases as the
number of flyline crossings increases. To be more general,
Diffij not only allows including flyline crossings in the
cost function but actually includes the configuration of the
target pin assignment as an objective of linear assignment.

If neither a circle nor a line to intersect all flylines can
be found for the target pin assignment, Diffij cannot be
computed and the respective part of the objective function
is set to 0.

5. Experimental results

The pin assignment algorithms presented in Section 4
have been evaluated with numerous industrial designs
from IBM. Due to the lack of suitable benchmarks, PCB,
MCM and SCM designs have been used. We present the
results for a MCM design with 2930 signals and 2112
power/ground pins (labeled MCM1). Figure 5 shows part
of MCM1, which carries dies that are flip chip mounted
on top of a chip carrier. The bottom side of the chip
carrier is covered with a regular array of pins which are
either signal pins or power/ground pins. Within the chip
carrier, wiring connects each chip pin (pad) to a pin on the
bottom of the chip carrier. The pin assignment algorithms
are used to create assignments between all signal pins of
the dies and all signal pins on the bottom side of the chip
carrier. The signal nets considered are two-terminal nets.

The created pin assignments are evaluated by means of
fast quality estimation metrics. These are net lengths in
half-perimeter wirelength (HPWL) and in Euclidean
geometry, and the number of flyline crossings. The
applicability of these metrics is shown by relating them to
the real routing results as discussed later.

Given that (xai ,yai) and (xbi ,ybi) are the coordinates of
the two pins of net i, p is the number of nets in the pin

assignment task, dxi = |xai – xbi|, dyi = |yai – ybi|, we define
the following metrics:
• Sum of all HPWL net lengths (SHPWL):

∑ +=
p

i
ii dydxSHPWL

• Matched wirelengths (HPWL MATCH):
HPWLMATCH = p · max (dx1 + dy1, … , dxp + dyp) – SHPWL
HPWL MATCH indicates the routing effort necessary to
match the lengths of all wires of a bus.

• Average net lengths in Euclidean geometry (AVG
Flylines):

AVG Flylines ∑ +=
p

i
ii dydx

p
221

• The standard deviation of the net lengths in Euclidean
geometry (STD Dev):

STD Dev ∑ ⎟
⎠
⎞⎜

⎝
⎛ +−

−
=

p

i
ii dydxFlylinesAVG

p

2
22

1
1

STD Dev (similarly to HPWL MATCH) indicates the
routing effort necessary for matching wirelengths.

• The number of flyline crossings of all nets.
The pin assignment algorithms (PAA, see Table 2) of

Section 4 are implemented in ANSI C and run on a
2.0 GHz PC. The routing geometry is created with the
commercial SPECCTRA autorouter on the same machine.
The results for design MCM1 are shown in Table 1.

We compare the results of our pin assignment
algorithms amongst each other with a special emphasis on
the results of the pin assignment algorithm of Section 4.4.
This is reasonable because the algorithm of Section 4.4
finds the optimal pin assignment with respect to a linear
objective. That is, when optimizing SHPWL and AVG
Flylines, the generated pin assignment is the global
optimum with respect to either SHPWL or AVG Flylines.
Therefore, we use those results to evaluate the other
automatic pin assignments. Table 1 depicts the difference
between the individual results and the global optima as a
percent of the global optimum for SHPWL and AVG
Flylines. The results of the pin assignment algorithm of
Section 4.1 are the reference for the remaining quality
metrics (HPWL MATCH and STD Dev).

It is important to note that the manual creation of an
optimized pin assignment for the above test designs
requires 1–2 months, with results similar to those of the
algorithms presented in Sections 4.1 and 4.3 [17]. The
algorithms presented in this paper reduce this time to days.

The experimental results prove that, except for
algorithm 4.2, the results are close (differences ≤ 7.0 %)
to the optimum for SHPWL and AVG Flylines.

Considering HPWL MATCH and STD Dev, algorithm
4.1 gives the best results. Minimum flyline crossings are
obtained by algorithm 4.3 which always removes all
crossings or by algorithm 4.4 which optimizes net length
and flyline crossings in parallel. Algorithm 4.2 is not
appropriate for design MCM1 because the nets are
arranged radial and there does not exist a preferred
direction for the so-called escape routing. Reasonable

results were efficiently obtained with algorithm 4.2 for
complex designs with a topology comparable to the one in
Figure 1.

The results also show that our metrics SHPWL and
AVG Flylines are well related to the actual routing length
and the number of vias (Figure 6). For example, the pin
assignment with the least SHPWL results in the shortest
actual routing length as well. The same holds for the
correlation of the standard deviation of the lengths of the
routed nets (STD Dev Routed), STD Dev and the standard
deviation of the Manhattan lengths of the nets. A
correlation between the flyline crossings and the via count
is not observable for design MCM1 because each net is
routed on a plane pair with pre-assigned preferred routing
directions.

The presented pin assignment algorithms create pin
assignments having different qualities. None of the
presented algorithms can be identified as superior to the
other algorithms in all aspects. Therefore, the best choice
of pin assignment algorithm for a certain design depends
on the individual requirements of the respective layout.
For designs that above all require shortest wirelengths,
algorithm 4.4 gives best results. For the least signal
intersections and thus minimum routing layers,
algorithm 4.3 is preferable. The best matching of
wirelengths is achieved by algorithm 4.1. Finally,
algorithm 4.2 creates pin assignments that respect a
preferred direction of signal fan-out.

 (a) (b)

 (c)
Figure 5. Details of multi chip module design MCM1.
(a) Footprint of signal pins of the chips. (b) Footprint of
the signal pins of the chip carrier. (c) Sample pin
assignment of the two upper chips illustrated by flylines.

6. Summary
In this paper we have presented four pin assignment

algorithms that have proven to give good results for PCB,
MCM and SCM pin assignment tasks. To the best of our
knowledge, our approaches allow for the first time an
automatic pin assignment of components with several
thousand pins each.

The presented algorithms are currently in use in the
design flow for industrial designs at IBM where they have
shown their robustness and quality, combined with an
impressive improvement in time efficiency.

Only a few objective metrics for pin assignment
quality have been known so far. Therefore, in addition to
the well established HPWL, we have introduced flyline
crossings, matched wirelengths, the length of the flylines
and the standard deviation of the length of flylines as
quality estimation metrics for pin assignment. In the
future, generally accepted benchmarks and additional,
time-efficient objective metrics are desirable to better
evaluate the quality of pin assignments.

References
[1] N. L. Koren. Pin assignment in automated printed circuit

board design. Proc. of 9th Workshop on Design
Automation, 72–79, 1972.

[2] L. Mory-Rauch. Pin assignment on a printed circuit board
in Design Automation. Proc. of the 15th Conference on
Design Automation, 70–73, June 1978.

[3] T. D. Am, M. Tanaka, Y. Nakagiri. An approach to pin
assignment in printed circuit board design. ACM SIGDA
Newsletter, 10(2):21–33, 1980.

[4] H. Brady. An approach to topological pin assignment.
IEEE Transactions on CAD of Integrated Circuits and
Systems, 3(3):250–255, July 1984.

[5] Y. Cai, D. Wong. Optimal channel pin assignment. IEEE
Transactions on CAD of Integrated Circuits and Systems,
10(11):1413–1424, Nov. 1991.

[6] T. Koide, S. Wakabayashi, N. Yoshida. An optimal channel
pin assignment with multiple intervals for building block
layout. EURO-DAC ’92, EURO-VHDL ’92, 348–353, Sept.
1992.

[7] J. Westra, P. Groeneveld. Towards integration of quadratic
placement and pin assignment. Proc. IEEE Computer
Society Annual Symposium on VLSI, 2005, 284–286, May
2005.

[8] S.Chen, W. Tseng, J. Yan, S. Chen, Printed circuit board
routing and package layout codesign. APCCAS 2002
1:155–158, 2002.

[9] Y. Kubo, A, Takahashi. A global routing method for 2-
layer ball grid array packages. Proc. of the 2005 ISPD, 36–
43, 2005.

[10] M. Yu, W.W.-M. Dai. Pin assignment and routing on a
single-layer pin grid array. Proc. of the ASP-DAC
'95/CHDL '95/VLSI '95. 203–208, 1995.

[11] M. Pedram, M. Marek-Sadowska, E. Kuh. Floorplanning
with pin assignment. ICCAD-90, Digest of Technical
Papers, 1990, 98–101, Nov. 1990.

[12] M. Pedram, K. Chaudhary, E. Kuh. I/O pad assignment
based on the circuit structure. Proc. ICCD ’91, 314–318,
Oct. 1991.

[13] Z. Galil. Efficient algorithms for finding maximum
matching in graphs. ACM Comput. Surv., 18(1):23–38,
1986.

[14] H. N. Gabow. An efficient implementation of Edmonds
algorithm for maximum matching on graphs. Journal of the
ACM, 23(2):221-234, 1976.

[15] S. Hauck, G. Borriello. Pin assignment for multi-FPGA
systems. IEEE Transactions on CAD of Integrated Cirtcuits
& Systems, 16(9):956-964, Sept. 1997.

[16] Harold W. Kuhn. The Hungarian method for the
assignment problem. Naval Research Logistic Quarterly,
2:83-97, 1955.

[17] IBM Research & Development, Boeblingen, Germany,
Internal Documents.

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

1 2 3 4 5 6 7

SHPWL
AVG Flylines
Routed Length
Vias

Figure 6. Correlation of two of our estimation metrics
(SHPWL, AVG Flylines) and actual routing results
(Routed Length, Vias) of algorithms (PAA #) 1–7. Values
are normalized to the respective results of PAA# 1.

Table 1. Experimental results for test design MCM1.

PAA
SHPWL HPWL

MATCH
AVG

Flylines STD Dev Flyline
Crossings

PAA Time
(in m:s)

Routed
Length Vias

STD
Dev

Routed

Routing
Time

(h:m:s)
1 +4.1% 94553 +4% 6.96 18272 0:01 51495 5259 9.7 0:16:11
2 +132% +228% +123% +180% 86847 0:01 +141% +72% +221% 2:49:06
3 +3.2% +38% +2.1% +16% 0 0:17 -1.2% -2.8% +17% 0:11:59
4 +62% +263% +56% +122% 0 0:13 +56% +16% +131% 0:30:31
5 +0.8% +48% 12.38 +18% 240 4:14 -3.3% -4.7% +19% 0:15:38
6 47734 +63% +7.0% +36% 63500 2:14 -2.8% -5.2% +28% 0:15:40
7 +0.0% +46% +0.9% +16% 0 2:52 -3.8% -4.2% +16% 0:12:03

Table 2. Pin assignment algorithms (PAA).

PAA # Pin Assignment Algorithm
1 Section 4.1
2 Section 4.2
3 Section 4.3 (Initial pin assignment created with

Section 4.1)
4 Section 4.3 (Initial pin assignment created with

Section 4.2)
5 Section 4.4 22 dydxlij += / α = 0
6 Section 4.4 lij = dx + dy / α = 0
7 Section 4.4 lij = dx + dy / α = 0.1

	Publisched At: Published in Proceedings Design, Automation and Test in Europe, 2008, DATE '08, pp. 837-842.

