Physical Design of VLSI Circuits and the
Application of Genetic Algorithms*

Jens Lienig
Tanner Research, Inc.
2650 East Foothill Blvd.
Pasadena, CA 91107

Email: jensQieee.org
Phone: (626) 792-3000
Fax : (626) 792-0300

Abstract

The task of VLSI physical design is to produce the layout of an in-
tegrated circuit. New performance requirements are becoming increas-
ingly dominant in today’s sub-micron regimes requiring new physical
design algorithms. Genetic algorithms have been increasingly success-
ful when applied in VLSI physical design in the last 10 years. Genetic
algorithms for VLSI physical design are reviewed in general. In addi-
tion, a specific parallel genetic algorithm is presented for the routing
problem in VLSI circuits.

1 Introduction

Electronic design automation is concerned with the design and production
of VLSI systems. One of the important steps in creating a VLSI circuit
is its physical design. The input to the physical design step is a logical
representation of the system under design. The output of this step is the
layout of a physical package that optimally or near-optimally realizes the
logical representation. Physical design problems are generally combinatorial
in nature.

What makes electronic design automation problems particularly difficult
compared to traditional combinatorial optimization problems is that the

*This article appeared in FEwvolutionary Algorithms in Engineering Applications,
Springer Verlag, Berlin, pp. 277-292, 1997.

number of elements that must be handled can be quite large — a circuit can be
easily composed of over one million gates. For this reason, design automation
practitioners have a strong tradition of quickly considering and adapting new
and alternative solution techniques. For example, simulated annealing is an
optimization technique that emulates the annealing of crystals. This combi-
natorial optimization method was first proposed in the literature in 1983 and
by the following year, the major design automation conferences had multiple
sessions on simulated annealing for design automation [35]. Early adoption
was again repeated on neural networks [36] which simulate the organizing
principles of nervous systems.

Although design automation did not immediately add genetic algorithms
to its basic tool chest, genetic algorithms have been consistently used in the
field for the last ten years.

The purpose of this chapter is to provide the reader with an up-to-date
overview of genetic algorithm applications for the VLSI physical design pro-
cess. In Section 2, below, we first briefly describe the VLSI physical design
process. We present a systematic review of genetic algorithms that have been
successfully applied to the physical design process in Section 3. In Section 4
we present a parallel genetic algorithm for the channel and switchbox routing
problem in VLSI circuits. We conclude with a summary in Section 5.

2 Overview of VLSI Physical Design

The major steps in a typical VLSI design process are shown in Figure 1. In
particular, the substeps of physical design are given.

The physical design phase is an important part of this process. Its input
is generally a logical description of the circuit, often in the form of a netlist.
The task of the physical design step is to produce a layout, an assignment of
geometric coordinates to the circuit components, either in the plane or in a
specified number of planar layers. The layout must satisfy the requirements
of the fabrication technology (sufficient spacing between components of the
circuit, and so on) and should minimize certain cost criteria (the lengths of
the interconnections, etc.).

Due to its complexity, the physical layout problem is generally divided
into subproblems which can be solved sequentially. These subproblems are
still NP-hard, but they reduce the practical complexity to a manageable
level. The physical design problem is usually decomposed into the following
subproblems: partitioning, placement, routing and compaction.

Partitioning is the task of dividing a circuit into smaller parts in order
to reduce the problem size. The circuit is often divided into portions that
are implemented separately. The goal is to partition the circuit such that
the sizes of the parts are within prescribed ranges and the complexity of the

Specification
[Physica Design | @n@
@g | Compaction |

Chip

Figure 1: The design process of VLSI chips.

interconnections between these parts is minimized.

Placement assigns the cells of the circuit to their geometrical locations on
the chip. (A cell may be a single transistor, an adder or subcircuit, etc.) The
objective of placement depends on the design style. In standard cell design
(where all cells have the same width and are placed in rows) and in macro
cell design (where cells have different sizes and are placed irregularly), the
goal is to minimize the total layout area of the chip. In gate-matriz design
(where all cells are placed in a matrix pattern) the objective of placement
is to ensure routability and to minimize congestion of the interconnections
between the cells.

Routing follows the placement phase. It determines the paths of the inter-
connections between the cells laid out during the placement procedure. The
goal is to connect all pins that belong to the same net, subject to certain
quality constraints (such as minimizing the lengths of interconnections, and
so on) and routing constraints (interconnections must not short-circuit or
cross one another, etc.).

Compaction is often the final step in the physical layout design. It trans-
forms the symbolic layout (produced by the preceding steps) into a mask
layout, the geometric mask features on the silicon. The objective of com-
paction is to minimize the size of the resulting circuit layout.

3 Application of Genetic Algorithms to VLSI
Physical Design

3.1 Partitioning

To our knowledge, the first evolution-based algorithm for solving the par-
titioning problem was published in [37]. In contrast to previous heuristic
algorithms that usually optimize on only one constraint, this approach is ca-
pable of handling both a number of constraints and a number of objectives.
The algorithm, which does not include a crossover operator, yields multi-way
partitions with fairly balanced sizes and a small number of pins for each part.
The presented strategy has a reasonable execution speed that is similar to
other published heuristic approaches.

In [21] and [22], different coding schemes for the problem of circuit par-
titioning are investigated to find the most suitable coding. The proposed
genetic algorithm is specifically tailored for the partitioning of circuits with
complex bit-slice components using a special two-step coding of partitions.
The algorithm consists of a crossover and a mutation operator and a deter-
ministic improvement strategy.

The genetic algorithm in [9] is based on a population structure that in-
volves subpopulations which have their isolated evolution occasionally inter-
rupted by inter-population communication. Although the investigated prob-
lems are from actual VLSI design efforts, comparisons with other approaches
and runtimes are not presented.

A hybrid genetic algorithm for the ratio-cut partitioning problem is pre-
sented in [4]. Here the problem is formulated in terms of a hypergraph. The
genetic encoding is a binary string, where each subset of the circuit’s compo-
nents has a corresponding location on the string. Before the genetic algorithm
is executed, the ordering of these genes is determined by a depth-first search
to improve the performance of the genetic algorithm. Traditional crossover
and mutation operators are combined with a fast partitioning heuristic ap-
plied to each offspring as an improvement operator. The performance of
the algorithm is compared with two other partitioning approaches, using
benchmark data sets. Averaged over all benchmarks, the presented algo-
rithm achieves better results than the other approaches, while having a sim-
ilar amount of runtime for smaller graphs and less runtime for the largest
graphs.

Another hybrid approach is published in [42]. It combines a simulated
annealing method with a genetic algorithm. The main motivation for this
approach is the parallelization of the simulated annealing strategy by replac-
ing its single solution search process with a population-based approach using
a genetic algorithm. The two benchmark results that are presented are not
compared with other state-of-the-art approaches.

3.2 Placement

As mentioned in Section 2, the placement procedure is responsible for the
assignment of the circuit’s cells to their locations on the chip. According to
the variation in size and location of these cells, placement algorithms can
be divided into algorithms for standard cell design, macro cell design and
gate-matrix design.

After the pioneering work of [6], further applications of genetic algorithms
[39], [40] and evolution strategies [24], [25] for standard cell placement have
been presented. These approaches produce high-quality placements of real-
world VLSI circuits that can compete with sophisticated simulated annealing-
based placement strategies. However, the published runtimes are not as com-
petitive (up to 6 hours [24] and up to 12 hours [40]).

In [33], the runtime has been reduced significantly by using a parallel
implementation of a genetic algorithm that runs on a distributed network
of workstations. The total population is split over different processors and
a migration mechanism is used to exchange genetic material between them.
While the placement results are similar to a serial genetic algorithm, an
almost linear speedup can be achieved with this method.

We next discuss three investigations that use genetic algorithms for macro
cell placement [5], [11], [12]. The approach in [5] is based on a two-
dimensional bitmap representation of the macro cell placement problem.
Another representation scheme, a binary tree, is applied in [11]. In [12],
a combination of a genetic algorithm with a simulated annealing-based op-
timization strategy is presented. The experimental results suggest that a
mixed strategy performs better than a pure genetic algorithm for the macro
cell placement problem. The results are better or comparable to previously
published results of placement benchmarks. However, the runtime is not as
competitive.

An application of a genetic algorithm for the placement of gate-matrix de-
sign has been published in [41]. The approach uses the Genesis package [19]
as the basic genetic algorithm. This package is modified with a special algo-
rithm for constructing permutations that considers only a small subset of the
solution space. The results are compared with only one previously published
algorithm. The runtime is in the order of minutes (up to 1 hour).

3.3 Routing

Routing is the process of connecting pins subject to a set of routing con-
straints. VLSI routing is usually divided into global routing (to assign nets
into certain routing regions) and detailed routing (to assign nets to exact
positions inside a routing region).

To our knowledge, only one genetic algorithm for global routing has been

reported [13]. The algorithm is based on a two-phase router. In the first
phase, a genetic algorithm for the Steiner problem in a graph is used to
generate a number of distinct, alternative routes for each net. Then, in a
second phase, another genetic algorithm selects a specific route for each net
(among the alternatives given from phase one), such that the overall layout
area is minimized. The router is superior to TimberWolfMC [38], a state-
of-the-art global router, with respect to solution quality, while being inferior
with respect to runtime.

According to the position of the pins, detailed routing can be separated
into channel routing (pins are only located on two parallel sides of the routing
area) and switchbox routing (pins are placed on all four sides of the routing
area).

Several papers have been published in which genetic algorithm-derived
strategies are applied to the unrestrictive! channel routing problem [15], [17],
[30], [32].

In [32], a rip-up-and-rerouter is presented which is based on a probabilis-
tic rerouting of nets of one routing structure. However, the routing is done
by a deterministic Lee algorithm [27] and main components of genetic algo-
rithms, such as the crossover of different individuals, are not applied. Results
are presented only for one channel routing benchmark. No runtime for this
example is given.

The router in [15] combines the steepest descent method with features of
genetic algorithms. The crossover operator is restricted to the exchange of
entire nets and the mutation procedure performs only the creation of new
individuals. The presented results are limited to simple VLSI problems, and
no runtime remarks are made.

The genetic algorithm for channel routing published in [30] is based on a
problem-specific representation scheme, i.e. individuals are coded in three-di-
mensional chromosomes with integer representation. The genetic operators
are also specifically developed for the channel routing problem. The results
are either qualitatively similar to or better than the best published results
for channel routing benchmarks. The runtime of the algorithm (in the range
of 1...50 minutes) is not as competitive.

The algorithms in [15], [32] are also applied to switchbox routing. While
the router in [15] is not usable for large switchbox routing benchmarks, the
algorithm in [32] can compete with other switchbox routing algorithms. How-
ever, the runtime is not given.

A different genetic algorithm for switchbox routing is presented in [31].
Similar to [30], the genotype is essentially a lattice corresponding the coor-

1 Approaches for the restrictive channel routing problem (where all vertical net segments
are located on one layer and all horizontal segments are placed on a second layer) cannot
be applied to real-world VLSI channel routing problems and thus, won’t be considered
here.

dinate points of the layout. Crossover and mutation are performed in terms
of interconnection segments. The algorithm assumes that the switchbox is
extendable in both directions. Subsequently, these extensions are reduced
with the goal to reach the fixed size of the switchbox. While more costly in
runtime, on numerous benchmark examples the genetic algorithm produces
solutions with equal or better routing characteristics (netlength, number of
vias) than the previously best published results.

3.4 Compaction

As mentioned in Section 2, compaction transforms the symbolic layout to
a mask layout with the goal of minimizing the size of the resulting circuit
layout.

To the best of our knowledge, the only application of a genetic algorithm
for compaction has been advanced by Fourman [14]. He describes two pro-
totypes of genetic algorithms that perform compaction of a symbolic circuit
layout. Although his results are limited to very simple layout structures, he
does propose a new problem-specific representation for layout design that
includes constraints of the compaction process.

4 A Parallel Genetic Algorithm for the VLSI
Routing Problem

In the following, we present a parallel genetic algorithm to solve the VLSI
channel and switchbox routing problems with the objective of satisfying
crosstalk constraints for the nets. This approach is an extension of [30] in
which a sequential genetic algorithm was applied to channel routing prob-
lems. In [28] we first introduced the parallel genetic approach and extensively
investigated its main parameters.

4.1 Introductory Remarks

As mentioned earlier, interconnection routing is one of the major tasks in
the physical design of VLSI circuits. Pins that belong to the same net are
connected subject to a set of routing constraints. Channel and switchbox
routing are the two most common routing problems in VLSI circuits. Simple
examples of a channel routing problem and a switchbox routing problem are
shown in Figure 2.

Our motives for developing a parallel genetic algorithm for the detailed
routing problem have been threefold. First, almost all previously published
detailed routing strategies only consider physical constraints, such as the

VLS circuit

AT

1 2 3 3
1
2
3 2

SEREZ

v v
Posssible routing solutions:

12 3 3 2 33

N

1
1] 1
0 I 3
3

]|
3 2 11 2 2 3

Figure 2: The VLSI channel (left) and switchbox (right) routing problem and
possible routing solutions.

netlength. However, with further minimization in VLSI design, new elec-
trical constraints, such as crosstalk, are becoming dominant and need to
be addressed. Second, today’s typical computer-aided design environment
consists of a number of workstations connected together by a high-speed
local network. Although many VLSI routing systems make use of the net-
work to share files or design databases, none of the known routing programs
(evolution-based or deterministic algorithms) use this distributed computer
resource to parallelize and speed up their work. Third, all published ge-
netic algorithms that address the routing problem are sequential approaches,
i.e., one population evolves by means of genetic operators. However, recent
publications (e.g. [2],[26]) clearly indicate that parallel genetic algorithms
with isolated evolving subpopulations (that exchange individuals from time
to time) perform better than sequential approaches.

We present a parallel genetic algorithm for detailed routing, called GAP
(Genetic Algorithm with Punctuated equilibria), that runs on a distributed
network of workstations. Our approach considers routing quality character-
istics such as the the netlength, the number of connections between layers,
and the importance of crosstalk between neighboring interconnections. Due
to variable weight factors, these routing objectives can be easily adjusted to
the requirements of a given VLSI technology. Furthermore, on many bench-
mark examples, the router produces better results than the best of those
previously published.

4.2 Problem Description

The VLSI routing problem is defined as follows. Consider a rectangular
routing region with pins located on two parallel boundaries (channel) or four
boundaries (switchboz) (see Figure 2). The pins that belong to the same net
need to be connected subject to certain constraints and quality factors. The
interconnections need to be made inside the boundaries of the routing region
on a symbolic routing area consisting of horizontal rows and vertical columns.

We define a segment to be an uninterrupted horizontal or vertical part of
a net. (Thus, any connection between two pins will consist of one or more
net segments.) A connection between two net segments from different layers
is called a wia. The overall length of all segments of one net to connect its
pins is defined as its netlength.

In sub-micron regimes, crosstalk results mainly from coupled capacitance
between adjacent (parallel routed) interconnections. The shorter the length
of these parallel routed segments, the better the performance of the circuit.

Thus, the following three factors (which are to be minimized) are used in
this work to assess the quality of the routing:

— netlength,
— number of vias, and
— crosstalk.

4.3 Overview of the Parallel Genetic Algorithm

Different ways exist to parallelize a genetic algorithm [2]. However, most of
these methods result only in a speed-up of the algorithm without qualitative
improvements to the problem solutions. To gain better problem solutions, we
use the theory of punctuated equilibria to design a parallel genetic algorithm
[7],[10]. A genetic algorithm with punctuated equilibria is a parallel genetic
algorithm in which independent subpopulations of individuals with their own
fitness functions evolve in isolation except for an exchange of individuals
(migration) when a state of equilibrium throughout all the subpopulations has
been reached (see Figure 3). Previous research has shown genetic algorithms
with such punctuated equilibria to have superior performance when compared
to sequential genetic approaches [7],[9].

The parallel structure of our algorithm for the case of nine processors is
shown in Figure 4. We assign a set of n individuals (problem solutions) to
each of the N processors, for a total population size of n x N. The set assigned
to each processor, ¢, is its subpopulation, P.. The processors are connected
by an interconnection network with a torus topology. Thus, each processor
(subpopulation) has exactly four neighbors.

The genetic algorithm used by each processor and the main process that
steers the parallel execution are presented in Figure 5. First, the main process

Isolated

Evolution :) i
— =

Migration

g VZ V2

= &

Isolated
Evolution ; i

¥
Result

Figure 3: Punctuated equilibria model.

Figure 4: Neighborhood structure with nine subpopulations.

10

At processor ¢

on subpopulation P, :

fitness calculation (P,Umigrants)
for each generation
new = 0
for each descendant
Pa,pg = selection (P.)
Prew = Pnew U crossover (pq,pg)
endfor
fitness_calculation (P, UP.)
P. = reduction (PcU Ppew)
mutation (P.)

: endfor
Main process:

create initial subpopulations
for each epoch
do genetic algorithm (subpopulations) @
do migration (reighboring subpopulations)
endfor
return best seen individual

Figure 5: Algorithm overview.

creates an initial subpopulation at each processor. This initial subpopula-
tion consists of randomly constructed (i.e., not optimized) routing solutions.
They are designed by a random routing strategy which connects net points
in an arbitrary order with randomly placed interconnections. (See [30] for a
detailed description of our random routing strategy.) The main process con-
sists of a given number of epochs. During an epoch, each processor, disjointly
and in parallel, executes the sequential genetic algorithm on its subpopula-
tion for a certain number of generations (epoch length). Afterwards, each
subpopulations exchanges a specific number of individuals (migrants) with
its four neighbors. The process continues with the separate evolution of each
subpopulation during the next epoch. At the end of the process, the best
individual that exists constitutes our final routing solution.

The following section briefly describes the genetic operators used by each
processor to evolve its subpopulation.

4.4 Genetic Operators

Fitness Calculation The fitness F(p) of each individual p € P. is cal-
culated to assess the quality of its interconnections relative to the rest of
the subpopulation P.. The following factors are taken into account (with
different weights) when determining F'(p):

11

— overall netlength of p,
— number of vias of p, and
— the length of adjacent, parallel interconnections (crosstalk).

After the evaluation of F(p) for all individuals of the subpopulation P, these
values are scaled linearly [18], in order to control the relative range of fitness
in the subpopulation.

Selection Our selection strategy, which is responsible for choosing the
mates for the crossover procedure, is stochastic sampling with replacement
[18]. That means any individual p; € P, is selected with a probability pro-
portional to its fitness value.

Crossover During a crossover, two individuals are combined to create a
descendant. Our crossover operator is a 1-point crossover operator [18] that
gives high-quality routing parts of the mates an increased probability of being
transferred intact to their descendant.

Crossover is performed in terms of wire segments. A randomly positioned
line (crossline) perpendicular to the edges of the routing area divides this
area into two sections, playing the role of the crosspoint. This line can be ei-
ther horizontally or vertically placed. For example, interconnection segments
ezxclusively on the upper side of the crossline are inherited from the first par-
ent, and segments exclusively on the lower side of the crossline are inherited
from the second parent. Segments intersecting the crossline are newly created
within the descendant by means of our random routing strategy [30].

(A more detailed description of our crossover operator is given in [30].)

Reduction Our reduction strategy simply chooses the |P,| fittest individ-
uals of (P, U Ppew) to survive as P, into the next generation.

Mutation The mutation operator performs random modifications on an
individual (to overcome local optima) by applying the random routing strat-
egy [30] on randomly selected interconnections.

4.5 Experimental Results

Our algorithm, called GAP, has been implemented on a network of SPARC
workstations (SunOS and Solaris systems). The parallel computation envi-
ronment is provided by the Mentat system, an object-oriented parallel pro-
cessing system [20].

12

4.5.1 Parameter Settings
The main parameters (see Section 4.3) were set to:

Individuals per subpopulation : 50
Descendants per subpopulation : 20

Number of subpopulations : 9
Number of epochs : 10
Epoch length (generations) : 50

Two randomly selected migrants were sent to each of the four neighbors
in each epoch.

(See [28] for a detailed discussion of these parameters as well as a compar-
ison with a sequential genetic approach.)

4.5.2 Comparison of GAP to Other Routing Algorithms

Any application of a genetic algorithm should focus on a comparison to solu-
tion techniques that have been acknowledged as effective by that application’s
community. Here we compare the results of GAP with the best known results
of other algorithms for channel and switchbox routing benchmarks (see Ta-
ble 1). The other routing algorithms do not consider crosstalk, and thus can
only be compared with our routing results regarding netlength and number
of vias.

We ran our algorithm 50 times per benchmark with different initialization
of the random number generator. Table 1 presents the best-ever-seen results
for all algorithms. We note that for GAP the best-ever-seen quality was
achieved in at least 50 percent of the program executions.

It can be seen that our results are qualitatively similar to or better than
the best known results from popular channel and switchbox routers published
for these benchmarks. The layout of Burstein’s difficult switchbox achieved
with our algorithm is depicted in Figure 6.

4.5.3 Reduction of Crosstalk

By adjusting the value of the weight for crosstalk (see Section 4.4), our algo-
rithm can also optimize the interconnections regarding crosstalk. The results
presented in [29] show that an increase of the weight for crosstalk leads to sig-
nificantly fewer parallel routed net segments. Hence, our router can construct
solutions which contain minimal coupling capacitances between interconnec-
tions — an increasingly significant consideration in sub-micron VLSI design.

However, as discussed in [29], the minimization of crosstalk leads in general
to an increase in both the netlength and the number of vias. It has to be
decided by the user to which optimization goals he/she gives priority.

13

Bench- Algorithm Col- pows Net~ y,q | Time

mark umns length (sec)

Joo6_13 WEAVER]|23]| 18 7 167 29 | 312
PACKER][16] 18 6 167 25 | 710
SAR[1] 18 6 166 25 |70
GAP 18 6 164 22 172

Joo06_16 WEAVER|23]| 11 7 121 21 | 220
Monreale[15] | 11 7 120 19 (?
GAP 11 6 115 15 |207

Burstein’s || WEAVER[23]] 23 15 531 41 1508
Difficult |BEAVER®[8] | 23 15 547 44 |1
Switchbox | PACKER[16] | 23 15 546 45 |56

GAP 23 15 538 36 | 1831
Dense Silk[32] 16 17 516 29 |7
Switchbox || SAR[1] 16 17 519 31 | 150

GAP 16 17 516 29 2380
Augmented || BEAVER?[8] | 16 18 529 31 |1
Dense PACKER[16] | 16 18 520 32 (31
Switchbox || SAR[1] 16 18 529 31 205

GAP 16 18 529 29 (2281

¢ BEAVER’s number of vias has been adjusted.

Table 1: Comparison of GAP with the best-known results for some benchmark
channels (upper half) and switchboxes (lower half).

Figure 6: Our routing solution of Burstein’s difficult switchbox.

14

5 Summary

We presented a systematic review of genetic algorithm investigations for the
VLSI physical design process. These contributions are generally different
than standard genetic algorithm investigations. One difference is that the
genetic operators for physical design algorithms are typically very problem-
specific. This specificity occurs because of the extreme importance of de-
termining very high quality solutions — therefore expert information on the
likely form of solutions is included as much as possible. Combinations of
genetic algorithms with other optimization strategies are no longer an excep-
tion. Once the “high quality regions” are identified by a genetic algorithm,
the application of local search routines are often the only way to ensure effec-
tive runtimes. Another difference is the concern for robustness. There exists
a rich collection of design automation benchmarks (e.g., [34]) and for a so-
lution method to be accepted, it must be demonstrated to work consistently
well on those benchmarks.

We also presented a parallel genetic algorithm for the channel and switch-
box routing problem. Our results are qualitatively similar to or better than
the best known results from popular channel and switchbox routers. In addi-
tion, our algorithm is able to significantly reduce the occurance of crosstalk.

Genetic algorithms have a very large potential within physical design of
VLSI circuits. The problems encountered in this field are extremely complex
which is exactly the situation in which the performance of a genetic algorithm
compares best to that of other methods. However, genetic-algorithm-based
approaches are of practical interest to the VLSI community only if they
are competitive with the acknowledged existing approaches with respect to
performance and runtime. This chapter gave a review of the current situation
in this field with the purpose of stimulating and guiding further applications
of genetic algorithms.

References

[1] A. Acan and Z. Unver, “Switchbox Routing by Simulated Annealing: SAR,”
in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp.
1985-1988, 1992.

[2] P. Adamidis, Review of Parallel Genetic Algorithms, Technical Report, Aris-
totle University of Thessaloniki, 199

[3] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Reading,
MA: Addison-Wesley, 1990.

[4] T. N. Bui and B. R. Moon, “A Fast and Stable Hybrid Genetic Algorithm
for the Ratio-Cut Partitioning Problem on Hypergraphs”, Proc. of the ACM-
IEEE Design Automation Conference, pp. 664-669, 1994.

[5] H. Chan, P. Mazumder and K. Shahookar, “Macro-Cell and Module Place-
ment by Genetic Adaptive Search with Bitmap-Represented Chromosome,”
Integration, The VLSI Journal, vol. 12, no. 1, pp. 49-77, Nov. 1991.

15

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]
[19]

[20]
21]

[22]

23]

[24]

J. P. Cohoon and W. D. Paris, “Genetic Placement,” IEEE Trans. on
Computer-Aided Design, vol. 6, no. 6, pp. 956-964, Nov. 1987.

J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. S. Richards, “Punctuated
Equilibria: A Parallel Genetic Algorithm,” Proc. Second International Con-
ference on Genetic Algorithms, pp. 148-154, 1987.

J. P. Cohoon and P. L. Heck, “BEAVER: A Computational-Geometry-Based
Tool for Switchbox Routing,” IEEE Trans. on Computer-Aided Design, vol.
7, no. 6, pp. 684-697, 1988.

J. P. Cohoon, W. N. Martin, and D. S. Richards, “Genetic Algorithms
and Punctuated Equilibria in VLSI,” Parallel Problem Solving from Nature,
H. P. Schwefel and R. Manner, eds., Lecture Notes in Computer Science,
vol. 496, Berlin: Springer Verlag, pp. 134-144, 1991.

N. Eldredge and S. J. Gould, “Punctuated Equilibria: An Alternative to
Phyletic Gradualism,” Models of Paleobiology, T. J. M. Schopf, ed., San Fran-
cisco, CA: Freeman, Cooper and Co., pp. 82-115, 1972.

H. Esbensen, “A Genetic Algorithm for Macro Cell Placement,” Proc. of the
European Design Automation Conference, pp. 52-57, Sept. 1992.

H. Esbensen and P. Mazumder, “SAGA: A Unification of the Genetic Al-
gorithm with Simulated Annealing and its Application to Macro-Cell Place-
ment,” Proc. of the Tth International Conference on VLSI Design, pp. 211-214,
Jan. 1994.

H. Esbensen, “A Macro-Cell Global Router Based on Two Genetic Algo-
rithms” Proc. of the European Design Automation Conference, pp. 428-433,
Sept. 1994.

M. P. Fourman, “Compaction of Symbolic Layout using Genetic Algorithms,”
Proc. of the First International Conference on Genetic Algorithms, pp. 141-
153, 1985.

M. Geraci, P. Orlando, F. Sorbello and G. Vasallo, “A Genetic Algorithm
for the Routing of VLSI Circuits,” Euro Asic ’91, Parigi 27-31 Maggio, Los
Alamitos, CA: IEEE Computer Society Press, pp. 218-223, 1991.

S. H. Gerez and O. E. Herrmann, “Switchbox Routing by Stepwise Reshaping,”
IEEE Trans. on Computer-Aided Design, vol. 8, no. 12, pp. 1350-1361, 1989.

N. Gockel, G. Pudelko, R. Drechsler, B. Becker, “A Hybrid Genetic Algorithm
for the Channel Routing Problem,” Proceedings of the 1996 IEEE Interna-
tional Symposium on Circuits and Systems, ISCAS-96, pp. 675-678, 1996.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Reading, MA: Addison-Wesley, 1989.

J. J. Grefenstette and N. N. Schraudolph, A User’s Guide to GENESIS 1.2
UCSC, CSE Dept., University of California, San Diego, 1987.

Homepage: “http://www.cs.virginia.edu/~ mentat/”.

M. Hulin, “Analysis of Schema Distributions,” Proc. of the Fourth Interna-
tional Conference on Genetic Algorithms, pp. 204-209, 1991.

M. Hulin, “Circuit Partitioning with Genetic Algorithms Using a Coding
Scheme to Preserve the Structure of a Circuit,” Parallel Problem Solving from
Nature, H. P. Schwefel and R. Méanner, eds., Lecture Notes in Computer Sci-
ence, vol. 496, Berlin: Springer Verlag, pp. 75-79, 1991.

R. Joobbani, An Artificial Intelligence Approach to VLSI Routing, Boston,
MA: Kluwer Academic Publishers, 1986.

R. M. Kling and P. Banerjee, “ESP: Placement by Simulated Evolution,” IEEE
Trans. on Computer-Aided Design, vol. 8, no. 3, pp. 245-256, March 1989.

16

[25]

[26]
27]

28]

[29]

(30]

31]

32]

[33]

34]

[35]
[36]
37]

(38]

[39]

[40]

[41]

[42]

R. M. Kling and P. Banerjee, “Optimization by Simulated Evolution with Ap-
plications to Standard Cell Placement,” Proc. of the 27th ACM-IEEE Design
Automation Conference, pp. 20-25, 1990.

B. Kroger, Parallel Genetic Algorithms for Solving the Two-Dimensional Bin
Packing Problem (in German), Ph.D. Thesis, University of Osnabriick, 1993.

C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRE-
Trans. on Electronic Computers, pp. 346-365, 1961.

J. Lienig, “A Parallel Genetic Algorithm for Two Detailed Routing Problems”,
Proceedings of the 1996 IEEE International Symposium on Circuits and Sys-
tems, ISCAS-96, pp- 508-511, 1996.

J. Lienig, “Channel and Switchbox Routing with Minimized Crosstalk — A
Parallel Genetic Approach”, to appear in: Proceedings of the 10th Interna-
tional Conference on VLSI Design, Jan. 1997.

J. Lienig and K. Thulasiraman, “A Genetic Algorithm for Channel Routing
in VLSI Circuits,” Evolutionary Computation, vol. 1, no. 4, pp. 293-311, 1994.

J. Lienig and K. Thulasiraman, “GASBOR: A Genetic Algorithm for Switch-
box Routing in Integrated Circuits,” Progress in Evolutionary Computation,
X. Yao, ed., Lecture Notes in Artificial Intelligence, vol. 956, Berlin: Springer
Verlag, pp. 187-200, 1995.

Y.-L. Lin, Y.-C. Hsu and F.-S. Tsai, “SILK: A Simulated Evolution Router,”
IEEE Trans. on Computer-Aided Design, vol. 8, no. 10, pp. 1108-1114,
Oct. 1989.

S. Mohan and P. Mazumder, “Wolverines: Standard Cell Placement on a
Network of Workstations,” IEEE Trans. on Computer-Aided Design, vol. 12,
no. 9, pp. 1312-1326, Sept. 1993.

B. T. Preas, “Benchmarks for Cell-based Layout Systems,” Proc. of the ACM-
IEEE Design Automation Conference, pp. 319-320, 1987.

Proc. of the ACM-IEEFE Design Automation Conference, 1984.
Proc. of the ACM-IEEFE Design Automation Conference, 1987.

Y. Saab and V. Rao, “An Evolution-Based Approach to Partitioning ASIC
Systems,” Proc. of the ACM-IEEE Design Automation Conference, pp. 767-
770, 1989.

C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing,
Boston, MA: Kluwer Academic Publishers, 1988.

K. Shahookar and P. Mazumder, “GASP - A Genetic Algorithm for Stan-
dard Cell Placement,” Proc. of the Furopean Design Automation Conference,
pp. 660-664, 1990.

K. Shahookar and P. Mazumder, “A Genetic Approach to Standard Cell
Placement using Meta-Genetic Parameter Optimization”, IEEE Trans. on
Computer-Aided Design, vol. 9, no. 5, pp. 500-511, May 1990.

K. Shahookar, W. Khamisani, P. Mazumder and S. M. Reddy, “Genetic Beam
Search for Gate Matrix Layout,” Proc. of the 6th International Conference on
VLSIT Design, pp. 208-213, Jan. 1993.

J. M. Varanelli and J. P. Cohoon, “Population-Oriented Simulated Annealing:
A Genetic/Thermodynamic Hybrid Approach to Optimization,” Proc. of the
Sizth International Conference on Genetic Algorithms, pp. 174-181, 1995.

17

