
An Ontology for Constraints in
Custom IC Design

Andreas Krinke, Jens Lienig
Dresden University of Technology

Institute of Electromechanical and Electronic Design
Dresden, Germany

krinke@ifte.de, jens@ieee.org

Abstract—The design of integrated circuits involves the consid-
eration of a large number of constraints of various types. In ad-
dition to the definition of these constraints in a constraint-driven
design flow, the declaration of new, yet unknown constraint types
might be necessary.

We define an ontology for constraints as a universal approach
for the definition of constraint types and their behavior. This
formal constraint representation categorizes the behavior of
constraint types that are common in custom IC design. It also
gives special attention to the parameters they constrain, the
sensitivity to other parameters and the set of valid target design
objects of these types.

The formalization of this domain greatly eases the introduction
of new constraint types by reusing both, formalization and
implementation of existing ones. Furthermore, this ontology
enables for the first time consistent constraint type and constraint
data transfer between different applications.

I. INTRODUCTION

The design of custom integrated circuits (ICs) often requires
the integration of both analog and digital modules. With
regard to used die area, the development of analog cells
generally takes much more time than establishing digital
cells. The self-evident explanation for this difference is the
comprehensive automation of digital design in contrast to the
isolated approaches of the analog counterpart. This difference
has various reasons, e.g., the larger parameter space of analog
circuits and their greater sensitivity to variations caused by the
manufacturing process. As a consequence, various constraints
have to be taken into account throughout the design process.
Examples are matching of devices, noise immunity of signals
and limitation of voltage drops (IR-drop).

In general, constraints are requirements related to design
parameters that need to be satisfied by a finished design.
Currently, most of these constraints exist as so-called “expert
knowledge” and need to be considered and verified manually.
All constraints that are unknown to design tools cannot be
incorporated into algorithms for automation in the first place.
The machine-readable representation of constraints in a so-
called constraint-driven design flow is regarded as an important
step in the direction of analog design automation [1].

Constraints can be categorized in constraint types based
on the corresponding design parameters and the type of
their relation. Manual and automatic definition of constraints
and their tool-independent handling require a classification
of constraint types combined with the description of their

properties. Due to the infinite number of possible constraint
types, the easy extension of the classification is of particular
interest.

A. Current Practice

The EDA industry has already incorporated features of
constraint-driven flows into various design tools. As an ex-
ample, the tools provided by the Cadence custom IC design
environment support a predefined set of constraint types and
the manual definition of custom variants. The assignment of
constraints happens either manually or automatically. In the
latter case, common structures, such as current mirrors and
differential pairs, are recognized in an automated manner.
Then, appropriate constraints, e.g., symmetry and placement
constraints, are assigned to these structures. Each tool of
the design flow considers a specific subset of all available
constraint types in order to automate particular design steps.
Newly created constraint types need custom code to be taken
into account by these tools.

Despite these achievements, a universal approach for the
formulation of constraint types and their behavior in the design
flow is still missing. Especially the interoperability of the
utilized tools depends on such a formulation for constraint
data transfer and manipulation.

B. Our Contribution

We present an ontology to provide a universal formulation
of constraint types for the first time. As a result, questions
about which design parameters have an influence on a specific
constraint can be answered. Additionally, the proper set of
design tools to manipulate a constrained parameter is inferable.

The foundation for easy addition of more parameters and
constraint types is formed by providing basic sets of design
parameters, design elements to which these parameters can be
attached to, and constraint propagation types. New types are
easily added in a formal way by reusing this information.

This paper is organized as follows. In Section II, we present
terms and definitions used in the context of ontologies and
constraints in analog IC design. Section III contains the de-
scription of the proposed ontology. In Section IV, we evaluate
use cases for this ontology. Section V concludes this paper
and gives an outlook for future research.

Andreas Krinke
Schreibmaschinentext
© IEEE 2011. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The final version was published in the Proceedings of the 20th European Conference on Circuit Theory and Design (ECCTD 2011), pp. 343-345, Linköping, Sweden, August 2011.

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext



Thing
Constraint

WireConstraint
DesignTool

LayoutTool
SchematicTool

Parameter
WireParameter

PropagationType
Target

DeviceTarget
TransistorTarget

MOSFETTarget

Figure 1. The class hierarchy contains definitions for design parameters,
target elements, design tools and constraint types as major building blocks of
the ontology.

II. TERMS AND DEFINITIONS

Ontologies are used to formalize knowledge about a specific
domain by capturing concepts and their relations to each other.
One goal is to make software understand these concepts. There
are several ontology languages with different features. For
our research, we use the Web Ontology Language (OWL)
which was specified by the World Wide Web Consortium
(W3C). An OWL ontology is formulated with individuals
(instances), properties and classes. Individuals are objects
in the domain described by the ontology. Two individuals
can be linked together by properties such as isInfluencedBy
(see Section III-A). Classes correspond to concepts and are
equivalent to sets of individuals [2]. The domain of analog IC
design contains a great number of parameter types. Each of
these parameter types is applicable to a certain set of design
elements, which we will call target elements of that type.
Parameters can be restricted to a range of values by constraints.

III. CONSTRAINT ONTOLOGY

We have prototyped the ontology using Protégé, a “free,
open source ontology editor and knowledge-base frame-
work” [3]. Figure 1 shows the class hierarchy of the ontology.

A. Design Parameters
The first step is the definition of design parameters and

target elements together with applicable object properties.
Based on the root class Thing, we create the subclasses
Parameter and Target. If one parameter influences an-
other one, both are connected by the transitive properties
isInfluencedBy and its inverse, hasInfluenceOn (see Figure 2).
The property hasTarget assigns the appropriate target ele-
ment to each parameter. Based on these properties, the class
Parameter is defined as a Thing that has exactly one target
and is only influenced by other parameters. Using this concept,
individuals can automatically be classified as parameter. The
classification also verifies the correct definition of newly
created instances. As examples we add several parameters of
layout net segments (wires) to the ontology (see Section IV).

Parameter a Parameter b

isInfluencedBy

hasInfluenceOn

Figure 2. The inverse properties isInfluencedBy and hasInfluenceOn connect
different parameters.

DesignTool a Parameter b Parameter c

hasDirectlyModifiableParameter
hasInfluenceOn

hasIndirectlyModifiableParameter

Figure 3. If a design tool can directly modify one parameter that has influence
on a second one, then this second parameter is indirectly modifiable by this
tool.

B. Design Tool Definition

Different design tools are described by the class
DesignTool. Each individual tool can change certain de-
sign parameters which are associated by using the property
hasDirectlyModifiableParameter. Again, an inverse property
isDirectlyModifiableBy expresses which tool can manipulate a
specific parameter. Besides these properties for direct mod-
ification, there are two equivalents which describe indirect
adjustment of parameters. We use a property chain axiom to
define the inference of those parameters that are indirectly
modifiable by a design tool (see Figure 3). The classification
of an individual as DesignTool is due to its connection to
directly modifiable parameters.

C. Constraint Definition

The third main part of the ontology is the definition of
the class for constraint types. Each Constraint is asso-
ciated with the design parameter it constrains. Therefore, we
declare the property hasConstraintParameter and its inverse
isConstrainedBy. The propagation type is likewise linked
by hasPropagationType. A constraint’s sensitivity to design
parameters is expressed by the property isSensitiveTo. Again,
a property chain axiom declares when to infer this property: If
a constrained parameter is influenced by a second one, then the
constraint is sensitive to this second parameter (cf. Figure 3).
Finally, we extend the existing property hasTarget to get
automatically assigned to a constraint according to the target
element of the constrained parameter.

The three properties that link parameter, propagation type
and target to a constraint define the corresponding class.
Subsequently, they are used for classification.

IV. DISCUSSIONS

An important tool for the work with ontologies is the
reasoner. For this, we use FaCT++ [4], which is integrated into
Protégé. One task of the reasoner is to check the consistency
of an ontology, i.e., if it is possible for all classes to have



WireMTTF

WireCurrentDensity

WireTemperature

WireWidth

WireThickness

WireCurrent

WireVoltageExampleLayoutTool

isInfluencedBy
manually defined

inferred

isIndirectlyModifiableBy
inferred

Figure 4. Selection of properties of a net segment’s MTTF parameter showing
other parameters that have an influence. Additionally, it is inferred that this
parameter is indirectly modifiable by the exemplary layout tool.

ExampleLayoutTool

WireLayer

WireWidth

WireLength

WireResistance

WireCurrentDensity

WireThickness

WireMTTF

hasDirectlyModifiableParameter
manually defined

hasIndirectlyModifiableParameter
inferred

Figure 5. Selection of wire parameters that the reasoner FaCT++ correctly
infers as indirectly modifiable by the exemplary layout tool (cf. Figure 3).

instances. Secondly, it computes the inferred class hierarchy
containing information about which classes are subclasses of
other classes [2]. This step, also known as classification, has
the side effect to infer the properties of all individuals. The
benefit of this feature is discussed in this section.

After the definition of the ontology, we create exemplary
individuals. For the class Parameter, various parameters of
net segments are defined. Using the properties isInfluencedBy
and hasTarget, we manually connect these instances with other
parameters and targets. As an example, the mean time to fail-
ure (MTTF) of a segment due to electromigration depends on
current density and temperature [5]. In addition, we describe
(a) a layout tool that is capable of directly modifying the width,
length and layer of a net segment and (b) a constraint on the
MTTF of such a segment.

Then the reasoner infers properties of these individuals.
Figure 4 shows the result for the MTTF parameter. All param-
eters with influence on the MTTF are listed together with the
design tools that can directly or indirectly modify the MTTF.
In Figure 5, the inferred properties of the exemplary layout
tool are shown, representing indirectly modifiable parameters.
Finally, Figure 6 shows the properties of a sample constraint on
the MTTF parameter. The target and sensitivities are properly
inferred from the constrained parameter MTTF.

This illustrates the power of our approach: For a set of
constraints it is possible to derive their dependency on design
parameters combined with the information which design tools

WireMTTFConstraint WireCurrentDensity

WireTemperature

WireCurrent

WireThickness

WireWidth

WireVoltage
WireMTTF

WireTarget

hasConstraintParameter
manually defined

isSensitiveTo
inferred

hasTarget
inferred

Figure 6. Selection of inferred properties of a constraint on a net segment’s
MTTF. Its target element and sensitivities are inferred from the constrained
parameter.

can influence their satisfaction. Applied to this example it
becomes obvious that a wire’s MTTF depends among other
things on its width, thickness and current. Therefore, the value
of the constraint can be modified using the exemplary layout
tool. The deduction of more complex relations uses the exact
same mechanisms.

The addition of new constraint types, parameters or design
tools only requires the manual definition of basic properties
for the integration into the ontology (cf. Figure 4). Inference
ensures the connection to all other relevant elements of the
ontology, i.e., other parameters or design tools.

V. CONCLUSION AND OUTLOOK

We have shown that an ontology for constraints in analog
circuit design has the potential to properly formalize this
domain. The formalization is the foundation for an easy
extension of constraint management systems with new, yet
unknown, constraint types. It is based on the availability
of a hierarchy of reusable building blocks, e.g., parameter
and propagation types. Additionally, our approach can help
answering important questions that occur in a constraint-driven
design flow. These include, for example, how to manipulate a
constrained parameter and which design tool to use.

Constraint data is design data. Thus, every design tool
possibly manipulates constraint data to achieve its purpose.
Standardization of constraint data is therefore a crucial require-
ment for tool interoperability. A well thought-out ontology can
meet both demands, formalization and standardization. The
prototyped ontology is only a first step in this direction. Future
research will aim for full-fledged formalization of this domain.

REFERENCES

[1] G. Jerke, J. Lienig, and J. B. Freuer, “Constraint-Driven Design Method-
ology: A Path to Analog Design Automation,” in Analog Layout Synthesis
– A Survey of Topological Approaches, H. E. Graeb, Ed. New York:
Springer, 2011, pp. 271–299.

[2] M. Horridge et al. (2009, 3) A Practical Guide To Building OWL
Ontologies Using Protégé 4 and CO-ODE Tools. Edition 1.2, The
University Of Manchester.

[3] Protégé. [Online]. Available: http://protege.stanford.edu
[4] FaCT++. [Online]. Available: http://owl.man.ac.uk/factplusplus
[5] J. R. Black, “Electromigration—A Brief Survey and Some Recent Re-

sults,” IEEE Trans. on Electron Devices, vol. 16, no. 4, pp. 338–347, 4
1969.




