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Abstract

The island model genetic algorithm shows promise as a superior formulation based
on considerations from theories of natural evolution and from the efficiencies
of coarse-grained parallel computer architectures. The theory of “punctuated
equilibria” calls for the population to be partitioned into several distinct
subpopulations. These subpopulations have extensive periods of isolated evolution,
i.e., computation, occasionally interspersed with migration, i.e., communication.
It is precisely for this sort of process with its alternating phases of extended
computation and limited communication that message-passing multi-processors
(implementing coarse-grained parallelism) are best suited. We validate this promise
of the island model and illustrate the effects of varying configuration attributes
through experiments with a difficult VLSI design problem.

C6.3.1 Parallelization

Research to develop parallel implementations of algorithms has a long history (Slotnick et al 1962,
Barnes et al 1968, Wulf and Bell 1972) across many disparate application areas. The majority of
that research has been motivated by the desire to reduce the overall time-to-completion of a task
by distributing the work implied by a given algorithm to processing elements working in parallel.
More recently some researchers have conjectured that some parallelizations of a task improve the
quality of solution obtained for a given overall amount of work, e.g., emergent computation (Forrest
1991), and some even suggest that considering parallelization may lead to fundamentally new modes
of thought (Bailey 1992). Note that the benefits of this latter kind of parallelization depend only
on concurrency, i.e., the logical temporal-independence, of operations and they can be obtained via
sequential simulations of parallel formulations.

The more prevalent motivation for parallelization, i.e., reducing time-to-completion, depends
on the specifics of the architecture executing the parallelized algorithm. Very early on, it was
recognized that different parallel hardware made possible different categories of parallelization based
on the granularity of the operations performed in parallel. Typically these categories are referred
to as: fine-grained, medium-grained and coarse-grained parallelization. At the extremes of this
spectrum, fine-grained (or small-grained) parallelism means that only short computation sequences
are performed between synchronizations, while coarse-grained (or large-grained) parallelism means
that extended computation sequences are performed between synchronizations. SIMD (single-
instruction, multiple-data) architectures are most appropriate for fine-grained parallelism (Fung
1976), while distributed-memory message-passing architectures are most appropriate for coarse-
grained parallelism (Seitz 1985).

Two of the earliest parallelizations of a genetic algorithm (GA) were based on a distributed-
memory message-passing architecture (Tanese 1987, Pettey et al 1987). The resulting parallelization
was coarse-grained in that the overall population of the GA was broken into a relatively small number
of subpopulations. Each processing element in the architecture was assigned an entire subpopulation
and executed a rather standard GA on its subpopulation.
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In the same time frame, it was noted that the theory of natural evolution, called punctuated
equilibria, provided evidence that in natural systems this kind of “parallelization” of evolution had
an emergent property of bursts of rapid evolutionary “progress”. The resulting parallel GA was
shown to have that property on several applications (Cohoon et al 1987).

Each of the above systems are examples of what has come to be called island-model parallel
genetic algorithms (Adamidis 1994). In the next section we discuss theories of natural evolution
as they support and motivate island-model formulations. We then discuss the important aspects,
parameters and attributes of systems built on this model. Finally, we present results of one such
system on a difficult VLSI design problem.

C6.3.2 Theories of natural evolution

In what has been called the Modern Synthesis (Huxley 1942), the fields of biological evolution and
genetics began to be merged. A major development in this synthesis was Sewall Wright’s (1932)
conceptualization of the adaptive landscape. The original conceptualization proposes an underlying
space (two-dimensional for discussion purposes) of possible genetic combinations. At each point in
that space an “adaptive value” is determined and specified as a scalar quantity. The surface thus
specified is referred to as the “adaptive landscape.” A population of organisms can be mapped to
the landscape by taking each member of the population, determining the point in the underlying
space that its genetic code specifies and marking the associated surface point. The figure used
repeatedly by Wright shows the adaptive landscape as a standard topographic map with contour
lines of equal adaptive value instead of altitude. The +’s indicate local maxima. A population — in
two demes — is then depicted by two shaded regions overlaid on the map.

+

.

Figure C6.3.1. An adaptive landscape according to Wright, with a sample population — in two
demes (shaded areas).

There are several reasons that we used the word “conceptualization” in the previous paragraph.
First and foremost, it is not clear what the topology of the underlying space should be. Wright
(1932) considers initially the individual gene sequences and connects genetic codes that are “one
remove” from each other, implying that the space is actually an undirected connected graph. He
then turns immediately to a continuous space with each gene locus specifying a dimension and
with units along each dimension being the possible allelomorphs at the given locus. Specifying the
underlying space to be an n-dimensional Euclidean space determines the topology. However, if one
is to attempt to make inferences from the character of the adaptive landscape (Radcliffe 1991), the
ordering of the units along the various dimensions is crucial. With arbitrary orderings the metric
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notions of “near by” and “distant” have no clear-cut meaning; similar ambiguities occur in many
discrete optimization problems. For instance, given two tours in a travelling salesperson problem,
what is the proper measure of their closeness?

The concept of the adaptive landscape has had a powerful effect on both micro- and macro-
evolutionary theory, as well as providing a fundamental basis for considering genetic algorithms as
function optimizers. As Wright states (1932):

The problem of evolution as I see it is that of a mechanism by which the species may
continually find its way from lower to higher peaks in such a field. In order that this may
occur, there must be some trial and error mechanism on a grand scale ...

Wright also used the adaptive landscape concept to explain his mechanism, “the shifting balance
theory”. In the shifting balance theory the ability for a species to “search” and not be forced
to remain at lower adaptive peaks by strong selection pressure is provided through a population
structure that allows the species to take advantage of ecological opportunities. The population
structure is based upon demes, as Wright describes (1964):

Most species contain numerous small, random breeding local populations (demes) that
are sufficiently isolated (if only by distance) to permit differentiation ...

Wright conceives the shifting balance to be a micro-evolutionary mechanism, that is, a mechanism
for evolution within a species. For him the emergence of a new species is a corollary to the
general operation and progress of the shifting balance. Eldredge and Gould (1972) have contended
that macro-evolutionary mechanisms are important and see the emergence of a new species to be
associated very often with extremely rapid evolutionary development of diverse organisms. As
Eldredge states (1989):

Other authors have gone further, suggesting that SMRS [SMRS denotes “specific mate
recognition system”, the disruption of which is presumed to cause reproductive isolation.]
disruption actually may induce [his emphasis] economic adaptive change, i.e., rather than
merely occur in concert with it, ... [Eldredge and Gould] have argued that small populations
near the periphery of the range of an ancestral population may be ideally suited to rapid
adaptive change following the onset of reproductive isolation. ... Thus SMRS disruption
under such conditions may readily be imagined to act as a ‘release,’ or ‘trigger’ to further
adaptive change the better to fit the particular ecological conditions at the periphery of
the parental species’s range.

The island-model GA formulation by Cohoon et al (1987, 1991a) was strongly influenced by this
theory of punctuated equilibria (Eldredge and Gould 1972), so they dubbed the developed system,
genetic algorithm with punctuated equilibria (GAPE). In general, the important aspect of the
Eldredge and Gould theory is that one should look to small disjoint populations, i.e., peripheral
isolates, for extremely rapid evolutionary change.

For the analogy to discrete optimization problems, the peripheral isolates are the semi-
independent subpopulations and the rapid evolutionary change is indicative of extensive search of the
solution domain. Thus, we contend that the island-model genetic algorithm is rightly considered to
be based on a population structure that involves subpopulations which have their isolated evolution
occasionally punctuated by inter-population communication (Cohoon et al 1991b). In Holland’s
terms (1975), the exploration needed in GA’s comes from the infusion of migrants, i.e., individuals
from neighboring subpopulations, and the ezploitation comes from the isolated evolution. It is this
alternation between phases of communication and computation that holds the promise for island-
model GA’s to be more than just hardware accelerators for the evolutionary process. In the next
section the major aspects of such island models will be delineated.

C6.3.3 The island model

The basic model begins with the islands — the demes (Wright 1964), the peripheral isolates (Eldredge
and Gould 1972). Here the islands will be referred to as subpopulations. It is important to note again
that while one motivation in parallelization would demand that each subpopulation be assigned to its
own processing element, the islands are really a logical structure and can be implemented efficiently
on many different architectures. For this reason we will refer to each subpopulation being assigned
to a process, leaving the issue of how that process is executed open.
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The island model will consider there to be an overall population P of M = |P| individuals that is
partitioned into N subpopulations {P1,Pa,...,Pn}. For an even partition each subpopulation has
n = 3 individuals, but for generality we can have |P;| = n; so that each subpopulation might have
a distinct size. For standard GA’s the selection of M can be problematic and for island-model GA’s
this decision is compounded by the necessity to select N (and thereby n). In practice, the decisions
often need to be done in the opposite order, that is, n; is crucial to the dynamics of the trajectory
of evolution for P; and is heavily problem dependent. We believe that for specific problems there is
a threshold size, below which poor results are obtained (as we will show in section C6.3.5). Further,
we believe that island-model GA’s are less sensitive to the choice of n;, as long as it is above the
threshold for the problem instance. With n; decided, the selection of N (and thereby M) is often
based on the available parallel architecture.

Given N, the next decision is the subpopulation interconnection. This is generally referred to as
the communication topology, in that the island model presumes migration, i.e., inter-subpopulation
communication. The P; are considered to be the vertices of a graph (usually undirected or at
least symmetric) with each edge specifying a communication link between the incident vertices.
These links are often taken to correspond to actual communication links between the processing
elements assigned to the subpopulations. In any case, the communication topology is almost always
considered to be static.

Given the ability for two subpopulation processes to communicate, the magnitude and frequency
of that communication must be determined. Note that if one allows 0 to be a possible magnitude
then the communication topology and magnitudes can be specified by a matrix S, where S;; is the
number of individuals sent from P; to P;. S;; = 0 indicates no communication edge.

As was mentioned in section C6.3.2, the migration pattern is important to the overall
evolutionary trajectory. The migration pattern is determined by the degree of connectivity in the
communication topology, the magnitude of communication and the frequency of communication.
These parameters determine the amount of isolation and interaction among the subpopulations. The
parameters are important with regard to both the “shifting balance” and “punctuated equilibria”
theories. Note that as the connectivity of the topology increases, i.e., tends toward a completely
connected graph, and the frequency of interaction increases, i.e., the isolated evolution time for
each P; is shortened, the island model approximates more closely a single, large, freely-intermixing
population (see section C6.3.5). It is held generally that such large populations quickly reach stable
gene frequencies, and thus, cease “progress”. Eldredge and Gould (1972) termed this “stasis”, while
the GA community generally refers to it as “premature convergence”.

On the other extreme, as the connectivity of the topology decreases, i.e., tends toward an
edgeless graph, and the frequency of interaction decreases, i.e., each P; has extended isolated
evolution, the island model approximates more closely several independent trials of a sequential
GA with a small population. We contend that such small populations “exploit” strongly the area
of local optima, but only those local optima extremely “close” to the original population. Thus,
intermediate degrees of connectivity and frequency of interaction provide the dynamics sufficient to
allow both exploitation and exploration

For our discussion here, the periods of isolated evolution will be called epochs, with migration
occurring at the end of each epoch (except the last). The length of the epochs determines the
frequency of interaction. Often the epoch length is specified by a number G; of generations
that P; will evolve in isolation. However, a formulation more faithful to the theories of natural
evolution would be to allow each subpopulation process to reach stasis, i.e., reach equilibrium or
convergence, on each epoch (see section C6.3.5). From an implementation point of view with a
subpopulation assigned to each processing element, this latter formulation allows the work load
to become unbalanced and as such may be seen as an inefficient use of the parallel hardware if
the processing elements having quickly converging subpopulations are forced to sit idle. The more
troublesome problem is in measuring effectively the degree of stasis. “Inefficiency” might occur when
reasonably frequent, yet consistently marginal “progress” is being made. Then not only might other
processing elements be idle, but also the accumulated progress might not be worth the computation
spent. In one of the experiments of the next section, we will present a system that incorporates
an epoch-termination criterion. That system yields high-quality results more consistently, while
being implemented in an overall parallel computing environment that utilizes the “idle” processing
elements.
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The overall structure of the island-model process comprises E major iterations called epochs.
During an epoch each subpopulation process independently executes the genetic algorithm for G;
generations. After each epoch there is a communication phase during which individuals migrate
between neighboring subpopulations. This structure is summarized in the following pseudocode.

Island Model(E,N,n)
{
Concurrently for each of the i + 1 to N subpopulations Initialize(P;,n) ;
For epoch + 1 to E do
Concurrently for each of the i + 1 to N subpopulations do
Sequential GA(P;,G;) ;
od ;
For i <+ 1to N do
For each neighbor j of 4
Migration(P;, P;) ;
Assimilate(P;) ;
od
od
routing solution = best individual of all subpopulations ;

}
Sequential GA(P;,G;)

For generation < 1 to G; do
Pnew <_ @ ;
For offspring < 1 to Maz_offspring; do
Pa < Selection(P;) ;
pp < Selection(P;) ;
Prew = Prew U Crossover(py, pg) ;
od
Fitness_calculation(P; U Ppey) ;
P; + Reduction(P; U Prew) ;
Mutation(P;) ;
Fitness_calculation(P;) ;
od

}

After each phase of migration each subpopulation must assimilate the migrants. This
assimilation step is dependent on the details of the migration process. For instance, in the
implemented island model presented in the next section, if individual py is selected for emigration
from P; to P; then py is deleted from P; and added to P;. (The individual py, itself migrates.) Also,
the migration magnitudes, S;;, are symmetric. Thus, the size of each subpopulation remains the
same after migration and the assimilation is simply a fitness recalculation.

In other island models (Cohoon et al 1991a), if p; is selected for emigration from P; to P;
then py, is added to P; without being removed from P;. (A copy of individual p; migrates.) This
migration causes the subpopulation size to increase, so (under an assumption of a constant size
subpopulation GA) the assimilation must include a reduction operation.

Still other parallel GA’s (Miihlenbein et al 1987, Miihlenbein 1989, Gorges-Schleuter 1990)
implement overlapping subpopulations, i.e., the “diffusion model”. For such systems migration is
not really an issue, rather its important effect is attained through the selection process. However,
parallel genetic algorithms with overlapping subpopulations are best suited to medium-grained
parallel architectures, so we will not discuss them further here.

An important aspect of both the “shifting balance” and “punctuated equilibria” theories is
that the demes, or peripheral isolates, evolve in distinct environments. This aspect has two major
facets. The first, and most obvious, facet is the restriction of the available breeding population, i.e.,
the isolated evolution of each subpopulation as we have already discussed.
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The second facet is the differing environmental attributes that determine the factors in natural
selection. Wright has suggested that this facet provides “ecological opportunity” (1982). For most
GA’s these factors, and the ways they interrelate to form the basis of natural selection, are encoded in
the fitness function. Thus, to follow the fundamental analogy, the island model should have differing
fitness functions at the various subpopulations. Of course, for GA’s that are used for functions
optimization, the fitness function is almost always the objective function to be optimized (or some
slight variation, e.g., an inversion to make an original minimization consistent with “fitness”). We
are not aware of any systems that have made use of this facet with truly distinct fitness functions
among the subpopulations.

The island model presented in the next section (and many others) has a rudimentary form
of this facet through local normalization of objective scores to yield fitness values. For example,
an individual’s fitness might be assigned to be its raw objective score divided by the current mean
objective score across the given subpopulation. [This is the reason for the several fitness calculations
in the pseudocode presented above.] Such normalization does effect differing environments to the
degree that the distributions of the individuals in the subpopulations differ.

For optimization problems that are multi-objective, there is usually a rather arbitrary linear
weighting of the various objective dimensions to yield a scalar objective score, e.g., see (C6.3.1).
This seems to provide a natural mechanism to have distinct objective functions, namely, distinct
coefficient sets at each subpopulation. The difficulty of using this mechanism is that it clearly adds
another level of evolution control parameters. Eldredge and Gould recognized this additional level
when the discuss “punctuated equilibria” as a theory about the evolution of species, not a theory
about the evolution of individuals within a species (Eldredge and Gould 1972). This is, indeed, an
important facet of the island model, unfortunately, further exploration of it form and implications
is beyond the scope of our discussion here.

C6.3.4 Island-model genetic algorithm applied to a VLSI design problem

In this section we present an island-model GA applied to the routing problem in VLSI circuit
design. We then present the results from experiments in which important island-model parameters
were varied in order to illustrate the effectiveness of this parallel method and the effects of modifying
those parameters.

Problem formulation

The VLSI routing problem is defined as follows. Consider a rectangular routing region on a VLSI
circuit with pins located on two parallel boundaries (channel) or four boundaries (switchboz). The
pins that belong to the same net need to be connected subject to certain constraints and quality
factors. The interconnections need to be made inside the boundaries of the routing region on a
symbolic routing area consisting of horizontal rows and vertical columns (see figure C6.3.2).

The routing quality of a particular solution involves (for the purposes of the following
experiments) three factors: Netlength — the shorter the length of the interconnections, the smaller
the propagation delay, Number of vias — the fewer the number of vias (connections between
routing layers), the fewer electrical and fabrication problems occur, Crosstalk — in sub-micron
regimes, crosstalk results mainly from coupled capacitance between adjacent (parallel routed)
interconnections, so the shorter the length of these parallel-routed segments, the less crosstalk
occurs and the better the performance of the circuit. Thus, the optimization is to find a routing
solution p; for which Obj(p;) is minimal, with the objective function Obj specified by

Ob](pz) = wq * lnets(pi) + wo * nvias(pi) + w3 * lpar(pi) (0631)

where l,¢5(p;) is the total length of the nets of routing solution p;, nyias(p;) is the number of vias
of routing solution p;, lper(p;) is the total length of adjacent, parallel-routed net segments of p;
(crosstalk segments), and wy, we and ws are weight factors.

For VLSI designers it is important to have the weight factors, i.e., wi, wy and ws, to enable
the designer to easily adjust routing quality characteristics: the netlength, the number of vias, and
the tolerance of crosstalk, respectively, to the requirements of a given VLSI technology.
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Figure C6.3.2. Example switchbox and channel routing problems (“magnified” in the circles)
and possible routing solutions.

Genetic operators

As indicated in the pseudocode in section C6.3.3, each subpopulation process executes a genetic
algorithm requiring the following problem-domain specific operators. For these operators, each
individual is a complete routing solution, p;.

Initialization A random routing strategy (Lienig and Thulasiraman 1994) is used to create
the initial subpopulations consisting of “non-optimized” routing solutions. These initial routing
solutions are guaranteed to be feasible solutions, i.e., all necessary connections exist, but no
refinement is performed on them. Thus, we consider them to be random solutions that are
distributed throughout the search space.

Fitness calculation The higher quality solutions have smaller objective function values. So, to
get a fitness value suitable for maximizing, a raw fitness function is calculated as the inverse of the
objective function, F”'(p;) = #(m)’ then the final fitness F'(p;) of each individual p; is determined
from F'(p;) by linearly scaling (Goldberg 1989) local to the specific subpopulation.

Selection  The selection strategy, which is responsible for choosing mates for the crossover
procedure, is stochastic sampling with replacement (Goldberg 1989), i.e., individuals are selected
with probabilities proportional to their fitness values.

Crossover Two individuals are combined to create a single offspring. The crossover operator
gives high-quality routing components of the parents an increased probability of being transferred
intact to their offspring (low disruption). The operator is analogous to 1-point crossover, with a
randomly positioned line (a horizontal or vertical crossline) that divides the routing area into two
sections, playing the role of the crosspoint. For example, net segments exclusively on the upper side
of a horizontal crossline are inherited from the first parent, while segments ezclusively on the lower
side of the crossline are inherited from the second parent. Net segments intersecting the crossline
are newly created for the offspring by means of a random routing strategy (the same strategy used
in Initialization).

Mutation The mutation operator performs random modifications on an individual, i.e. changes
randomly the routing solution. The purpose is to overcome local optima and to exploit new regions
of the search space (Lienig and Thulasiraman 1994).

Reduction The reduction strategy combines the current subpopulation with the newly created
set of offspring, then simply chooses the fittest individuals from the combined set to be the
subpopulation in the next generation, thus keeping the subpopulation size constant.
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Parallel structure

The island model used for this application has nine subpopulations (N = 9) connected by a torus
topology. Thus, each subpopulation has exactly four neighbors. The total population (M = 450) is
evenly partitioned (n = 50). (The listed numbers will be changed in the course of the experiments
discussed in the following.) The parallel algorithm has been implemented on a network of SPARC
workstations (SunOS and Solaris systems). The parallel computation environment is provided by
the Mentat system, an object-oriented parallel processing system (Grimshaw 1993, Mentat 1996).
The program, written in C++ and Fortran, comprises approximately 10,000 lines of source code.
The cost factors in (C6.3.1) are set to: w;=1.0, wy=2.0, and w3=0.01. The experimental results
were achieved with the machines running their normal daily loads in addition to this application.

Comparison to other routing algorithms

Any experiment involving a “real” application of a genetic algorithm should begin with a comparison
to solution techniques that have already been acknowledged as effective by that application’s
community. Here we will simply state the results of the comparison because the detailed numbers
will only be meaningful to the VLSI routing community and have appeared elsewhere (Lienig
1996). First, eleven benchmark problem instances were selected for channel and switchbox routing
problems, for example, “Burstein’s Difficult Channel” and “Joo6_16” for channels, and “Joo6_17”"
and “Burstein’s Difficult Switchbox” for switchboxes. These benchmarks were selected because
published results were available for various routing algorithms, namely, Yoshimura and Kuh (1982),
WEAVER, (Joobbani 1986), BEAVER (Cohoon and Heck 1988), PACKER (Gerez and Herrmann
1989), SILK (Lin et al 1989), Monreale (Geraci et al 1991), SAR (Acan and Unver 1989), and
PARALLEX (Cho et al 1994). Note that most of these systems implement deterministic routers.

The island model was run 50 times per benchmark (with varying parameters) and the best-seen
solution for each benchmark recorded. A comparison of those best-seen solutions to the previously
published best-known solutions indicates that the island-model solutions are qualitatively equal to
or better than the best-known solutions from channel and switchbox routers published previously
for these benchmarks.

Of course, due to the stochastic nature of a GA, the best-seen results of the island model
were not achieved in every run. [All executions were based on arbitrary initializations of the
random number generator.] Above we referred to the “best-seen” solutions over all the runs for
each benchmark, however, we would like to note that, in fact, in at least 50% of the individual
island-model runs solutions equal to these best-seen results were obtained. We judge this to be very
consistent behavior for a GA.

C6.3.5 Influence of island-model parameters on evolution

Several experiments have been performed to illustrate the specific effects of important island-model
parameters in order to guide further applications of coarse-grained parallel genetic algorithms. The
specific parameters varied in the experiments are: the magnitude of migration, the frequency of
migration, the epoch termination criterion, the migrant selection strategy, and the number of
subpopulations and their sizes.

Five benchmark problem instances, namely, “Burstein’s Difficult Channel”, “Jo06_.13” and
“J006_16” for channels, and “Joo6_17", and “Pedagogical Switchbox” for switchboxes, were chosen
for these experiments. Comparisons were made between various parameter settings for the island
model. In addition, runs were made with a sequential genetic algorithm (SGA) and a strictly isolated
island model, i.e., no migration. The SGA executed the same algorithm as the subpopulation
processes, but on a population of 450 individuals.

In the experiments, the SGA was set to perform the same number of recombinations per
generation as the island model does over all subpopulations, namely, (number of subpopulations) X
(offspring per subpopulation). The SGA and island-model configurations were run the same total
number of generations. Thus, we ensure a fair method (with regard to the total number of solutions
generated) to compare our parallel approach with a sequential genetic algorithm.

The fundamental baseline was a derived measure based on the best-known objective measure
for each problem instance. Remember that for the objective function, smaller values indicate higher

Handbook of Evolutionary Computation © 1997 IOP Publishing Ltd and Oxford University Press



Parallel Genetic Algorithms Based on Punctuated Equilibria

quality solutions. The derived measure is referred to as A and is calculated as indicated in the
following. Let Rpk be the objective measure of the best-known solution and let Rsga be the
best-seen result on a particular run of SGA. Then,

Rsga — RBk (C63.2)

Soa =
SGA RBK

is a relative (to the best-known) difference for a single run of SGA. The dsg4 were averaged over
five runs for each benchmark and over the five benchmarks to yield Agga.

In figures C6.3.3 through C6.3.7, this Agga is shown as a 100% bar in the leftmost position
in the plot. Similar A’s were obtained for the various island-model configurations and shown as
percentages of Agga. Thus, if a particular island-model configuration is shown with a 70% bar,
then the average relative difference for that configuration is 30% better than SGA’s average relative
difference to the best-known result.

This derived measure was used in order to combine comparisons across problem instances with
disparate objective function value ranges. In addition, the measure establishes a baseline through
both best-known and SGA results. We remind the reader that for each benchmark problem this
island-model system evolved a solution equal to or better than any previously published system.

Number of migrants and epoch lengths

We investigated the influence of different epoch lengths (number of generations between migration)
for different numbers of migrants (number of individuals sent to each of the four neighbors). The
migrants were chosen randomly, with each migrant allowed to be sent only once. Figure C6.3.3
shows that the sequential approach was outperformed by all parallel variations (when averaged over
all considered benchmarks). Note that the set of parallel configurations included the version with
no migration, i.e., the strictly isolated island model (shown in figure C6.3.3 as “0 migrants”). Thus,
the splitting of the total population size into independent subpopulations already increased the
probability that at least one of these subpopulations would evolve toward a better result (given at
least a “critical mass” at each subpopulation).

%SGA Epoch Length

25 Generations 50 Generations 75 Generations

90 —

SGA 0 2 4 6 2 4 6 2 4 6 Migrants

Number of subpopulations: 9
Migrant selection strategy: random

Figure C6.3.3. Comparison of results on the benchmark suite with different numbers of migrants
and epoch lengths. Each bar is a A value for a different configuration. A A value is an average
relative difference from the best-known solution as normalized to the Agsga value, so the SGA
bar is always 100%. Thus, the lower the bar, the better the average result of the particular
configuration.

Figure C6.3.3 also shows that a limited migration between the subpopulation further enhanced
the advantage of a parallel genetic algorithm. Two migrants to each neighbor with an epoch length
of 50 generations are seen to be the best parameters when averaged over all problem instances.
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On the one hand, more migrants or too short epoch lengths are counterproductive to the idea of
disjointly and parallel evolving subpopulations. The resulting intermixing diminishs the genetic
diversity between the subpopulations by “pulling” them all into the same part of the search space,
thereby approaching the behavior of a single-population genetic algorithm. On the other hand,
insufficient migration (epoch length 75 generations) simulates the isolated parallel approach (zero
migrants) — the genetic richness of the neighboring subpopulations does not have enough chance
to spread out.

Figure C6.3.4 shows this behavior in the context of individual subpopulations, that is, it presents
the convergence behavior of the best individuals in each of the parallel evolving subpopulations on
a specific problem instance (channel “Joo6_13”). It clearly indicates the importance of migration to
avoid premature stagnation by infusing new genetic material into a stagnating subpopulation. The
“stabilizing” effect of migration is also evident in the reduced variation among the best objective
values gained in five independent runs, as shown in the righthand plot of figure C6.3.4.

Channel Joo6_13 - 0 migrants Channel Joo6_13 - 2 migrants
260 260 3 o
Envelope of best Envelope of best
results results

10 Average of best 2104 Average of best
< results < results
S ety Best results of indi- FoRE I 1A Best results of indi-
@ vidual subpopulations % vidual subpopulations
o o
g_é 2204 g 2204
> >
= =
=) 5
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] B
< 0] < 204
I 2
Q Q
3 3

180 180

w A0 w0 a0 500 w0 0 w0 s
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Figure C6.3.4. Comparison of the convergence of the best solutions in the individual, parallel
evolving subpopulations. Plotted are five runs with nine subpopulations, i.e., 45 runs, in isolation
(left) and with two migrants (right). (Note: the envelope for the plot on the left looks unusual
due to an outlier subpopulation.)

Variable epoch lengths

The theory of punctuated equilibria is based on two main ideas: (1) an isolated subpopulation in
a constant environment will stabilize over time with little motivation for further development, and
(2) continued evolution can be obtained by introducing new individuals from other, also stagnating
subpopulations. However, all known computation models that are based on this theory use a fixed
number of generations between migration. Thus, they do not exactly duplicate the model that
migration occurs only after a stage of equilibrium has been reached within a subpopulation.

The algorithm was modified to investigate the importance of this characteristic. Rather than
having a fixed number of generations between migrations, a stop criterion was introduced that
took effect when stagnation in the convergence behavior within a subpopulation had been reached.
After some experimentation with different models, we defined a suitable stop criterion to be: 25
generations with no improvement in the best individual within a subpopulation.

To ensure a fair comparison, we kept the overall number of generations the same as in all other
experiments. This lead to varying numbers of epochs between the parallel evolving subpopulations
(due to different epoch lengths) and resulted in longer overall completion time.
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The results achieved with this variable epoch length are shown in figure C6.3.5. The results
suggest that a slight improvement compared with a fixed epoch length can be achieved by this
method. However, it is important to note that this comparison is made with a fixed epoch length
that has been shown to be the most suitable after numerous experiments (see figure C6.3.3). Thus,
the important attributes to notice are that the variable-epoch-length configuration frees the user
from finding a suitable epoch length and that it gave more consistent results over the various
migration settings.

%SGA Epoch Length

100 - - 50 Generations Variable

90
80 |
70
60
50

SGA 0 2 4 2 4 Migrants

Number of subpopulations: 9
Migrant selections strategy: random

Figure C6.3.5. Comparison of results on the benchmark suite with fixed and variable epoch
lengths. Variable length epochs were terminated after 25 generations of no improvement of the
best individual within the subpopulation. Each bar is a A value.

Different migrant selection strategies

The influence of the quality of the migrants on the routing results was investigated using three
migrant selection strategies: “Random” (migrants were chosen randomly with uniform distribution
among the entire subpopulation), “Top 50%” (migrants were chosen randomly among the individuals
with a fitness above the median fitness of the subpopulation), and “Best” (only the best individuals
of the subpopulation migrated). The migrants were sent in a random order to the four neighbors.

As figure C6.3.6 indicates, we cannot find any improvement in the obtained results by using
migrants with better quality. On the contrary, selecting better (or the best) individuals to migrate
lead to a faster convergence — the final results are not as good as those achieved with a less elitist
selection strategy. According to our observations, this is due to the dominance of the migrants having
their (locally good) genetic material reach all the subpopulations, thus leading the subpopulation
searches into the same part of the search space concurrently.

Different number of subpopulations

To compare the influence of the number of subpopulations, the size of the subpopulations were
kept constant and the number of subpopulations increased from N = 9 to N = 16 and N = 25
(still connected in a torus). Accordingly, the population size and the number of recombinations
of the SGA were increased to maintain a fair comparison. The resulting plots for SGA vs. 16-
and 25-subpopulations (with n = 50) are qualitatively similar to the SGA vs. 9-subpopulations
comparison of figure C6.3.3. For problems of the difficulty of these benchmark routing problems
one should expect the SGA with slightly larger populations to do better than the small population
SGA’s. That expectation was indeed born out in these experiments. The important observation is
that the island-model performance also increased, thus the relative performance advantage of the
island model was maintained.

In an interesting variation on this experiment, the total population size, M, was held constant
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%SGA Migrant Selection Strategy
Random Top 50% Best

SGA 0 2 4 2 4 2 4 Migrants

Number of subpopulations: 9
Epoch length: 50 generations

Figure C6.3.6. Comparison of results on the benchmark suite with different migrant selection
strategies. Each bar is a A value.

while increasing the number of subpopulations (and so reducing the subpopulation sizes). Holding
M near 450 and increasing N to 16 yielded n = 28, while increasing N to 25 yielded n = 18.

The results presented in figure C6.3.7 show that subpopulation size is an important factor. The
figure clearly indicates that (for this average measure) partitioning a population into subpopulations
yielded (for N = 9) results better than SGA, then yielded progressively worse results as N was
increased (and n was decreased). We contend that this progression was due to the subpopulation
size, n, going below “critical mass” for the specific benchmark problem instances. Remember, the
plotted values are aggregate measures. When we looked at the component values for each problem
instance we found further evidence for our contention. The evidence was that for the simpler
benchmarks the N = 25 island model still had extremely good performance, in fact, equalled the
best-known solution repeatedly. For the other, more complex benchmarks, the N = 25 island model
performed very poorly, thus dragging the average measure well below the SGA performance level.
Thus, the advantage of more varied evolving subpopulations can be obtained by increasing N only
if n remains above “critical mass”. This critical value for n is dependent on the complexity of the
problem instance being solved.

C6.3.6 Final remarks and conclusions

In general it is difficult to compare sequential and parallel algorithms, particularly for stochastic
processes such as genetic algorithms. As mentioned at the beginning of our discussion, the
comparison is often according to overall time-to-completion, i.e., wall-clock time. We contend that
the island model constitutes a different evolutionary algorithm, not just a faster implementation
of the sequential genetic algorithm, and one that yields qualitatively better results. Here we have
argued for this contention from the point of view of biological evolution and in the context of a
difficult VLSI design application.

Several of the experimental-design decisions we made for the application experiments merit
reiteration here. First, the application is an important problem with an extensive literature of
heuristic systems that “solve” the problem. Our derived baseline measure incorporated the best-
known objective values from this literature (see (C6.3.2)). For this particular VLSI design problem,
most of the heuristic systems are deterministic, thus we have aggregate values for the various GA’s
versus single values for the deterministic systems. Our measure does not directly account for this
but we have provided an indication of the variation associated with the set of runs for the island
model.

Second, our comparisons to a sequential genetic algorithm (SGA) are based on “best-seen”
objective values, not CPU time or time-to-completion. In order to make these comparisons fair, we
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%SGA Number of Subpopulations
300 9 16 25
260
220 1
180 |

140 |

100 |
N IJ
SGA 0 2 0 2 0 2

Migrant selection strategy: random
Epoch length: 50 generations

Migrants

Figure C6.3.7. Comparison of results on benchmark suite with different numbers of
subpopulations. The size of the total population, M, is kept constant at 450 individuals. Since
M = N % n, the increase in N, the number of subpopulations, requires a reduction in n, the size
of each subpopulation.

have endeavored to hold the computational resources constant and make them consistent across the
SGA and the various configurations of the island model. This was done by fixing the total number
of recombinations, i.e., the number of applications of the crossover operator, which relates directly
to the total number of objective function evaluations.

Using the number of recombinations, as opposed to CPU time, for example, allows us to ignore
properly implementation details for subsidiary processes, e.g., sorting or insertion into a sorted list
(Garey and Johnson 1979). Note, a CPU-time measure can “cut both ways” between the serial and
parallel versions. On the one hand, if a subsidiary process has a small initial constant but poor
performance as the data structure size increases, then the island model has an advantage simply
through the partition of the population. On the other hand, if a subsidiary process is increasingly
efficient for larger data structures but has a large initial constant, then the SGA has the advantage,
again, simply through the partition of the population. These are examples of the subtle ways
by which time-based comparisons confound primary search effort with irrelevant implementation
details.

Third, our comparisons have ignored the cost of communication. This is generally appropriate
for island models because the isolated computation time for each subpopulation is extremely large
relative to the communication time for migration (any course-grained parallelization should have
this attribute). For medium- and fine-grained parallel models communication is much more of a real
concern. Ignoring communication time is also reflective of our interest in the evolutionary behavior
of the models, not the raw speed of a particular implementation.

With all GA’s, the evolutionary behavior depends heavily on the interplay between the problem
complexity and population size. For SGA vs. island model comparisons this is particularly
problematic because the island model has two population sizes: the total population size, M, and
the subpopulation size, n. Which is the proper one to consider relative to the SGA population size?
For our experiments, we have used the total population size. We believe this makes the versions more
conformable and is most consistent with number of recombinations as the computation measure.

Further, for comparing stochastic process, such as GA’s, the total number of trials important,
particularly when the evaluation measure is based on best-seen results. The attentive reader will
have noticed that the strictly isolated island model (no migration) often does better than the SGA.
This might seem curious, since a single run of the isolated island model is just a set of IV separate
SGA’s and ones with smaller population sizes. As long as the subpopulations size, n, is above what
we are calling the “critical mass” level, the isolated island model has a statistical advantage over
the single SGA (under our evaluation measure).
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The measure gives this advantage because the best-seen is taken over each run. Thus, each
run of the isolated island model gets N “samples” to determine its best-seen, while each SGA run
gets only one “sample”. [Shonkwiler (1993) calls these “IIP parallel” GA’s and gives an analysis of
“hitting time” expectation.] We consider the “samples” in this case to be evolutionary trajectories
through the solution space. Now, note that in almost all cases allowing migration provides the
island model with the means to derive even better results.

This application of the island model to detailed routing problems in VLSI circuit design has
shown that a parallel genetic algorithm based on the theory of “punctuated equilibria” outperforms
a sequential genetic algorithm. Furthermore, the results are qualitatively equal to or better than
the best-known results from published channel and switchbox routers.

In investigating the parameters of the island model, the following conclusions have been reached.

e The island model consistently performs better than the sequential genetic algorithm given a
consistent amount of computation.

o The size of a subpopulation, the total amount of immigration, i.e., the number of connected
subpopulations times the number of migrants per neighbor, the epoch length and the complexity
of the problem instance are interrelated quantities. The problem instance complexity determines
a minimum population size for a viable evolutionary trajectory. The total amount of
immigration must not be disruptive [our experiments indicate that more than 25% of the
subpopulation size is disruptive]. And the epoch length must be long enough to allow
exploitation of the infused genetic material. Within those constraints the island model will
perform better with more subpopulations, even while holding the total population size and the
total number of recombinations, i.e., amount of computation, constant.

e  Variable epoch lengths determined via equilibrium measures within subpopulations achieve
overall results slightly better than those obtained with (near-)optimized fixed epoch lengths.
Though an equilibrium measure must be chosen, allowing variable epoch lengths frees the user
from having to select that parameter value.

e  Quality constraints on the migrants do not improve the overall behavior of the algorithm, on
the contrary, quality requirements on the selection of the migrants increases the occurrence of
premature stagnation.

¢ Given a sufficient number of individuals per subpopulation, the larger the number of parallel
evolving subpopulations, the better the routing results. The complexity of the problem and
the minimal subpopulation size have a direct correlation that must be taken into account when
dividing a population into subpopulations.

Finally, we would like to return to an issue that we mentioned at the very beginning of our
discussions, namely, the island-model formulation of the genetic algorithm is not simply a hardware
accelerator of the single population genetic algorithm. The island model does map naturally to
distributed-memory message-passing multiprocessors, so it is amenable to the speed-up in time-to-
completion that such parallel architectures can provide. However, the formulation can improve the
quality of solutions obtained even via sequential simulations of the island model. As supported by the
“shifting balance” and “punctuated equilibria” theories of natural evolution, the emergent properties
of the computation derive from the concurrent evolutionary trajectories of the subpopulations
interacting through limited migration.
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