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ABSTRACT 
The design of analog circuits has historically been a time 
consuming, manual task. The stringent constraints that must be 
considered simultaneously make the task particularly difficult, and 
are a major reason analog design has often not been automated. We 
believe that constraint-driven design is a prerequisite to analog 
design automation as it enables expert knowledge to be included in 
the design flow. This paper provides an introduction to the concept 
of constraint-driven physical design. First, we identify the major 
challenges in analog physical design, which we show are mostly 
constrained-related. We then provide an overview of the essential 
components of a constraint-driven design methodology. Finally, we 
discuss the impact this approach has on the analog design flow and 
design algorithms. 

Categories and Subject Descriptors 
B7.2[Integrated Circuits]: Design Aids 

General Terms 
Algorithms, Design, Verification. 

Keywords 
Analog design, physical design, layout, constraints, constraint-
driven design 

1. INTRODUCTION 
While physical design automation of analog IC design has seen 
significant improvement in the past decade, it has not advanced at 
nearly the rate of its digital counterpart. This shortfall is primarily 
rooted in the analog IC design problem itself, which is significantly 
more complex even for small problem sizes, and which lacks a 
sufficiently comprehensive and exact descriptiveness with 
conventional approaches [1][6][10].  
The quality of a design result is generally determined by the degree 
to which compliance constraints have been met and pre-defined 
optimization goals achieved. Due to the lack of identical expression 
and interpretation of design constraints in the analog-design flow 

context, most of the constraints in analog designs are specified and 
considered manually by expert designers (expert knowledge). 
Furthermore, analog constraints are often used implicitly (i.e., based 
on a designer’s experience) rather than being explicitly defined, 
which prevents their effective use in design automation. Progress in 
physical design automation for analog ICs is urgently needed due to 
increasing design sizes and aggravating challenges such as more 
stringent reliability and robustness requirements, as well as a rapidly 
widening verification gap. 
At present, analog circuits are typically designed using the 
schematic-driven layout (SDL) methodology, which consists of an 
interactive design style and a subsequent verification step. It is 
widely believed that this design style will be replaced one day by 
full-scale “analog design automation” similar to that of today’s 
digital circuits. Rather than announcing this long-awaited solution, 
we present an approach we believe represents not only a realistic 
“in-between step” but also a necessary precondition (Fig. 1). 
 
 
 
 
 
 
 
 
 
Figure 1. The evolution of analog physical design methodologies 
towards the goal of a fully automated analog design flow. 

We believe the ultimate goal of fully automated analog design 
(analog design automation) can only be achieved if the current 
schematic-driven design paradigm evolves into a constraint-driven 
design. Our approach is based on the belief that we first need a 
methodology that allows for automatic inclusion of expert 
knowledge in the form of constraints, which too must be verified 
automatically. Only then we will be able to tackle the task of analog 
layout synthesis. In other words, we think that the abilities of 
“analyzing” and “verifying” are a precondition for “synthesizing” 
[11]. 
This paper provides an introduction to the concept of a holistic 
constraint-driven physical design approach for arbitrary ICs in 
general, and for analog ICs in particular. Thereby, we identify key 
similarities and differences between the physical design of analog 
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and digital IC design, and the corresponding challenges, which we 
show are primarily constraint-related.  
We then give an overview of the constraint-driven design flow and 
its essential components. We discuss the fundamental components 
required in a constraint-driven analog design methodology, such as 
constraint representation, management, transformation, and 
verification. We then present the impact this methodology has on 
the overall IC design flow, the core design of EDA algorithms, and 
the required paradigm adjustments needed for analog physical 
design approaches. Our paper concludes with an outlook of open 
problems towards the final goal of analog design automation. 

2. PROBLEM DESCRIPTION 
2.1 The Design Problem 
In general, any (IC) design problem represents a complex and 
constrained optimization problem. The degrees of design freedom 
linked to the optimization problem span a multi-dimensional 
solution space which is (at least partially) constrained by the given 
global design constraints. A feasible solution for a specific design 
problem is obtained by sequentially removing all degrees of design 
freedom while traversing and reducing the solution space and 
considering all context-relevant constraints and application profiles.  
This reduction is done by sequentially transforming functional 
representations with many degrees of design freedom into 
equivalent ones with fewer degrees of design freedom. For example, 
using suitable methods one may transform a given functional 
specification into a netlist (netlist = functional representation of the 
given specification), which is then subsequently transformed into a 
floorplan, a placement order, a wired layout and finally a physical 
mask layout which contains no further degree of design freedom 
(physical layout = functional representation of the given netlist).  
Several transformations (design steps) can be active at the same 
time, especially for analog IC designs (Fig. 2). The strategy of how 
and when to remove a degree of design freedom during the design 
phase depends on several context-specific factors. Among others, 
factors may be static or dynamic in nature and may include the type 
of IC application, its usage profiles, reliability and robustness 
requirements, as well as the current problem situation in a design 
phase with its linked constraints.  
 
 
 
 
 
 
 
 
 
Figure 2. Simplified design flow for analog IC design where steps 
are typically overlapping and tightly linked. Multiple design steps 
can be active at the same point of time [11].  

2.2 Constraints vs. Optimization Goals 
In general, design constraints must be fulfilled whereas design goals 
may be fulfilled. An optimization goal that must be fulfilled hence 

represents a constraint, and must be treated as such. On the other 
hand, if we have a given design constraint that may be fulfilled, it 
should then be considered an optimization goal. The design goal is 
to achieve design results that fulfill all given constraints and which 
offer the highest level of achievement toward pre-defined 
optimization goals.  

2.3 Constraint Classification 
Each single design constraint (hereafter, constraint) must belong to 
at least one corresponding design object. For example, an IR-drop 
constraint belongs to at least two net terminals of the same net; or 
the chip area belongs to the ICs top cell, and so forth.  
A constraint can be given in either an implicit or explicit form. 
Implicit constraints may be given as plain textual notes or they may 
arise from assumptions intrinsically built into circuit descriptions or 
design algorithms. Examples of such constraints are the placement 
requirements of differential pair transistors – they must be placed 
symmetrically in order to maximize device matching. While this is 
obvious to any layout designer, the inclusion of such complex rules 
into both layout and verification tools is often not possible using 
current methodologies. Hence, due to its often non-formal nature, 
implicit constraints cannot be utilized for any type of controlled 
constraint-driven design. On the other hand, explicitly given 
constraints are accessible to design algorithms and thus are a 
primary requirement for any constraint-driven design flow. 
Each constraint is assigned a specific constraint type that represents 
a classification property for the same class of constraints. Constraint 
types have a clearly defined unit that belongs to the physical, 
electrical, mechanical, mathematical or geometrical domain 
(domain), or a combination of domains (e.g., the constraint type 
“IR-drop” has the unit Volt, the type “Delay” the unit Seconds, 
etc.). The relevance and impact of a constraint type strongly depend 
on the specific design context. 
Constraint types are generally assigned to one of the following four 
categories: (1) technological constraints necessary for 
manufacturing, (2) functional constraints that guarantee the intended 
IC functionality, (3) design-methodical constraints that arise from 
the attempt to reduce design complexity and to guide 
transformations, and (4) commercial constraints that, among others, 
arise from chip area or packaging requirements. 
Furthermore, constraint types are divided into so called “simple” 
and “complex” constraint types. Constraints that belong to a 
complex constraint type are conditional and linked with other 
constraints of any type. Constraints belonging to a simple constraint 
type are not linked at all. For example, the constraint (IR-
drop(pin_A,pin_B)<0.1V) represents a simple constraint 
whereas a constraint (IR-drop(pin_A,pin_B)<0.1V AND net 
topology must be star-shaped) represents a complex 
constraint because the second term “net topology” is linked to the 
first term “IR-drop”. This distinct consideration of simple and 
complex constraint types is a prerequisite for a constraint-driven 
design flow implementation.  

2.4 The Gap between Analog and Digital 
       Design Automation 
Analog IC designs often contain only a small number of devices as 
compared to digital IC designs. Nevertheless, the effort required to 
design analog function modules often matches or even exceeds the 
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effort for the digital modules. This is mainly due to a much richer 
set of constraints, typically complexly and tightly linked, that must 
be considered simultaneously and which may span several domains 
(Section 2.3).  

On average, each design object (instance, net, path, etc.) in an 
analog IC design must comply with a larger and more 
comprehensive set of constraints to fulfill its intended function, as 
compared to digital design. The primary reason for this observation 
is the higher level of functional abstraction offered in digital 
designs. This allows more robust operation requiring fewer 
constraints to guarantee the intended function, as compared to the 
quasi low-level mode of operation in analog designs. 

Furthermore, many (low-level) constraints and even constraint types 
may yet be unknown when the analog design process begins, due 
the overwhelmingly complex nature of the corresponding design 
problem. This renders automatic top-level design planning for 
analog IC designs nearly impossible. It is one of the reasons that at 
present highly skilled design engineers are required to perform top-
level design planning manually.  

This constraint-related problem also makes algorithm and tool 
development for analog IC design much more difficult, because the 
number of specific design algorithms may increase with each new 
simple constraint type. Considering today’s conventional design-
algorithm development approach (one constraint type and one 
algorithm to handle it), this approach falls short when it comes to 
new complex constraint types which vastly outnumber simple 
constraint types. This represents one of the primary reasons why 
analog design automation is lagging behind its digital counterpart 
and why this gap is growing. 

Another important reason for the design gap is rooted in the level of 
completeness and consistency that can be applied theoretically to 
the consideration of constraints during IC design. Due to the above-
mentioned possibility to use a comparably small set of well-defined 
and well-treated constraint types for digital designs, related present-
generation design algorithms and design tools can offer consistent 
and seamless design solutions in the digital domain.  

Since comprehensive and unified constraint description model are 
not used in today’s analog design algorithms and design tools, many 
analog-centric constraint types must currently be considered 
manually. Their consideration during design is, hence, mostly 
inconsistent and non-comprehensive.  

Any inconsistent or non-comprehensive consideration of constraints 
and constraint types widens the existing verification gap. This gap 
exists since DRC and LVS cannot fully include the verification of 
all (possible) constraints and constraint types. A tremendous amount 
of research effort has already been expended for the tailored 
consideration and verification of mostly simple constraint types 
(e.g., timing, IR-drop). Nevertheless, a complete and unified 
approach is still missing that is capable of dealing with all simple 
and complex constraints during the entire design and verification 
phase. 

Another difference between analog and digital IC designs can be 
found in the way the functional transformations, i.e., the design 
steps, are linked and carried out. While most design steps in digital 
IC designs are separated from one other, the design steps for analog 
IC designs are typically overlapping and tightly linked (see Fig. 2). 
For example, device generation, floorplanning, placement and 

global routing usually occur simultaneously. Thus, any analog-
oriented physical design tool must consider all requirements at the 
same time. This greatly reduces the impact of EDA point tools, such 
as pure analog placement and custom routing tools, in favor of a 
constraint-driven design flow.  

To address the current shortcomings discussed in this section, a 
holistic design approach is required. Its cornerstones will be 
discussed in detail in Sections 3 and 4. 

3. COMPONENTS OF A CONSTRAINT- 
     DRIVEN DESIGN FLOW 
A design flow that considers all relevant constraints in a consistent 
and comprehensive manner is subsequently denoted as a constraint-
driven design flow. To achieve this, several distinctive design flow 
components must be available and special requirements must be 
met. 
We provide an overview of essential components of an analog 
constraint-driven design flow in this chapter. Specifically, the 
fundamental concepts related to a constraint-driven design 
methodology, including constraint representation and management, 
generation of new constraints (constraint derivation) and constraint 
verification are discussed.  

3.1 Constraint Representation 
As mentioned earlier in Section 2.3, constraints must be given in an 
explicit form to be applied in an automated constraint-driven design 
flow. From a formal point of view, constraints define relations 
between instances of a set of either free or fixed design variables. A 
relation between independent variables represents a simple 
constraint. Relations between dependent variables can be mapped 
into combinations of simple constraints. This allows the definition 
of high-order constraints which represent complex constraints [3].  
Additionally, all constraints and all related design parameter data 
must be uniformly represented in an abstract form while preserving 
constraint type information. The conversion of constraints into a 
uniform representation must be complete and unambiguous. 
Uniform representations, such as CLP form (CLP: Constraint Logic 
Programming) [2][4], enforce a common understanding of 
constraints and constraint types among all involved design and 
verification tools. This is a primary requirement to enable the 
construction of multilateral design and verification algorithms 
necessary to address the analog constraint-driven design problem 
(see Section 4.2). 
The relation between design variables, representing a constraint, is 
either linear or non-linear. For instance, the electrical point-to-point 
resistance between two net terminals in a layout decreases linearly 
with an increasing wire height, whereas wire capacitance increases 
non-linearly due to fringe field effects.  
Design variables are given as either nominal values, worst-case 
values or as statistical values depending on the applied design style 
(nominal design, safety-critical worst-case design, statistical design, 
respectively). Hence, the representation of constraints must 
necessarily consider both the design style and the nature of a design 
variable. 
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3.2 Constraint Management 
The task of constraint management is to administer the storage for 
all constraint data while synchronizing the link between constraints 
and the design data [7]. It also enables context-specific access to 
constraints for design and verification algorithms.  
The management system is responsible for keeping constraints up-
to-date, which requires close interaction with design data 
management systems and the design algorithms that manipulate 
constraints. The system must guarantee the consistency of constraint 
information while corresponding design data is manipulated. 
Constraint-driven design algorithms require fast access to relevant 
constraint information. Access must be context-sensitive, where the 
context for example may represent a local cell in the design 
hierarchy, a temporary result database of a filter or search operation, 
etc. 
Constraint management also incorporates the propagation of 
constraints (1) in the existing design hierarchy, (2) across the 
borders of design objects and design steps, as well as (3) within a 
virtual design hierarchy. All three propagation types strongly 
depend on the constraint type and on the specific single constraint, 
and may be applied simultaneously. Furthermore, constraint 
propagation can be performed as either static or dynamic 
propagation. Static propagation assigns properties directly and 
permanently to design objects whereas dynamic propagation assigns 
constraints to design objects “on the fly”. In terms of constraint 
consideration, the static and the dynamic propagation methods are 
equivalent. 
The propagation within the existing design hierarchy can be either 
performed top-down or bottom-up. For instance, a net shielding 
constraint may be assigned from the chips IO pad down to a specific 
instance terminal in a sub-cell. The shielding constraint is then 
propagated to all nets in the hierarchy until the final terminal is 
reached. A cell spacing constraint assigned to a cell object is to be 
propagated as a bottom-up constraint if EMC requirements prevent 
critical cells to be placed too close to each other.  
Cross-border propagation assigns constraints across a set of design 
objects or across several design steps. For instance considering the 
first case, top-down propagation of a net-shielding constraint may 
continue after it has passed a resistor element during the net 
traversal. The second case may be viewed as a global scope in 
which a specific constraint is active.  
Top-down and bottom-up propagation are required to be performed 
simultaneously while traversing a propagation tree representing a 
virtual design hierarchy. For instance, if a chip IO pad is located in a 
sub-hierarchy cell, then net-shielding constraints must be 
propagated to the relevant top-level cells and then down-propagated 
to the final instance terminals. Clearly, this propagation type 
strongly depends on the constraint type and on the specific design 
objects linked to a single constraint of this type. Constraint 
propagations are often applied in virtual design hierarchies.  

3.3 Constraint Derivation 
The process of generating new constraints is denoted as constraint 
derivation when performed using either a functional specification or 
a set of existing design data while performing a design step. In 
principle, the derivation process can create new constraints 
belonging to the technological, functional, design methodical, or 
commercial constraint type category (see Section 2.3).  

The derivation process is based on (1) direct derivation rules, (2) 
deduction processes by using a logic calculus or (3) the designer’s 
knowledge. Constraint derivation based on circuit simulation and 
design verification results can be seen as a special type of the rule-
based derivation method. Strictly speaking, the constraint 
transformation discussed in the next section is a form of indirect 
constraint derivation due to its transformation-based creation of new 
constraints during the design process (see Section 3.4). 
In general, constraint derivation processes can be performed on 
either constant (e.g., a netlist) or non-constant (e.g., flexible wire 
width) design data. A derivation based on constant design data does 
not change the design data it uses, whereas a derivation based on 
non-constant design data can modify or add design data during the 
derivation process. This differentiation is important because in the 
case of non-constant design data, dynamic feedback loops are likely 
to be created by the design algorithms that need to be considered. 
This feedback-loop problem and relevant applications are discussed 
in more detail in Section 4.2.  
The derivation of constraints using a functional specification is 
based on constant design data, since the specification itself is 
normally fixed. Similarly, a design step can fully or partially make 
use of constant design data. For instance, if the derivation rule “if 
(condition) then assign constraint C to design object X” will not 
modify design object X, then the derivation is based on constant 
design data.  
Deduction-based constraint derivation can be seen as a high-level 
extension of rule-based derivation methods. Here, a so-called 
reasoning system draws logical conclusions from the given set of 
design data and constraints and then applies a set of constraint 
derivation rules to relevant design objects. For example, based on a 
logical conclusion that CMOS and bipolar transistors belong to the 
same category of devices, a specific constraint rule may be applied 
to both CMOS and bipolar transistors, even in the case where the 
derivation rule was only defined for one transistor type. This 
functionality permits the development of higher-level constraint 
derivation methods and offers a necessary and important level of 
abstraction required for multi-technology analog reuse. 

3.4 Constraint Transformation 
Constraint transformation is an essential component of the design 
flow since it translates higher-level constraints into a set of 
equivalent lower-level constraints (top-down constraint 
transformation) and vice versa (bottom-up constraint 
transformation) [5]. Lower-level constraints created by top-down 
constraint transformations will further constrain the available 
solution space, thus reducing the number of global degrees of design 
freedom. Additionally, more than one transformation might be 
possible from a given higher-level constraint resulting in different 
sets of lower-level constraints. 
Any transformation process must guarantee a complete and 
unambiguous transformation result, otherwise the related constraint 
problem cannot be solved. The transformation depends directly on 
the underlying physical, electrical, design methodical or commercial 
problem, and hence, it is specific to each constraint type. The same 
applies to bottom-up constraint transformation, i.e. inverse 
transformation, which must be defined for constraint verification 
purposes (see Section 3.5). 
A transformation relation can only be defined for simple constraints 
and their specific context. Complex constraints represent 
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combinations of simple and other complex constraints. The relation 
of sub-constraints specific to each complex constraint type is not 
affected by the transformation since the transformation of simple 
constraints only focuses on their specific context. This statement is 
made here since it is assumed that any acceptable top-down 
transformation will only produce lower-level constraints that do not 
affect higher-level constraints. In the case where lower-level 
constraints affect higher-level constraints, design iterations are very 
likely to occur (i.e., the design steps must be reversed and then 
guided in a different direction).  
The decision as to which transformations to use is context-
dependent. For example, suppose the functional specification results 
in a specific maximum IR-drop between a chip IO pad and a 
specific instance terminal in a sub-cell. Assuming that the current 
flow in the respective wire connection is known and constant, 
application of a forward transformation to this top-level constraint 
may result in pad and sub-cell placement constraints and a 
corresponding set of routing constraints. While considering all other 
connected constraint problems as well, a constraint-driven design 
algorithm can then decide whether the placement in this context is 
more critical to deal with than the routing and act accordingly. For 
instance, in case the placement is fixed, the final transformation of 
the top-level IR-drop constraint would then yield a set of routing 
constraints and local degrees of design freedom (i.e., routing design 
parameters such as wire length, layer, wire width). These can then 
be used by a routing algorithm to find a suitable interconnect layout. 

3.5 Constraint Verification 
Constraint verification comprises the verification (1) whether a set 
of existing constraints is fulfilled for a design and (2) if a given set 
of constraints raises mutual conflicts. Constraint verification is an 
essential component of the constraint-driven design flow. With the 
assumption that the IC application functionality is fully specified 
and all required top-level constraints are defined, constraint 
verification fills the existing verification gap (see Section 2.4). Thus, 
it ensures correct application functionality as well as design quality, 
reliability and robustness. It must be noted here that the term 
“constraint verification” as used in this paper does not include 
checks for the usefulness and applicability of a given top-level 
constraint.  
As mentioned earlier, a rich set of constraint types must be 
considered during the design of analog ICs. The majority of these 
constraints are complex constraints whose fulfillment cannot be 
verified with conventional verification approaches. This is due to 
the fact that all of today’s verification approaches require one 
specific verification tool or one embedded verification algorithm for 
each constraint type to be verified. Clearly, conventional constraint 
one-to-one verification approaches (one verification algorithm for 
one constraint type) are in general not feasible for the complete 
verification of analog IC designs. Making matters worse, many 
complex constraint types and corresponding constraints are 
unknown at the beginning of the design. 
The verification of simple constraint types (e.g., delay, IR-drop, 
placement orders) requires specialized verification algorithms that 
are embedded into verification tools and frameworks. In general, 
complex constraints should not be verified by specialized one-to-
one verification algorithms due to the inflexibility and in-
extensibility of these approaches.  

The first approach to address the verification problem for complex 
constraints, the meta-verification approach, was introduced in [3]. 
The core idea in meta-verification is that each complex verification 
problem can be divided into smaller and usually independent 
verification problems for simple constraints, which in turn can be 
verified using existing verification algorithms. The definition of 
meta-verification tasks can reference design data and access 
functionality, as well as verification functionality that is provided by 
external design and verification tools (Fig. 3). The meta-verification 
framework creates an abstraction layer around multiple design and 
verification tools, and it manages correct execution of the defined 
meta-verification tasks. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Meta-Verification of complex constraints. A 
combination of specialized tool functions (A1…An, B1…Bm, etc.) 
are offered by multiple design and verification tools (A…Z) to 
define high-level verification tasks for each complex constraint 
[3]. 

The CLP-based verification approach in [3] can handle independent 
as well as coupled, i.e. dependent verification problems. It also 
allows the detection of mutual constraint conflicts by drawing 
logical conclusions from the given constraint and design data 
information.  
The definition of verification tasks for a meta-verification system is 
usually done as follows. First, the verification task must be defined 
and formalized by the designer of the constraint rule set. Second, the 
formalized verification task is then coded in the language of the 
meta-verification system. The constraint rules are subsequently used 
by circuit and layout designers to perform the verification tasks, 
whereas the application of these rules may depend on the context-
specific verification problem. 
Finally, it has to be noted that constraint verification is divided into 
static and dynamic constraint verification, based on the constancy of 
the constraint and design data. For example, any sign-off 
verification of an IC design must be based on constant design and 
constraint data, hence, static constraint verification is applied in this 
case. Nevertheless, constraint-driven design algorithms can also use 
constraint verification for specific “what-if” analyses. Since these 
algorithms can change design and constraint data during their 
analyses and during the design step, the related constraint 
verification is based on dynamic data. Hence, the latter case 
represents dynamic constraint verification. Both, static and dynamic 
constraint verification can be applied to either the full set of 
constraint and design data, or to a context-specific subset. 
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3.6 Constraint Sensitivity Analysis 
Constraint sensitivity analysis (CSA) [9] is very helpful in allowing 
designers to understand the impact of local design decisions and to 
find root causes in case compliance requirements cannot be met 
with the given set of constraints. CSA determines the context-
specific sensitivity of design parameters in relation to their assigned 
constraints. The sensitivity information can be either visualized or it 
can be used to drive and support design decisions. Sensitivity 
analysis is the key to the power of decision analysis in situations 
where the influence of design parameters is not known precisely, 
since it considers the (dynamic) context in which constraints apply. 

4. IMPACT ANALYSIS 
Next we discuss the impact of a constraint-driven approach on the 
overall IC design flow, the core design of EDA algorithms, and the 
required paradigm adjustments for analog physical design 
approaches. 

4.1 Impact on Design Flow 
A holistic approach to analog design automation requires several 
new design flow components (hereafter referred to as 
“components”) that enable a constraint-driven IC design. Essential 
components of this holistic flow (constraint management, 
derivation, transformation and verification) have been discussed in 
detail in Sections 3.2 - 3.5. Other components, such as constraint 
sensitivity analysis (see Section 3.6) and constraint visualization, are 
not essential but can improve constraint-driven design. The impact 
of essential and non-essential components on the analog IC design 
flow will be discussed in this section. 
First, all essential design flow components must be available at any 
stage during IC design. Essential components complement existing 
standard design flow steps (e.g., circuit simulation, schematic entry, 
floorplanning, placement, etc.), and hence, they must run 
concurrently to each of the design steps.   
Next, the derivation, application and usage of constraints must be 
done comprehensively throughout the process. Any breach in the 
constraint application flow will most likely lead to inconsistent 
design and constraint data. Conclusive constraint verification would 
then be impossible.  
Significant additional effort must be expended to develop and verify 
the initial set of efficient constraint derivation, constraint deduction 
and constraint verification rules. The practical application of meta-
verification has revealed that the sequence in which simple sub-
constraints of a complex constraint are executed is likely to have 
tremendous impact on the required verification time. Thus, 
verification rule optimization requires a deep understanding of the 
underlying verification task. For example, suppose there are short-
running and long-running sub-verification tasks defined in a specific 
meta-verification rule. If feasible for the specific verification task, it 
may be beneficial to shift all long-running sub-verification tasks at 
the end of the rule so they are executed after the short-running sub-
verification tasks. Late sub-verification tasks in a meta-verification 
rule may not be executed if an earlier call to a possibly short-
running sub-verification task already revealed constraint violations, 
thus preventing unnecessary and potentially long-running sub-
verification tasks from being executed. 
Nevertheless, practical experiences with meta-verification rule 
development [3] has revealed that the required initial effort is very 

similar to the effort needed for the development of DRC and LVS 
rule sets. The reuse of constraint derivation as well as meta-
verification rules is very simple and efficient since, in general, data 
and rule abstraction can be used for technology, design and 
constraint data. 
The constraint management component must offer flexible, context-
sensitive, and fast access to constraint data for any affected design 
and verification algorithm. Contrary to conventional constraint 
management solutions, it is essential now to consider real and 
virtual design hierarchies and to be capable of propagating 
constraints within any real or virtual design hierarchy tree (see 
Section 3.2).  
The constraint management system must be capable of managing 
simple and complex constraints. Presently, most commercially 
available constraint management systems keep design and constraint 
data separate from each other. The databases for design data and 
constraint data must be unified since constraint data management is 
an integral part of the constraint-driven design flows backbone, and 
hence, is as important as the management of design data.  
It is needless to say that any suitable constraint-management 
component must guarantee constraint consistency at low-level 
(keeping the constraint and the constraint owning design object in 
sync). It must also consider the various high-level requirements of 
design data management systems. The latter requirement especially 
can lead to significant data consistency issues if design data and 
constraint data cannot be bound into one data set that can be treated 
as a single data entity. 
As mentioned earlier, DRC and LVS are only capable of covering 
technological constraints required to ensure manufacturability. 
Constraint verification must thus complement the LVS check and 
other specialized checks (e.g., timing checks) required for sign-off 
verification in order to guarantee the intended circuit functionality. 
Automatic constraint verification offers much greater verification 
coverage and reproducibility than manual verification. The 
overhead for meta-verification is often negligible when compared to 
the required run-time of the referenced verification tools for sub-
verification tasks [3]. In our experience, practical application of 
automatic constraint verification for automotive ICs has shown that 
the benefits of achievable design verification quality clearly exceed 
the required effort for the development and maintenance of meta-
verification rules.  
The required overhead for static constraint verification is typically 
significantly smaller than for dynamic constraint verification. The 
additional overhead in the latter case is primarily caused by the 
cumulative data latency that occurs if design and constraint data are 
frequently accessed by the verification framework. Hence, low-
latency data access can significantly speed-up dynamic constraint 
verification. For static constraint verification, design and constraint 
databases are usually accessed only once during initialization, thus 
avoiding data-access latency issues. 

4.2 Impact on Design Algorithms 
While firsthand experience with constraint verification algorithms 
already exists, the application of the new design flow components 
for constraint-driven design generation is rather new and hence 
experience is still limited. Nevertheless, in this section we will 
discuss the impact constraint-driven design has on design 
algorithms, including design planning, and we introduce several 
new and powerful concepts for constraint-driven IC design. While 
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some of these design approaches are new, others, such as the 
application of the constraint sensitivity analysis or the introduction 
of standardized algorithm interfaces, have already matured and thus 
have led to new insights into the analog design problem. 
Present design algorithms are generally built for a special purpose 
(e.g., specialized design algorithms that focus on floorplanning, 
placement, etc.). While this may result in several benefits, such as 
fast execution time, this also brings several significant limitations 
that prevent further advances in analog design automation. 
Throughout this section, present design algorithms are denoted as 
“conventional algorithms” and the required new class of constraint-
driven design algorithms as “constraint-driven algorithms”. 
A primary limitation in conventional algorithm design is the narrow 
focus on fast, but low-level execution without an implementation of 
standard data interfaces. These interfaces create a layer around the 
core algorithm. This layer is required to connect a design algorithm 
to the design and constraint databases as well as to other 
concurrently executed design algorithms. Thus, all design 
algorithms share a common understanding of design and constraint 
data. Standard data and communication interfaces are, hence, an 
integral part of any constraint-driven design and constraint 
verification algorithm.  
Standard algorithm interfaces enable the modularization and 
abstraction of constraint-driven design algorithms. The abstraction 
of their algorithmic work greatly improves algorithm reuse and 
flexibility because a single algorithm can be used to solve similar 
design tasks (this concept is similar to algorithm abstraction 
available in various programming languages). In turn, this flexibility 
enables the construction of high level constraint-driven algorithms 
that utilize modularized low-level design algorithms in order to 
perform specific design tasks on a higher level of abstraction.  
High-level design planning algorithms greatly benefit from the 
constraint sensitivity analysis (CSA, see Section 3.6). First, this due 
to the determination of relevant design parameters and constraints in 
a specific design context which provides a design-step-specific 
limitation of constraints. Second, CSA can be used as a method to 
identify design task parallelism by searching for temporary groups 
of design variables and constraints that are either not or only very 
weakly coupled with each other. For these groups, the next design 
step can then be performed independently of each other. Note that 
the independency of design variable and constraints in these groups 
may only be temporary, and hence, may not exist anymore after a 
design step is completed. 
A dynamic hierarchy of concurrent design tasks can thus be 
established in which all affected design algorithms perform 
functional transformations (instead of conventional distinct design 
steps). These transformations are governed by either a fixed 
execution regime or by more flexible approaches such as high-level 
design planning algorithms. 
Another major advantage in the construction of higher-level design 
algorithms is the possible dynamic consideration of new constraint 
types without the need to introduce major low-level algorithm and 
tool changes. High-level design strategies can now be used to solve 
low-level design problems by eliminating degrees of design freedom 
in a top-down methodology. This approach typically leads to better 
design results because low-level constraints are now less likely to 
break high-level constraints (see Sections 3.3, 3.4).  

4.3 Paradigm Adjustments for Analog Design 
       Approaches  
The consideration of a rich set of constraint types and a 
corresponding large number of constraints is tightly linked to the 
analog IC design problem. As mentioned earlier, all constraints must 
be defined and used consistently. Constraint derivation, 
transformation and verification are now mandatory design flow 
components that must be used throughout IC design. A new core 
component of the design flow is the constraint management system 
that must be capable of handling simple and complex constraints 
across multiple design steps, as well as across multiple design and 
verification tools.  
As can be seen in Fig. 2, the analog IC design flow exhibits 
overlapping design steps to account for concurrent design problems. 
In order to address the tight interaction between these design steps 
and to consider the concurrent nature of the analog design problem, 
all artificially introduced boundaries between existing design steps 
must be gradually dissolved. The removal of degrees of design 
freedoms must occur gradually rather than abruptly in order to keep 
them available for design optimization as long as possible. 
Comprehensive constraint verification is often more important than 
the application of analog design generation algorithms [8]. Since 
analog IC designs have a rather small number of devices, their 
layout generation can still be done semi-automatically. In contrast, 
the constraint verification requires automatic approaches due to the 
size and complexity of the related analog verification problem in 
modern IC designs. 
The reuse of analog layout often fails because small differences 
between designs may prevent a direct reuse. This is because all 
degrees of design freedom were already removed from the layout. 
However, the consistent definition of constraints between design 
objects (e.g., sub-circuits) allows design reuse of structural 
information that includes constraints. The structural information 
represents the most valuable part of the design knowledge, and 
hence enables more flexible reuse since relevant degrees of design 
freedom are not fixed yet. In that respect, analog design automation 
should address low-level layout generation and high-level design 
planning as discussed in Section 4.2. 

5. OPEN PROBLEMS AND OUTLOOK 
Despite the recent advances in constraint-driven design for analog 
IC design, there are several problems that need to be addressed in 
the near future to further broaden the applicability of analog design 
automation approaches. 
Methods to check the completeness of a set of constraints and 
constraint (meta-)verification rules, as well as the achieved 
verification coverage, must be developed to guarantee IC 
functionality, reliability, robustness, etc. The set of meta-verification 
rules must be optimized to allow time-efficient constraint 
verification. Today, such optimization is done manually but 
automatic rule-optimization methods should be developed to reduce 
that burden. 
As mentioned earlier, constraint sensitivity analysis is a powerful 
tool to drive and support high- and low-level design decisions, and 
to develop high-level design algorithms that allow more gradual IC 
design. The scalability of existing constraint-sensitivity analysis 
approaches is still limited to a few thousand design variables, which 
is already sufficient for mid-sized analog blocks with typically in 
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the range of several hundreds of analog devices. Application to top-
level design problems requires development of new complexity 
reduction methods, as well as fast constraint sensitivity calculation 
methods to improve scalability. 
Key factors for next generation analog design automation are design 
techniques that reduce the degree of design freedom gradually rather 
than abruptly while performing several conventional design steps 
concurrently. This will require that the current artificial boundaries 
between conventional design steps be (gradually) dissolved in the 
future. While breaking with conventional design approaches, this 
paradigm change could lead to a new class of (higher-level) design 
algorithms that bring us one step nearer to the goal of full-scale 
analog design automation. 
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