

Constraint-driven Design — The Next Step Towards
Analog Design Automation

Göran Jerke
Robert Bosch GmbH
Reutlingen, Germany

www.bosch.com
goeran.jerke@ieee.org

Jens Lienig
Dresden University of Technology

Dresden, Germany
www.ifte.de

jens@ieee.org

ABSTRACT
The design of analog circuits has historically been a time
consuming, manual task. The stringent constraints that must be
considered simultaneously make the task particularly difficult, and
are a major reason analog design has often not been automated. We
believe that constraint-driven design is a prerequisite to analog
design automation as it enables expert knowledge to be included in
the design flow. This paper provides an introduction to the concept
of constraint-driven physical design. First, we identify the major
challenges in analog physical design, which we show are mostly
constrained-related. We then provide an overview of the essential
components of a constraint-driven design methodology. Finally, we
discuss the impact this approach has on the analog design flow and
design algorithms.

Categories and Subject Descriptors
B7.2[Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Verification.

Keywords
Analog design, physical design, layout, constraints, constraint-
driven design

1. INTRODUCTION
While physical design automation of analog IC design has seen
significant improvement in the past decade, it has not advanced at
nearly the rate of its digital counterpart. This shortfall is primarily
rooted in the analog IC design problem itself, which is significantly
more complex even for small problem sizes, and which lacks a
sufficiently comprehensive and exact descriptiveness with
conventional approaches [1][6][10].
The quality of a design result is generally determined by the degree
to which compliance constraints have been met and pre-defined
optimization goals achieved. Due to the lack of identical expression
and interpretation of design constraints in the analog-design flow

context, most of the constraints in analog designs are specified and
considered manually by expert designers (expert knowledge).
Furthermore, analog constraints are often used implicitly (i.e., based
on a designer’s experience) rather than being explicitly defined,
which prevents their effective use in design automation. Progress in
physical design automation for analog ICs is urgently needed due to
increasing design sizes and aggravating challenges such as more
stringent reliability and robustness requirements, as well as a rapidly
widening verification gap.
At present, analog circuits are typically designed using the
schematic-driven layout (SDL) methodology, which consists of an
interactive design style and a subsequent verification step. It is
widely believed that this design style will be replaced one day by
full-scale “analog design automation” similar to that of today’s
digital circuits. Rather than announcing this long-awaited solution,
we present an approach we believe represents not only a realistic
“in-between step” but also a necessary precondition (Fig. 1).

Figure 1. The evolution of analog physical design methodologies
towards the goal of a fully automated analog design flow.

We believe the ultimate goal of fully automated analog design
(analog design automation) can only be achieved if the current
schematic-driven design paradigm evolves into a constraint-driven
design. Our approach is based on the belief that we first need a
methodology that allows for automatic inclusion of expert
knowledge in the form of constraints, which too must be verified
automatically. Only then we will be able to tackle the task of analog
layout synthesis. In other words, we think that the abilities of
“analyzing” and “verifying” are a precondition for “synthesizing”
[11].
This paper provides an introduction to the concept of a holistic
constraint-driven physical design approach for arbitrary ICs in
general, and for analog ICs in particular. Thereby, we identify key
similarities and differences between the physical design of analog

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’09, March 29–April 1, 2009, San Diego, California, USA.
Copyright 2009 ACM 978-1-60558-449-2/09/03…$5.00.

Polygon
Pushing

Technology

Schematic

1980 1990 2000

DRC

LVS

Schematic-driven
Layout (SDL)

Constraints / Expert Knowledge

Constraint-driven
Design

Analog Design
Automation

2010

Constraint
Verification

Verification of …

75

Professor Lienig
Schreibmaschinentext
© ACM 2009. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings 2009 International Symposium on Physical Design (ISPD´09), Dan Siego, CA, 2009, pp. 75-82. http://doi.acm.org/10.1145/1514932.1514952

Professor Lienig
Notiz
Unmarked festgelegt von Professor Lienig

and digital IC design, and the corresponding challenges, which we
show are primarily constraint-related.
We then give an overview of the constraint-driven design flow and
its essential components. We discuss the fundamental components
required in a constraint-driven analog design methodology, such as
constraint representation, management, transformation, and
verification. We then present the impact this methodology has on
the overall IC design flow, the core design of EDA algorithms, and
the required paradigm adjustments needed for analog physical
design approaches. Our paper concludes with an outlook of open
problems towards the final goal of analog design automation.

2. PROBLEM DESCRIPTION
2.1 The Design Problem
In general, any (IC) design problem represents a complex and
constrained optimization problem. The degrees of design freedom
linked to the optimization problem span a multi-dimensional
solution space which is (at least partially) constrained by the given
global design constraints. A feasible solution for a specific design
problem is obtained by sequentially removing all degrees of design
freedom while traversing and reducing the solution space and
considering all context-relevant constraints and application profiles.
This reduction is done by sequentially transforming functional
representations with many degrees of design freedom into
equivalent ones with fewer degrees of design freedom. For example,
using suitable methods one may transform a given functional
specification into a netlist (netlist = functional representation of the
given specification), which is then subsequently transformed into a
floorplan, a placement order, a wired layout and finally a physical
mask layout which contains no further degree of design freedom
(physical layout = functional representation of the given netlist).
Several transformations (design steps) can be active at the same
time, especially for analog IC designs (Fig. 2). The strategy of how
and when to remove a degree of design freedom during the design
phase depends on several context-specific factors. Among others,
factors may be static or dynamic in nature and may include the type
of IC application, its usage profiles, reliability and robustness
requirements, as well as the current problem situation in a design
phase with its linked constraints.

Figure 2. Simplified design flow for analog IC design where steps
are typically overlapping and tightly linked. Multiple design steps
can be active at the same point of time [11].

2.2 Constraints vs. Optimization Goals
In general, design constraints must be fulfilled whereas design goals
may be fulfilled. An optimization goal that must be fulfilled hence

represents a constraint, and must be treated as such. On the other
hand, if we have a given design constraint that may be fulfilled, it
should then be considered an optimization goal. The design goal is
to achieve design results that fulfill all given constraints and which
offer the highest level of achievement toward pre-defined
optimization goals.

2.3 Constraint Classification
Each single design constraint (hereafter, constraint) must belong to
at least one corresponding design object. For example, an IR-drop
constraint belongs to at least two net terminals of the same net; or
the chip area belongs to the ICs top cell, and so forth.
A constraint can be given in either an implicit or explicit form.
Implicit constraints may be given as plain textual notes or they may
arise from assumptions intrinsically built into circuit descriptions or
design algorithms. Examples of such constraints are the placement
requirements of differential pair transistors – they must be placed
symmetrically in order to maximize device matching. While this is
obvious to any layout designer, the inclusion of such complex rules
into both layout and verification tools is often not possible using
current methodologies. Hence, due to its often non-formal nature,
implicit constraints cannot be utilized for any type of controlled
constraint-driven design. On the other hand, explicitly given
constraints are accessible to design algorithms and thus are a
primary requirement for any constraint-driven design flow.
Each constraint is assigned a specific constraint type that represents
a classification property for the same class of constraints. Constraint
types have a clearly defined unit that belongs to the physical,
electrical, mechanical, mathematical or geometrical domain
(domain), or a combination of domains (e.g., the constraint type
“IR-drop” has the unit Volt, the type “Delay” the unit Seconds,
etc.). The relevance and impact of a constraint type strongly depend
on the specific design context.
Constraint types are generally assigned to one of the following four
categories: (1) technological constraints necessary for
manufacturing, (2) functional constraints that guarantee the intended
IC functionality, (3) design-methodical constraints that arise from
the attempt to reduce design complexity and to guide
transformations, and (4) commercial constraints that, among others,
arise from chip area or packaging requirements.
Furthermore, constraint types are divided into so called “simple”
and “complex” constraint types. Constraints that belong to a
complex constraint type are conditional and linked with other
constraints of any type. Constraints belonging to a simple constraint
type are not linked at all. For example, the constraint (IR-
drop(pin_A,pin_B)<0.1V) represents a simple constraint
whereas a constraint (IR-drop(pin_A,pin_B)<0.1V AND net
topology must be star-shaped) represents a complex
constraint because the second term “net topology” is linked to the
first term “IR-drop”. This distinct consideration of simple and
complex constraint types is a prerequisite for a constraint-driven
design flow implementation.

2.4 The Gap between Analog and Digital
 Design Automation
Analog IC designs often contain only a small number of devices as
compared to digital IC designs. Nevertheless, the effort required to
design analog function modules often matches or even exceeds the

Physical
Verification

Specification

Circuit Design

Place
and Route

Time

Physical
Realization

Degree of
Design Freedom

100 %

Simulation

Floorplanning, D
evic

e Generation

Design Flow

0 %

76

effort for the digital modules. This is mainly due to a much richer
set of constraints, typically complexly and tightly linked, that must
be considered simultaneously and which may span several domains
(Section 2.3).

On average, each design object (instance, net, path, etc.) in an
analog IC design must comply with a larger and more
comprehensive set of constraints to fulfill its intended function, as
compared to digital design. The primary reason for this observation
is the higher level of functional abstraction offered in digital
designs. This allows more robust operation requiring fewer
constraints to guarantee the intended function, as compared to the
quasi low-level mode of operation in analog designs.

Furthermore, many (low-level) constraints and even constraint types
may yet be unknown when the analog design process begins, due
the overwhelmingly complex nature of the corresponding design
problem. This renders automatic top-level design planning for
analog IC designs nearly impossible. It is one of the reasons that at
present highly skilled design engineers are required to perform top-
level design planning manually.

This constraint-related problem also makes algorithm and tool
development for analog IC design much more difficult, because the
number of specific design algorithms may increase with each new
simple constraint type. Considering today’s conventional design-
algorithm development approach (one constraint type and one
algorithm to handle it), this approach falls short when it comes to
new complex constraint types which vastly outnumber simple
constraint types. This represents one of the primary reasons why
analog design automation is lagging behind its digital counterpart
and why this gap is growing.

Another important reason for the design gap is rooted in the level of
completeness and consistency that can be applied theoretically to
the consideration of constraints during IC design. Due to the above-
mentioned possibility to use a comparably small set of well-defined
and well-treated constraint types for digital designs, related present-
generation design algorithms and design tools can offer consistent
and seamless design solutions in the digital domain.

Since comprehensive and unified constraint description model are
not used in today’s analog design algorithms and design tools, many
analog-centric constraint types must currently be considered
manually. Their consideration during design is, hence, mostly
inconsistent and non-comprehensive.

Any inconsistent or non-comprehensive consideration of constraints
and constraint types widens the existing verification gap. This gap
exists since DRC and LVS cannot fully include the verification of
all (possible) constraints and constraint types. A tremendous amount
of research effort has already been expended for the tailored
consideration and verification of mostly simple constraint types
(e.g., timing, IR-drop). Nevertheless, a complete and unified
approach is still missing that is capable of dealing with all simple
and complex constraints during the entire design and verification
phase.

Another difference between analog and digital IC designs can be
found in the way the functional transformations, i.e., the design
steps, are linked and carried out. While most design steps in digital
IC designs are separated from one other, the design steps for analog
IC designs are typically overlapping and tightly linked (see Fig. 2).
For example, device generation, floorplanning, placement and

global routing usually occur simultaneously. Thus, any analog-
oriented physical design tool must consider all requirements at the
same time. This greatly reduces the impact of EDA point tools, such
as pure analog placement and custom routing tools, in favor of a
constraint-driven design flow.

To address the current shortcomings discussed in this section, a
holistic design approach is required. Its cornerstones will be
discussed in detail in Sections 3 and 4.

3. COMPONENTS OF A CONSTRAINT-
 DRIVEN DESIGN FLOW
A design flow that considers all relevant constraints in a consistent
and comprehensive manner is subsequently denoted as a constraint-
driven design flow. To achieve this, several distinctive design flow
components must be available and special requirements must be
met.
We provide an overview of essential components of an analog
constraint-driven design flow in this chapter. Specifically, the
fundamental concepts related to a constraint-driven design
methodology, including constraint representation and management,
generation of new constraints (constraint derivation) and constraint
verification are discussed.

3.1 Constraint Representation
As mentioned earlier in Section 2.3, constraints must be given in an
explicit form to be applied in an automated constraint-driven design
flow. From a formal point of view, constraints define relations
between instances of a set of either free or fixed design variables. A
relation between independent variables represents a simple
constraint. Relations between dependent variables can be mapped
into combinations of simple constraints. This allows the definition
of high-order constraints which represent complex constraints [3].
Additionally, all constraints and all related design parameter data
must be uniformly represented in an abstract form while preserving
constraint type information. The conversion of constraints into a
uniform representation must be complete and unambiguous.
Uniform representations, such as CLP form (CLP: Constraint Logic
Programming) [2][4], enforce a common understanding of
constraints and constraint types among all involved design and
verification tools. This is a primary requirement to enable the
construction of multilateral design and verification algorithms
necessary to address the analog constraint-driven design problem
(see Section 4.2).
The relation between design variables, representing a constraint, is
either linear or non-linear. For instance, the electrical point-to-point
resistance between two net terminals in a layout decreases linearly
with an increasing wire height, whereas wire capacitance increases
non-linearly due to fringe field effects.
Design variables are given as either nominal values, worst-case
values or as statistical values depending on the applied design style
(nominal design, safety-critical worst-case design, statistical design,
respectively). Hence, the representation of constraints must
necessarily consider both the design style and the nature of a design
variable.

77

3.2 Constraint Management
The task of constraint management is to administer the storage for
all constraint data while synchronizing the link between constraints
and the design data [7]. It also enables context-specific access to
constraints for design and verification algorithms.
The management system is responsible for keeping constraints up-
to-date, which requires close interaction with design data
management systems and the design algorithms that manipulate
constraints. The system must guarantee the consistency of constraint
information while corresponding design data is manipulated.
Constraint-driven design algorithms require fast access to relevant
constraint information. Access must be context-sensitive, where the
context for example may represent a local cell in the design
hierarchy, a temporary result database of a filter or search operation,
etc.
Constraint management also incorporates the propagation of
constraints (1) in the existing design hierarchy, (2) across the
borders of design objects and design steps, as well as (3) within a
virtual design hierarchy. All three propagation types strongly
depend on the constraint type and on the specific single constraint,
and may be applied simultaneously. Furthermore, constraint
propagation can be performed as either static or dynamic
propagation. Static propagation assigns properties directly and
permanently to design objects whereas dynamic propagation assigns
constraints to design objects “on the fly”. In terms of constraint
consideration, the static and the dynamic propagation methods are
equivalent.
The propagation within the existing design hierarchy can be either
performed top-down or bottom-up. For instance, a net shielding
constraint may be assigned from the chips IO pad down to a specific
instance terminal in a sub-cell. The shielding constraint is then
propagated to all nets in the hierarchy until the final terminal is
reached. A cell spacing constraint assigned to a cell object is to be
propagated as a bottom-up constraint if EMC requirements prevent
critical cells to be placed too close to each other.
Cross-border propagation assigns constraints across a set of design
objects or across several design steps. For instance considering the
first case, top-down propagation of a net-shielding constraint may
continue after it has passed a resistor element during the net
traversal. The second case may be viewed as a global scope in
which a specific constraint is active.
Top-down and bottom-up propagation are required to be performed
simultaneously while traversing a propagation tree representing a
virtual design hierarchy. For instance, if a chip IO pad is located in a
sub-hierarchy cell, then net-shielding constraints must be
propagated to the relevant top-level cells and then down-propagated
to the final instance terminals. Clearly, this propagation type
strongly depends on the constraint type and on the specific design
objects linked to a single constraint of this type. Constraint
propagations are often applied in virtual design hierarchies.

3.3 Constraint Derivation
The process of generating new constraints is denoted as constraint
derivation when performed using either a functional specification or
a set of existing design data while performing a design step. In
principle, the derivation process can create new constraints
belonging to the technological, functional, design methodical, or
commercial constraint type category (see Section 2.3).

The derivation process is based on (1) direct derivation rules, (2)
deduction processes by using a logic calculus or (3) the designer’s
knowledge. Constraint derivation based on circuit simulation and
design verification results can be seen as a special type of the rule-
based derivation method. Strictly speaking, the constraint
transformation discussed in the next section is a form of indirect
constraint derivation due to its transformation-based creation of new
constraints during the design process (see Section 3.4).
In general, constraint derivation processes can be performed on
either constant (e.g., a netlist) or non-constant (e.g., flexible wire
width) design data. A derivation based on constant design data does
not change the design data it uses, whereas a derivation based on
non-constant design data can modify or add design data during the
derivation process. This differentiation is important because in the
case of non-constant design data, dynamic feedback loops are likely
to be created by the design algorithms that need to be considered.
This feedback-loop problem and relevant applications are discussed
in more detail in Section 4.2.
The derivation of constraints using a functional specification is
based on constant design data, since the specification itself is
normally fixed. Similarly, a design step can fully or partially make
use of constant design data. For instance, if the derivation rule “if
(condition) then assign constraint C to design object X” will not
modify design object X, then the derivation is based on constant
design data.
Deduction-based constraint derivation can be seen as a high-level
extension of rule-based derivation methods. Here, a so-called
reasoning system draws logical conclusions from the given set of
design data and constraints and then applies a set of constraint
derivation rules to relevant design objects. For example, based on a
logical conclusion that CMOS and bipolar transistors belong to the
same category of devices, a specific constraint rule may be applied
to both CMOS and bipolar transistors, even in the case where the
derivation rule was only defined for one transistor type. This
functionality permits the development of higher-level constraint
derivation methods and offers a necessary and important level of
abstraction required for multi-technology analog reuse.

3.4 Constraint Transformation
Constraint transformation is an essential component of the design
flow since it translates higher-level constraints into a set of
equivalent lower-level constraints (top-down constraint
transformation) and vice versa (bottom-up constraint
transformation) [5]. Lower-level constraints created by top-down
constraint transformations will further constrain the available
solution space, thus reducing the number of global degrees of design
freedom. Additionally, more than one transformation might be
possible from a given higher-level constraint resulting in different
sets of lower-level constraints.
Any transformation process must guarantee a complete and
unambiguous transformation result, otherwise the related constraint
problem cannot be solved. The transformation depends directly on
the underlying physical, electrical, design methodical or commercial
problem, and hence, it is specific to each constraint type. The same
applies to bottom-up constraint transformation, i.e. inverse
transformation, which must be defined for constraint verification
purposes (see Section 3.5).
A transformation relation can only be defined for simple constraints
and their specific context. Complex constraints represent

78

combinations of simple and other complex constraints. The relation
of sub-constraints specific to each complex constraint type is not
affected by the transformation since the transformation of simple
constraints only focuses on their specific context. This statement is
made here since it is assumed that any acceptable top-down
transformation will only produce lower-level constraints that do not
affect higher-level constraints. In the case where lower-level
constraints affect higher-level constraints, design iterations are very
likely to occur (i.e., the design steps must be reversed and then
guided in a different direction).
The decision as to which transformations to use is context-
dependent. For example, suppose the functional specification results
in a specific maximum IR-drop between a chip IO pad and a
specific instance terminal in a sub-cell. Assuming that the current
flow in the respective wire connection is known and constant,
application of a forward transformation to this top-level constraint
may result in pad and sub-cell placement constraints and a
corresponding set of routing constraints. While considering all other
connected constraint problems as well, a constraint-driven design
algorithm can then decide whether the placement in this context is
more critical to deal with than the routing and act accordingly. For
instance, in case the placement is fixed, the final transformation of
the top-level IR-drop constraint would then yield a set of routing
constraints and local degrees of design freedom (i.e., routing design
parameters such as wire length, layer, wire width). These can then
be used by a routing algorithm to find a suitable interconnect layout.

3.5 Constraint Verification
Constraint verification comprises the verification (1) whether a set
of existing constraints is fulfilled for a design and (2) if a given set
of constraints raises mutual conflicts. Constraint verification is an
essential component of the constraint-driven design flow. With the
assumption that the IC application functionality is fully specified
and all required top-level constraints are defined, constraint
verification fills the existing verification gap (see Section 2.4). Thus,
it ensures correct application functionality as well as design quality,
reliability and robustness. It must be noted here that the term
“constraint verification” as used in this paper does not include
checks for the usefulness and applicability of a given top-level
constraint.
As mentioned earlier, a rich set of constraint types must be
considered during the design of analog ICs. The majority of these
constraints are complex constraints whose fulfillment cannot be
verified with conventional verification approaches. This is due to
the fact that all of today’s verification approaches require one
specific verification tool or one embedded verification algorithm for
each constraint type to be verified. Clearly, conventional constraint
one-to-one verification approaches (one verification algorithm for
one constraint type) are in general not feasible for the complete
verification of analog IC designs. Making matters worse, many
complex constraint types and corresponding constraints are
unknown at the beginning of the design.
The verification of simple constraint types (e.g., delay, IR-drop,
placement orders) requires specialized verification algorithms that
are embedded into verification tools and frameworks. In general,
complex constraints should not be verified by specialized one-to-
one verification algorithms due to the inflexibility and in-
extensibility of these approaches.

The first approach to address the verification problem for complex
constraints, the meta-verification approach, was introduced in [3].
The core idea in meta-verification is that each complex verification
problem can be divided into smaller and usually independent
verification problems for simple constraints, which in turn can be
verified using existing verification algorithms. The definition of
meta-verification tasks can reference design data and access
functionality, as well as verification functionality that is provided by
external design and verification tools (Fig. 3). The meta-verification
framework creates an abstraction layer around multiple design and
verification tools, and it manages correct execution of the defined
meta-verification tasks.

Figure 3. Meta-Verification of complex constraints. A
combination of specialized tool functions (A1…An, B1…Bm, etc.)
are offered by multiple design and verification tools (A…Z) to
define high-level verification tasks for each complex constraint
[3].

The CLP-based verification approach in [3] can handle independent
as well as coupled, i.e. dependent verification problems. It also
allows the detection of mutual constraint conflicts by drawing
logical conclusions from the given constraint and design data
information.
The definition of verification tasks for a meta-verification system is
usually done as follows. First, the verification task must be defined
and formalized by the designer of the constraint rule set. Second, the
formalized verification task is then coded in the language of the
meta-verification system. The constraint rules are subsequently used
by circuit and layout designers to perform the verification tasks,
whereas the application of these rules may depend on the context-
specific verification problem.
Finally, it has to be noted that constraint verification is divided into
static and dynamic constraint verification, based on the constancy of
the constraint and design data. For example, any sign-off
verification of an IC design must be based on constant design and
constraint data, hence, static constraint verification is applied in this
case. Nevertheless, constraint-driven design algorithms can also use
constraint verification for specific “what-if” analyses. Since these
algorithms can change design and constraint data during their
analyses and during the design step, the related constraint
verification is based on dynamic data. Hence, the latter case
represents dynamic constraint verification. Both, static and dynamic
constraint verification can be applied to either the full set of
constraint and design data, or to a context-specific subset.

79

3.6 Constraint Sensitivity Analysis
Constraint sensitivity analysis (CSA) [9] is very helpful in allowing
designers to understand the impact of local design decisions and to
find root causes in case compliance requirements cannot be met
with the given set of constraints. CSA determines the context-
specific sensitivity of design parameters in relation to their assigned
constraints. The sensitivity information can be either visualized or it
can be used to drive and support design decisions. Sensitivity
analysis is the key to the power of decision analysis in situations
where the influence of design parameters is not known precisely,
since it considers the (dynamic) context in which constraints apply.

4. IMPACT ANALYSIS
Next we discuss the impact of a constraint-driven approach on the
overall IC design flow, the core design of EDA algorithms, and the
required paradigm adjustments for analog physical design
approaches.

4.1 Impact on Design Flow
A holistic approach to analog design automation requires several
new design flow components (hereafter referred to as
“components”) that enable a constraint-driven IC design. Essential
components of this holistic flow (constraint management,
derivation, transformation and verification) have been discussed in
detail in Sections 3.2 - 3.5. Other components, such as constraint
sensitivity analysis (see Section 3.6) and constraint visualization, are
not essential but can improve constraint-driven design. The impact
of essential and non-essential components on the analog IC design
flow will be discussed in this section.
First, all essential design flow components must be available at any
stage during IC design. Essential components complement existing
standard design flow steps (e.g., circuit simulation, schematic entry,
floorplanning, placement, etc.), and hence, they must run
concurrently to each of the design steps.
Next, the derivation, application and usage of constraints must be
done comprehensively throughout the process. Any breach in the
constraint application flow will most likely lead to inconsistent
design and constraint data. Conclusive constraint verification would
then be impossible.
Significant additional effort must be expended to develop and verify
the initial set of efficient constraint derivation, constraint deduction
and constraint verification rules. The practical application of meta-
verification has revealed that the sequence in which simple sub-
constraints of a complex constraint are executed is likely to have
tremendous impact on the required verification time. Thus,
verification rule optimization requires a deep understanding of the
underlying verification task. For example, suppose there are short-
running and long-running sub-verification tasks defined in a specific
meta-verification rule. If feasible for the specific verification task, it
may be beneficial to shift all long-running sub-verification tasks at
the end of the rule so they are executed after the short-running sub-
verification tasks. Late sub-verification tasks in a meta-verification
rule may not be executed if an earlier call to a possibly short-
running sub-verification task already revealed constraint violations,
thus preventing unnecessary and potentially long-running sub-
verification tasks from being executed.
Nevertheless, practical experiences with meta-verification rule
development [3] has revealed that the required initial effort is very

similar to the effort needed for the development of DRC and LVS
rule sets. The reuse of constraint derivation as well as meta-
verification rules is very simple and efficient since, in general, data
and rule abstraction can be used for technology, design and
constraint data.
The constraint management component must offer flexible, context-
sensitive, and fast access to constraint data for any affected design
and verification algorithm. Contrary to conventional constraint
management solutions, it is essential now to consider real and
virtual design hierarchies and to be capable of propagating
constraints within any real or virtual design hierarchy tree (see
Section 3.2).
The constraint management system must be capable of managing
simple and complex constraints. Presently, most commercially
available constraint management systems keep design and constraint
data separate from each other. The databases for design data and
constraint data must be unified since constraint data management is
an integral part of the constraint-driven design flows backbone, and
hence, is as important as the management of design data.
It is needless to say that any suitable constraint-management
component must guarantee constraint consistency at low-level
(keeping the constraint and the constraint owning design object in
sync). It must also consider the various high-level requirements of
design data management systems. The latter requirement especially
can lead to significant data consistency issues if design data and
constraint data cannot be bound into one data set that can be treated
as a single data entity.
As mentioned earlier, DRC and LVS are only capable of covering
technological constraints required to ensure manufacturability.
Constraint verification must thus complement the LVS check and
other specialized checks (e.g., timing checks) required for sign-off
verification in order to guarantee the intended circuit functionality.
Automatic constraint verification offers much greater verification
coverage and reproducibility than manual verification. The
overhead for meta-verification is often negligible when compared to
the required run-time of the referenced verification tools for sub-
verification tasks [3]. In our experience, practical application of
automatic constraint verification for automotive ICs has shown that
the benefits of achievable design verification quality clearly exceed
the required effort for the development and maintenance of meta-
verification rules.
The required overhead for static constraint verification is typically
significantly smaller than for dynamic constraint verification. The
additional overhead in the latter case is primarily caused by the
cumulative data latency that occurs if design and constraint data are
frequently accessed by the verification framework. Hence, low-
latency data access can significantly speed-up dynamic constraint
verification. For static constraint verification, design and constraint
databases are usually accessed only once during initialization, thus
avoiding data-access latency issues.

4.2 Impact on Design Algorithms
While firsthand experience with constraint verification algorithms
already exists, the application of the new design flow components
for constraint-driven design generation is rather new and hence
experience is still limited. Nevertheless, in this section we will
discuss the impact constraint-driven design has on design
algorithms, including design planning, and we introduce several
new and powerful concepts for constraint-driven IC design. While

80

some of these design approaches are new, others, such as the
application of the constraint sensitivity analysis or the introduction
of standardized algorithm interfaces, have already matured and thus
have led to new insights into the analog design problem.
Present design algorithms are generally built for a special purpose
(e.g., specialized design algorithms that focus on floorplanning,
placement, etc.). While this may result in several benefits, such as
fast execution time, this also brings several significant limitations
that prevent further advances in analog design automation.
Throughout this section, present design algorithms are denoted as
“conventional algorithms” and the required new class of constraint-
driven design algorithms as “constraint-driven algorithms”.
A primary limitation in conventional algorithm design is the narrow
focus on fast, but low-level execution without an implementation of
standard data interfaces. These interfaces create a layer around the
core algorithm. This layer is required to connect a design algorithm
to the design and constraint databases as well as to other
concurrently executed design algorithms. Thus, all design
algorithms share a common understanding of design and constraint
data. Standard data and communication interfaces are, hence, an
integral part of any constraint-driven design and constraint
verification algorithm.
Standard algorithm interfaces enable the modularization and
abstraction of constraint-driven design algorithms. The abstraction
of their algorithmic work greatly improves algorithm reuse and
flexibility because a single algorithm can be used to solve similar
design tasks (this concept is similar to algorithm abstraction
available in various programming languages). In turn, this flexibility
enables the construction of high level constraint-driven algorithms
that utilize modularized low-level design algorithms in order to
perform specific design tasks on a higher level of abstraction.
High-level design planning algorithms greatly benefit from the
constraint sensitivity analysis (CSA, see Section 3.6). First, this due
to the determination of relevant design parameters and constraints in
a specific design context which provides a design-step-specific
limitation of constraints. Second, CSA can be used as a method to
identify design task parallelism by searching for temporary groups
of design variables and constraints that are either not or only very
weakly coupled with each other. For these groups, the next design
step can then be performed independently of each other. Note that
the independency of design variable and constraints in these groups
may only be temporary, and hence, may not exist anymore after a
design step is completed.
A dynamic hierarchy of concurrent design tasks can thus be
established in which all affected design algorithms perform
functional transformations (instead of conventional distinct design
steps). These transformations are governed by either a fixed
execution regime or by more flexible approaches such as high-level
design planning algorithms.
Another major advantage in the construction of higher-level design
algorithms is the possible dynamic consideration of new constraint
types without the need to introduce major low-level algorithm and
tool changes. High-level design strategies can now be used to solve
low-level design problems by eliminating degrees of design freedom
in a top-down methodology. This approach typically leads to better
design results because low-level constraints are now less likely to
break high-level constraints (see Sections 3.3, 3.4).

4.3 Paradigm Adjustments for Analog Design
 Approaches
The consideration of a rich set of constraint types and a
corresponding large number of constraints is tightly linked to the
analog IC design problem. As mentioned earlier, all constraints must
be defined and used consistently. Constraint derivation,
transformation and verification are now mandatory design flow
components that must be used throughout IC design. A new core
component of the design flow is the constraint management system
that must be capable of handling simple and complex constraints
across multiple design steps, as well as across multiple design and
verification tools.
As can be seen in Fig. 2, the analog IC design flow exhibits
overlapping design steps to account for concurrent design problems.
In order to address the tight interaction between these design steps
and to consider the concurrent nature of the analog design problem,
all artificially introduced boundaries between existing design steps
must be gradually dissolved. The removal of degrees of design
freedoms must occur gradually rather than abruptly in order to keep
them available for design optimization as long as possible.
Comprehensive constraint verification is often more important than
the application of analog design generation algorithms [8]. Since
analog IC designs have a rather small number of devices, their
layout generation can still be done semi-automatically. In contrast,
the constraint verification requires automatic approaches due to the
size and complexity of the related analog verification problem in
modern IC designs.
The reuse of analog layout often fails because small differences
between designs may prevent a direct reuse. This is because all
degrees of design freedom were already removed from the layout.
However, the consistent definition of constraints between design
objects (e.g., sub-circuits) allows design reuse of structural
information that includes constraints. The structural information
represents the most valuable part of the design knowledge, and
hence enables more flexible reuse since relevant degrees of design
freedom are not fixed yet. In that respect, analog design automation
should address low-level layout generation and high-level design
planning as discussed in Section 4.2.

5. OPEN PROBLEMS AND OUTLOOK
Despite the recent advances in constraint-driven design for analog
IC design, there are several problems that need to be addressed in
the near future to further broaden the applicability of analog design
automation approaches.
Methods to check the completeness of a set of constraints and
constraint (meta-)verification rules, as well as the achieved
verification coverage, must be developed to guarantee IC
functionality, reliability, robustness, etc. The set of meta-verification
rules must be optimized to allow time-efficient constraint
verification. Today, such optimization is done manually but
automatic rule-optimization methods should be developed to reduce
that burden.
As mentioned earlier, constraint sensitivity analysis is a powerful
tool to drive and support high- and low-level design decisions, and
to develop high-level design algorithms that allow more gradual IC
design. The scalability of existing constraint-sensitivity analysis
approaches is still limited to a few thousand design variables, which
is already sufficient for mid-sized analog blocks with typically in

81

the range of several hundreds of analog devices. Application to top-
level design problems requires development of new complexity
reduction methods, as well as fast constraint sensitivity calculation
methods to improve scalability.
Key factors for next generation analog design automation are design
techniques that reduce the degree of design freedom gradually rather
than abruptly while performing several conventional design steps
concurrently. This will require that the current artificial boundaries
between conventional design steps be (gradually) dissolved in the
future. While breaking with conventional design approaches, this
paradigm change could lead to a new class of (higher-level) design
algorithms that bring us one step nearer to the goal of full-scale
analog design automation.

ACKNOWLEDGEMENTS
We would like to thank Jan Freuer for his scientific work related to
constraint engineering and his input to this work. We also thank
Jürgen Scheible for the numerous fruitful discussions related to the
topic of this paper.

REFERENCES
[1] Chang, H., Charbon, E., Choudhury, U., Demir, A., Felt, E.,

Liu, E., Malavasi, E., Sangiovanni-Vincentelli, A. and
Vassiliou, I. 1999. A top-down, constraint-driven design
methodology for analog integrated circuits. Springer Verlag,
Norwell, MA.

[2] Cohen, J. 1990. Constraint logic programming languages.
Commun. ACM, 33(7):52–68.

[3] Freuer, J., Jerke, G. , Gerlach J. and Nebel, W. 2008. On the
verification of high-order constraint compliance in IC design.

In Proc. Design, Automation and Test in Europe (DATE), 26–
31.

[4] Jaffar, J., Michaylov, S., Stuckey, P. and Yap, R. 1992. The
CLP(R) language and system. ACM Trans. on Programming
Languages and Systems, (July 1992) 14(3):339–395.

[5] Malavasi, E. and Charbon, E. 1999. Constraint transformation
for IC physical design. In IEEE Trans. on Semiconductor
Manufacturing, vol. 12(4) (Nov. 1999), 386–395.

[6] Malavasi, E., Charbon, E., Felt, E. and Sangiovanni-
Vincentelli, A. 1996. Automation of IC layout with analog
constraints. IEEE Trans. CAD of Integr. Circuits and Systems,
15(8):923–941.

[7] Malavasi, E., Charbon, E., Arsintescu, B. and Kao, W. 1998. A
constraint management system for IC physical design. In Proc.
XI. Brazilian Symp. on Integr. Circuit Design, 240–243.

[8] Nassaj, A., Lienig, J., Jerke, G. 2008. A constraint-driven
methodology for placement of analog and mixed-signal
integrated circuits. Proc. of the 14th IEEE Int. Conf. on
Electronics, Circuits and Systems (ICECS), 770-773.

[9] Ríos I. D. 1990. Sensitivity analysis in multi-objective decision
making. In Lecture notes in economics and mathematical
systems. 1990, vol. 347, ISBN 3-540-52692-7.

[10] Rutenbar R. and Cohn J. 2000. Layout tools for analog ICs and
mixed-signal SoCs: a survey. In Proc. Int. Symp. on Physical
Design (ISPD), 76–83.

[11] Scheible, J. Personal communication.

82

