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A new genetic algorithm for switchbox routing in the physical design process of inte-
grated circuits is presented. Our algorithm, called GASBOR (Genetic Algorithm for
SwitchBOx Routing), is based on a three-dimensional representation of the switchbox
and problem-specific genetic operators. The performance of the algorithm is tested on
different benchmarks and it is shown that the results obtained using the proposed algo-
rithm are either qualitatively similar to or better than the best published results.

1. Introduction

Routing is one of the major tasks in the physical design process of integrated circuits.
Pins that belong to the same signal net are connected with each other subject to a
set of routing constraints during the routing procedure.

A switchbox is a rectangular routing region of fixed size on an integrated circuit.
A switchbox contains pins located on all four boundaries. An example of a simple
switchbox with a possible routing solution is shown in Figure 1.

The problem of switchbox routing is twofold: (1) to determine if a valid routing
exists within the boundaries of the switchbox, and if so, (2) to optimize the routing
structure according to certain quality factors. Both problems are NP-complete.
Although different algorithms have been proposed over the years, the problem of
finding a globally optimized routing solution of a switchbox is still open.! —7
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Fig. 1. An example of an integrated circuit (a) with a switchbox routing problem (b), and a
possible routing solution of the switchbox (c). Dashed lines represent interconnections on the first
layer, and solid lines represent interconnections on the second layer.

Genetic algorithms (GAs) are a relatively recent class of heuristic search methods
based on the biological evolution model. During the last few years, GAs have been
applied more and more successfully to find good heuristic solutions to NP-complete
optimization problems.?

To our knowledge, only two papers have been published in which strategies de-
rived from the concept of GAs are applied to switchbox routing.®>* The approach
of Geraci et al. combines the steepest descent method with features of GAs.? Their
crossover operator is restricted to the exchanging of entire nets and the mutation
procedure performs only the creation of new initial individuals. Lin et al. present a
rip-up-and-rerouter that is based on a probabilistic rerouting of nets of one routing
structure. However, the routing is carried out by a deterministic Lee algorithm.?
Furthermore, main components of GAs, such as the crossover of different individu-
als, are not applied.

In this paper, we present a new GA for switchbox routing, called GASBOR, that
is fundamentally different from the above-mentioned approaches. First, our algo-
rithm assumes that the switchbox is extendable in both directions. Subsequently,
these extensions are reduced with the goal to reach the preferred size of the switch-
box. Second, our algorithm is based on a problem-specific lattice-like representation
of the switchbox instead of the commonly used binary string representation scheme
in traditional GAs. Third, all routing structures are created with a special random,
rather than deterministic, routing strategy. And fourth, in contrast to the algo-
rithm of Geraci et al., where the crossover operator exchanges only entire nets, our
genetic operators work on the lowest level of a routing structure, namely, its grid
points.

The contributions of this paper are threefold:

(i) A formulation of a GA that is capable of handling the routing problem of
switchboxes.



GASBOR: A Genetic Algorithm Approach for Solving the Switchbox Routing Problem 3

(ii) A comparison of the performance of our algorithm with previous approaches
and a description of the advantages and limitations of our strategy.

(iii) Suggestions for other applications of GAs in the physical layout design of
integrated circuits.

2. Problem Description

The switchbox routing problem is defined as follows. Consider a rectangular routing
region, called switchbox, with a number of pins located on all four boundaries. The
pins that belong to the same net have to be connected subject to certain constraints
and quality factors. The interconnections have to be made inside the boundaries of
the switchbox on a symbolic routing area consisting of horizontal rows and vertical
columns.

The interconnections are subject to the following constraints:

(i) Two layers are available for routing (see Figure 1).
(ii) A net may change from one layer to the other one using a contact window
called via.
(iii) Different nets cannot cross each other on the same layer and must respect a
minimum distance.
(iv) The perimeter of the switchbox is not used for routing.

Three quality factors are used in this work to assess the quality of the routing
result:

(i) Routing area:
The routing area, expressed as the number of rows and columns, is mini-
mized during the evolutionary process until it reaches the preferred size of the
switchbox. A final size larger than the preferred size means an unroutable
solution.

(ii) Net length:
The shorter the length of the interconnection nets the smaller the propagation
delay.

(iif) Number of vias:
The fewer the number of vias, the better the routing quality.

3. Description of the Algorithm

3.1. Survey

GAs carry out optimization by simulating biological evolutionary processes. A
population of individuals representing different problem solutions is subjected to
genetic operators, such as, selection, crossover and mutation that are derived from
the model of evolution. Using these operators, the individuals are steadily improved
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over many generations and eventually the best individual resulting from this process
is presented as the solution to the problem.

An overview of the GA presented in this paper is shown in Figure 2. The num-
ber of individuals |P.| is kept constant throughout all generations. Qur mutation
operator is applied after the reduction procedure, i.e., the modifications caused by
the mutation operator remain “unpunished” in the population during the next mate
selection and crossover procedure. This separation of the crossover and mutation
procedures improves the ability of our approach to overcome local optima. Since the
mutation operator has access to all individuals, the best individual is saved in each
generation before the mutation operator is applied. At the end of the algorithm,
the best individual pses: that has ever existed constitutes our final routing solution.

create initial population (P.)
fitness_calculation (P.)
Dbest = best_individual (P.)
for generation = 1 until mazx_generation
Pn = 0
for of fspring = 1 until maz_descendant
pa = selection (P.)
pp = selection (P.)
Pr = Pn U crossover (pa,ps)
endfor
fitness_calculation (P,,)
P. = reduction (P, U Py)
Pbest = best_individual (pbest @] Pc)
mutation (P;)
fitness_calculation (P.)
endfor
routing solution = best_individual (ppest U Pec)

Fig. 2. Outline of the algorithm.

3.2. Creation of an initial population

The initial population is constructed from randomly created individuals.

First, each of these individuals is assigned a random initial row number y;,4 and
a random initial column number z;,4.

Let § = {s1,...54,...8;} be the set of all pins of the switchbox which are not
connected yet and let 7 = {t1,...t;,...t;} be the set of all pins having at least one
connection to another pin. Initially 7 = (). A pin s; € S is chosen randomly among
all elements in S. If 7 contains pins {ty,...t;,...ty} (with 1 < u < v <) of the
same net, a pin ¢; is randomly selected among them. Otherwise a second pin of the
same net is randomly chosen from S and transferred into 7. Both pins (s;,t;) are
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connected with a “random routing”. Then s; is transferred into 7. The process
continues with the next random selection of s; € S until S = 0.

The random routing of two points (s;,t;) is based on a routing strategy we
developed for the channel routing problem of integrated circuits!?. Its main char-
acteristic is a line-search algorithm with random positions of alternate horizontal
and vertical extension lines. A random routing of two points (s;, t;) is illustrated
in Figure 3.
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Fig. 3. Random routing of (s;, ;).

The extension (i.e., the creation of extension lines) is stopped when

(i) the extension lines of both points meet each other on the same layer, or
(ii) the extension lines of s; touch a net point which is already connected with ¢;
as shown in Figure 3 (e) (or vice versa).

In the latter case, t; (or s;) is replaced with this meeting point (see Figure 3 (f)).

If the creation of extension lines does not succeed in one of these conditions
within a certain number of iterations, all extension lines are erased and the switch-
box is extended either with an additional row on a 0 random position y,qq with
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1 < Yadd < Ying Or an additional column on a random position z,q5¢ with 1 <
ZTadd < Ting- After adjusting all previous routed nets to this new row and col-
umn, respectively, s; and ¢; undergo a new attempt to connect them with randomly
created extension lines.

Tracing the shortest path on the extension lines between s; and t; (see Fig-
ure 3 (e,f)) avoids unnecessary loops in the connection without sacrificing the ran-
domness of the resulting routing path.

The creation of the initial population is finished when the number of completely
routed switchboxes is equal to the population size |P.|. As a consequence of our
strategy, these initial individuals are quite different from each other and scattered
all over the search space.

3.3. Calculation of fitness

The fitness F'(p) of each individual p € P is calculated to assess the quality of
its routing structure relative to the rest of the population P. The selection of the
mates for crossover and the selection of individuals which are transferred into the
next generation are based on these fitness values. The following fitness calculation
is an extension of our approach that was developed for channel routing of integrated
circuits.!?
First, two functions Fi(p) and Fy(p) are calculated for each individual p € P
according to Eq. (1) and Eq. (2).
1
F(p)=——"7"""— 1)

Nrow + Neolumn

where N,y = number of rows of p and
Neolumn = number of columns of p.

Fy(p) = 7 : (2)

Z (lace(?) + a* lopp(7)) + b * Ving
i=1

where l,..(i) = net length of net 7 of net segments according to the preferred
direction of the layer,
lopp(i) = net length of net ¢ of net segments opposite to the preferred
direction of the layer,

a = cost factor for the preferred direction,
Ning = number of nets of individual p,

Ving = number of vias of individual p and

b = cost factor for vias.

In order to assure that the area minimization, i.e., the sum of rows and columns of
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p, predominates the net length and the number of vias, the fitness F(p) is derived
from Fi(p) and F»(p) as follows:

Assume that (p;, ...ps,...p;) are individuals with the same area, i.e., the same
value Fi(p). These individuals are arranged in an ascending order according to
F5(p). Then p; is the individual with the lowest value F>(p) in this group (“worst
individual with this area”). Its fitness value F'(p;) is defined by

F(p;) = F1(pi). 3)

The individual p; has the highest value F5(p) in this group (“best individual with
this area”). Let Fi(pj;+1) be the Fi-value of the next (“better”) group with one row
or column less. The fitness F(p;) is calculated as follows:

AF

F(pj) = Fi(pj+1) — it (4)

where AFy = Fi(pj+1) — Fi(pj)-

Now F(p;) of the remaining individuals of this group can be calculated relative to
their F>-values between the lower bound F'(p;) and the upper bound F(p;):

F(p.) = F(py) ~ =02 0) = ) Q

where AF = F (p;) — F (p;) and
AF, = Fx(p;) — F2(pi)-

After the evaluation of F(p) for all individuals of the population P these values are
scaled linearly, in order to control the variance of fitness in the population.!!

3.4. Selection strategy

The selection strategy is responsible for choosing the mates among the individuals
of the population P..
Using the terminology of Goldberg, our selection strategy is stochastic sam-

pling with replacement.!’ That means any individual p; € P, is selected with a
probability
F(p:)
> F(p)
PEP.

The two mates needed for one crossover are chosen independently of each other.
An individual may be selected any number of times in the same generation.
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3.5. Crossover operator

During a crossover, two individuals are combined to create a descendant. We de-
veloped a crossover operator that gives compact, high-quality routing structures
of these two individuals an increased probability to be transferred intact to their
descendant. Let p, and pg be copies of the mates (Figure 4 (a,b)) and p, be their
descendant.
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Fig. 4. Crossover of (pa,pg) t0 py.

First, the direction of a cut line (vertical cut column z. or horizontal cut row
y.) is randomly chosen?

§In the following explanation of the crossover operator, we assume the direction of the cut line
to be horizontal. The crossover procedure resulting from a vertical cut line can be obtained by
exchanging the variable x with y and vice versa and the term “row” with “column” and vice versa.
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From the pin occupation list of the vertical boundaries of the switchbox, a pin
combination (located on the same horizontal row) is randomly chosen to determine
the position of the cut row in each parent p, and pg.

The individual p, transfers its routing structure to p, which is

(i) located on (Za,ya,2) with 1 < Z4 < Zinda (Tinde = number of columns of
Pa)s 1 < Yo < Yea (Yea = position of the cut row in p,), 1 < z < 2 and
(ii) not cut by the cut row yeq.

Accordingly, pg transfers to p, the uncut connections located on (zg,yg, 2) with
1 < 23 < Zinags Yeg < Y < Yingg and 1 < z < 2 (see Figure 4 (c,d)).

Note that the connections of p, and pg cut by y.o and y.g are traced until an
interconnection point (Steiner point) or a pin is reached and not transferred into
Dy-

Assume that the parts of p, and pg which have to be transferred into p, contain
columns not occupied by any vertical segments anymore. Then the number of
columns of p, and pg are decreased by deleting these empty columns and the sizes
of p, and pg are shrunk accordingly.

The initial number of columns z;nqy of p, is obtained by extending p, and
pp with additional columns to achieve a vertical accordance of pins with the pin
occupation list of the switchbox.¥

The routing of the open connections in p,, is done as follows: Let N, be the set of
all Steiner points or pins which are end points of a cut segment in p,. Accordingly,
let N3 be the set of these points in pg. If NV, contains more than one point of the
same net, these points are connected with each other in a random order by our
random routing strategy (see Section 3.2). Except for one randomly chosen point,
all points of this net in N, are now deleted. The same “inner routing” in N is
performed. As a result, N, and N3 do not contain more than one point per net.
These points in N, are now selected randomly and compared with all points in Ng.
If a point of the same net is found in N3, both points are connected by means of
our random routing (see Figure 4 (e,f)).

If the random routing of two points does not lead to a connection within a
certain number of extension lines, the extension lines are deleted and the switchbox
is extended at a random position Toq¢ with 1 < Z494 < Tinay. If the repeated
extension of the switchbox also does not enable a connection, p, is deleted entirely
and the crossover process starts again with a new random cut row y. (or cut column
z.) applied to p, and pg.

The crossover process of creating p, is finished with deleting all columns and
rows in p, that are not used for any routing segment.

TPins of the horizontal switchbox boundaries which are placed opposite to each other on the same
column in the pin occupation list have to be located in the same manner in p,.
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3.6. Reduction strategy

Because the population size of a genetic algorithm should be constant, a reduction
strategy is necessary to decide which individuals among the current population P,
and the set of descendants P,, should survive for the next generation.

Our reduction strategy simply chooses the |P.| fittest individuals of (P, U Py,)
to survive as P, into the next generation.

3.7. Mutation operator

Mutation operators perform random modifications on an individual. The purpose
is to overcome local optima and to exploit new regions of the search space.

Our mutation operator works as follows. Define a surrounding rectangle with
random sizes (x,,y,) around a random center position (z,y,z). All routing struc-
tures inside this rectangle are deleted. The remaining net points on the edges of
this rectangle are now connected again in a random order with our random routing
strategy.

4. Implementation and Experimental Results

The algorithm, called GASBOR, has been implemented in FORTRAN on a SPARC
workstation. The source code is approximately 10,000 lines.

4.1. Measurement conditions

The performance of the algorithm has been tested on different benchmarks. The
routing results of the benchmarks, presented later, are the best results obtained in
ten consecutive executions of the algorithm for each benchmark. All executions are
based on an arbitrary initialization of the random number generator. We termi-
nated our program when there was no improvement to the best individual in 100
consecutive generations.

The values of the other parameters are as follows:

|Pe| =50
max _descendant =30
a = 1.01 (Eq. (2))
b = 2.00 (Eq. (2))

Mutation probability = 0.002

The same parameter setting is used for all benchmarks.

4.2. Switchbox routing results

The routing results of GASBOR for different benchmarks are presented in Table 1.
It can be seen that our results are qualitatively similar to or better than the best
known results from popular switchbox routers published for these benchmarks.
The detailed results (including timings) of the ten executions of GASBOR for
each benchmark are presented in Table 2. It must be noted, that the diversity of
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Table 1. Benchmark results.

[ Benchmark [ System | Rows Col. Netlength Vias |
Simple Lee © 7 7 60 11
switchbox WEAVER 6 7 7 60 4

GASBOR 7 7 60 4
Joo6_17 WEAVER © 9 11 166 19
SILK * 9 11 166 18
GASBOR 9 11 164 18
Pedagogical | BEAVER ? 16 15 396 38
switchbox PACKER 3 16 15 406 45
SAR! 16 15 393 31
GASBOR 16 15 395 31
Dense WEAVER © 17 16 517 31
switchbox Mighty 7 184 16 530 32
SILK 4 17 16 516 29
Monreale 3 182 16 529 32
SAR! 17 16 519 31
GASBOR 17 16 519 29
Judy Monreale 3 17 17 506 32
GASBOR 17 17 498 32

@ Additional row at the bottom edge of the switchbox.

the routing results of each of the benchmarks is caused by our decision to terminate
the program when there is no improvement to the best individual in 100 consecutive
generations. As we shall see later, the best results of Table 1 can always be achieved
if such a strict termination criterion is avoided.

Joobbani’s knowledge-based expert system router “WEAVER” was able to route
the so-called switchbox Joo6_17 which is unroutable by traditional algorithms.® As
is evident from Table 1, our algorithm yields a better result than both WEAVER
and SILK for this benchmark. Figure 5 shows our routing solution.

4.3. Diwversity within the population

A sufficient population diversity, especially in an advanced stage of the algorithm,
is one of the main “secrets” behind a successful GA. Our operators are such that
they avoid too much convergence pressure and guarantee sufficient diversity within
the population as can be seen in Figure 6.

4.4. Effect of random number generator

Since the methodology of our algorithm is probabilistic, it is important to investigate
the effect of the initialization of the random number generator on the routing results.

We conducted an experiment regarding the robustness of our algorithm, i.e.,
we investigated the impact of the seed of the random number generator on the
routing results. The effect of the different initializations of the random number
generator on the number of generations needed to achieve our best results was also
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Table 2. Detailed results of the 10 executions of each benchmark.

Bench- Generations ¢ Routing result? Run-

mark Min | Max [ Avg || Worst [ Best | Avg time®

Simple 7]7/ /7] 7/7/

switchbox 51 115 69 60/4 60/4 60/4 3
9/11/ | 9/11/ | 9/11/

Joo6_17 96 681 398 168/19 | 164/18 | 165/18 41

Peda-

gogical 16/15/ | 16/15/ | 16/15/

switchbox 181 1002 | 517 404/38 | 395/31 | 397/32 101

Dense 18/16/ | 17/16/ | 17/16/

switchbox 198 | 1192 | 327 529/32 | 519/29 | 520/31 97
T7/17] | 17/17] | 17/17]

Judy 161 998 316 506/32 | 498/32 | 500/32 78

% Number of generations when the best individual appears in the population.
b Routing results given as rows/columns/netlength/vias.
¢ Average CPU runtime in minutes.
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Fig. 5. Our routing solution of Joo6_17.
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Fig. 6. Average convergence behavior of the individuals for the switchbox Joo6_17 in 10 program
executions.

investigated. We executed our program 1000 times with different initializations
of the random number generator to route the switchbox Joo6_17. As soon as the
algorithm produced an individual equal to the best one of Table 1, the execution
was stopped and the number of generations was noted. The distribution of this
number of generations in 1000 program executions is plotted in Figure 7.

Similar results were reached using the other benchmarks of Table 1.

From the experiment we conclude that the initialization of the random number
generator affects only the runtime.

5. Summary

We presented a GA that is capable of handling the routing problem of switchboxes.
Due to its ability to overcome local optima, our GA achieves the same results for
a given routing problem independently of the initialization of the random number
generator. Thus, it can be considered robust.

As can be seen from Table 2, the runtimes of our algorithm on some benchmarks
may be unacceptable. However, due to the inherent parallelism of GAs we are
optimistic about reducing the runtimes by implementing a parallel version of our
algorithm.

Further investigations are needed to measure the performance of the algorithm
for larger switchbox problems. Initial examination suggests that an exponential
relationship exists between the CPU runtime and the size of the switchbox routing
problem.

In light of this investigation, our suggestions for other applications of GAs in
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Fig. 7. Distribution of the number of generations needed to achieve the best result of switchbox

Jo06_17.

the physical design process of integrated circuits are:

(i) The representation scheme of a layout problem in a GA should be a three-
dimensional, problem-specific representation rather than a one-dimensional
binary string (as is common in traditional applications of GAs). Our scheme
ensures that high quality parts of the layout structure are preserved as high-
fitness building blocks and transferred intact with an increased probability in

the next generation.

(ii) The genetic operators of a GA in the physical layout design should be adapted

to the specific layout problem.

(iii) A sufficient diversity within the population (including the initial population)

is crucial to the robustness of a GA for a design problem.

(iv) The ability to overcome local optima is improved by separation of the crossover

and the mutation procedures.

From our results we believe that genetic algorithms are promising tools for solv-

ing optimization problems in the physical design process of integrated circuits.
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