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Abstract—This paper presents a novel approach to solve the
VLSI (very large scale integration) channel and switchbox routing
problems. The approach is based on a parallel genetic algorithm
(PGA) that runs on a distributed network of workstations. The
algorithm optimizes both physical constraints (length of nets,
number of vias) and crosstalk (delay due to coupled capacitance).
The parallel approach is shown to consistently perform better
than a sequential genetic algorithm when applied to these routing
problems. An extensive investigation of the parameters of the
algorithm yields routing results that are qualitatively better or as
good as the best published results. In addition, the algorithm is
able to significantly reduce the occurrence of crosstalk.

Index Terms—Channel routing, crosstalk, parallel computa-
tion, parallel genetic algorithm, punctuated equilibria, switchbox
routing, VLSI physical design.

I. INTRODUCTION

I NTERCONNECTION routing is one of the major tasks in
the physical design of very large scale integration (VLSI)

circuits. Pins that belong to the same net are connected together
subject to a set of routing constraints. With new perfor-
mance requirements for the design, routing constraints such as
crosstalk between interconnections are becoming increasingly
dominant in submicron regimes [4]. Hence, new algorithms
are needed to meet the severe topological and electrical con-
straints posed by current VLSI circuit design.Performance-
driven routing addresses these performance-related routing
constraints. In light of this trend, performance-driven rout-
ing has been the main focus of routing-related algorithm
development in the last couple of years (e.g., [5], [10], [11],
[14], [15]).

Channel and switchbox routing are the two most com-
mon routing problems in VLSI circuits. Examples of channel
routing and switchbox routing problems are shown in Fig. 1.

One of the main challenges of the routing process of
submicron regimes iscrosstalk. Crosstalk results mainly from
coupled capacitance between adjacent (parallel routed) inter-
connections. With further minimization in design, and thus
further reduction of the distance between interconnections,
crosstalk is becoming an important electrical constraint and
it is going to be more so in the future [4], [28].

Another electrical constraint which is increasingly important
is electrical delay. This is defined as the time it takes for
signals to propagate through the circuit. As integrated circuit
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Fig. 1. The VLSI channel (left) and switchbox (right) routing problem and
possible routing solutions.

features decrease, electrical delay is increasingly governed by
the routing delay (rather than delay within the logic cells) and
as a consequence needs to be considered in the routing process.

Our motivations to present an evolution-based algorithm
for the detailed routing problem are threefold. First, many
previously published detailed routing strategies only consider
physical constraints, such as the netlength and the number of
vias (defined in Section II). However, with further minimiza-
tion in VLSI design, new electrical constraints are becoming
dominant and need to be addressed. Second, today’s typical
computer-aided design environment consists of a number of
workstations connected together by a high-speed local net-
work. Although many VLSI routing systems make use of the
network to share files or design databases, none of the known
routing programs (evolution-based or deterministic algorithms)
use this distributed computer resource to parallelize and speed
up their work. Third, all published genetic algorithms that
address the routing problem are sequential approaches, i.e.,one
population evolves by means of genetic operators. However,
recent publications indicate that parallel genetic algorithms
(PGA’s) with isolated evolving subpopulations (that exchange
individuals from time to time) may offer advantages over
sequential approaches [2], [7], [9], [20], [23].

We present a PGA for detailed routing, called GAP (genetic
algorithm with punctuated equilibria), that runs on a distributed
network of workstations. To our knowledge, this is the first
approach which includes crosstalk considerations directly in
a gridded VLSI routing process. Furthermore, our algorithm
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addresses the increased importance of the relationship between
electrical delay and netlength by minimizing a nonlinear
function of the lengths of the nets.

We show that our parallel approach performs better than a
sequential genetic algorithm when applied to the channel and
switchbox routing problem. Furthermore, on many benchmark
examples, the router produces better results than the best of
those previously published. We examine the performance of
GAP while varying important parameters of a PGA.

The contributions of this paper are:

• a formulation of a PGA that is capable of handling the
VLSI routing problem with both topologicalandelectrical
constraints, in particular, a consideration of crosstalk
minimization directly during the routing process;

• comparisons of the performance of our algorithm with
previous routing strategies;

• comparisons of the solution quality of our parallel ap-
proach based on the punctuated equilibria model with
a sequential genetic algorithm running under the same
constraints;

• an investigation of the influence of various parallelization
parameters on the routing results.

Throughout this work, we will use the term PGA to describe
a genetic algorithm with multiple populations (population
structures). Accordingly, “sequential genetic algorithm” indi-
cates a genetic algorithm with a single population (panmictic).
This usage is consistent with many previous papers. However,
it is important to note that “parallel” and “sequential” refer
to population structures, not the hardware on which the al-
gorithms are implemented. In particular, the PGA could be
simulated on a single processor platform (as any discrete
parallel process can) and the sequential genetic algorithm
could be executed on a multiprocessor platform.

II. PROBLEM FORMULATION

The VLSI routing problem is defined as follows. Consider
a rectangular routing region withpins located on two parallel
boundaries (channel) or four boundaries (switchbox) (see
Fig. 1). The pins that belong to the samenet need to be
connected subject to certain constraints and quality factors.
The interconnections need to be made inside the boundaries
of the routing region on a symbolic routing area consisting of
horizontalrowsand verticalcolumns. Two layersare available
for routing in our model.

We define asegmentto be an uninterrupted horizontal or
vertical part of a net. Thus, any connection between two pins
will consist of one or more net segments and is referred to as
an interconnection. A connection between two net segments
on different layers is called avia. The overall length of all
segments of one net used to connect its pins is defined as its
netlength.

With the advances in VLSI technology, the relationship
between electrical delay and netlength becomes more impor-
tant [4]. Thus, new measures of netlength are needed that
reflect the electrical delay better than the commonly used
minimization of the sum of the lengths of all nets. One such
measure is accomplished by minimizing a nonlinear function

of the lengths of the nets. Under many technologies, a first-
order approximation to the electrical delay is the product of
the resistance and capacitance of the interconnection [10].
With a fixed width for the interconnection, this product is
a quadratic function of the length of the interconnection.
Thus, in most cases the electrical delay of an interconnection
is proportional to a quadratic function of its length. Hence,
rather than minimizing the sum of the lengths of the nets, we
minimize a quadratic function of their individual lengths.

Crosstalk between two interconnections is proportional to
their coupling capacitance. The coupling capacitance is pro-
portional to the coupling length of the two interconnections
(the total length of their overlapping segments) and inversely
proportional to their separation. (Crosstalk between two inter-
connections also depends on the frequency of the signals in
these wires. In order to simplify our presentation, we assume
that the circuit operates at a fixed frequency.)

Crosstalk between two parallel routed net segments de-
creases as their separating distance increases. Since it can be
assumed that crosstalk between two nonadjacent net segments
will be shielded by other nets between them, we simplify the
computation by considering crosstalk only between adjacent
net segments. We note that the algorithm can be easily ex-
tended to consider crosstalk between nonadjacent net segments
as well.

Resulting from these considerations, three objectives are
used in this work to assess the quality of the routing.

• Netlength: We minimize a function that considers the
length of each net with a quadratic growth. Thus, an
increased “pressure” is placed on the longest nets to be
minimized, because these nets are mainly responsible for
the delay in the routing.

• Number of Vias: The number of vias should be as small
as possible.

• Parallel Routed Net Segments: Crosstalk is expressed as
the sum of the crosstalks in all nets which, in turn, is
proportional to the length of parallel segments adjacent to
each net. Thus, we minimize the overall sum of parallel,
adjacent net segments for each net.

Hence, as common in VLSI layout design, the routing
problem belongs to the domain of multi-objective optimization
(see [13] for a good introduction in this topic including
different solution strategies with evolutionary algorithms). We
use an objective function that is composed of terms which
represent our three objectives combined with weight factors.
Our goal is to minimize the sum of these terms by measuring
the cost of the solution with respect to user-defined weights
for each of the objectives.

III. PREVIOUS WORK

A. Minimum Crosstalk Routing

Algorithms for minimized crosstalk routing have been pre-
sented in [5], [11], [14], [15], and [28]. The solutions in [5],
[11], and [28] are based on variable grid spacings to satisfy
the crosstalk constraints. However, these solutions are difficult
to implement on gridded VLSI routing problems.
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In [14] and [15], a conventional routing algorithm is first
used to generate an initial routing solution with conventional
objectives (e.g., channel height). The wire segments in the
initial routing solution are then reassigned to satisfy the
crosstalk constraints and to minimize the total crosstalk in
the nets.

The above-mentioned strategies lead to routing solutions
with significantly less crosstalk in the nets. However, it is
important to note that the crosstalk minimization takes place
after the routing procedure and thus is limited to a modification
of the conventional routing solution.

B. Genetic Algorithms for the Routing Problem

Several papers have been published in which genetic-
algorithm-derived strategies are applied to the routing problem
of VLSI circuits [16], [17], [24]–[26], [29]–[32].

In [26], a rip-up-and-rerouter is presented which is based on
a probabilistic rerouting of nets of one routing structure. How-
ever, the routing is accomplished by a deterministic routing
algorithm, and main components of genetic algorithms, such as
the crossover of different individuals, are not applied. Results
are presented for channel and switchbox routing benchmarks.
No runtimes for these examples are given.

The router in [16] combines the steepest-descent method
with features of genetic algorithms. The crossover operator
is restricted to the exchange of entire nets and the mutation
procedure performs only the creation of new individuals. The
presented results are limited to simple VLSI problems, and no
runtime figures are shown.

The proposed algorithms in [29]–[32] are limited to the
restrictive channel routing problem. Here, all vertical net
segments are located on one layer, and all horizontal segments
are placed on a second layer. This and other restrictions
make these approaches unusable for real VLSI channel routing
problems.

The genetic algorithm for channel routing published in [24]
is based on a problem-specific representation scheme, i.e.,
individuals are coded in three-dimensional (3-D) chromosomes
with integer representation. The genetic operators are also
specifically developed for the channel routing problem. The
results are either qualitatively similar to or better than the best
published results for channel routing benchmarks. The runtime
of the algorithm is not as competitive.

A genetic algorithm for switchbox routing is presented in
[25]. Similar to [24], the genotype is essentially a lattice corre-
sponding to the coordinate points of the layout. Crossover and
mutation are performed in terms of interconnection segments.
The algorithm assumes that the switchbox is expandable in
both directions. Subsequently, these extensions are reduced
with the goal to reach the fixed size of the switchbox. On
numerous benchmark examples, the router produces results
equal to or better than the previously best published results,
while not being runtime competitive.

In [17], a genetic algorithm for the channel routing problem
is presented that includes a rip-up-and-reroute strategy. The
initial population is created with a shortest-path algorithm
combined with random decision making. The published re-

Fig. 2. Punctuated equilibria model with four subpopulations. Subpopula-
tions evolve in isolation (“Isolated Evolution”), periodically interrupted by a
limited exchange of individuals (“Migration”).

sults are equal to the ones in [24] while obtaining shorter
runtimes.

Please note that the mentioned genetic algorithms for VLSI
routing have two characteristics. First, they are sequential
approaches despite the fact that PGA’s have been shown to
lead generally to better results (e.g., in [9], [20], and [23]).
Second, they consider only netlength and the number of vias
as optimization goals but not electrical constraints such as
crosstalk.

IV. DESCRIPTION OFGAP

A. Outline

Different ways exist to parallelize a genetic algorithm [2].
However, most of these methods result only in a speed-up of
the algorithm without qualitative improvements to the problem
solutions. To gain better problem solutions, we designed a
PGA inspired by concepts from the theory ofpunctuated
equilibria [7], [12]. A genetic algorithm with punctuated
equilibria is a PGA in which independentsubpopulationsof
individuals with their ownfitness functionsevolve in isolation,
except for an exchange of individuals (migration) when a state
of equilibrium throughout all the subpopulations has been
reached (see Fig. 2).1 Previous research has shown genetic
algorithms with such punctuated equilibria to often have better
performance when compared to sequential genetic approaches
applied to the same domain [7], [9], [23].

The parallel structure of our algorithm for the case of nine
processors is shown in Fig. 3. We assign a set ofindividuals
(problem solutions) to each of the processors, for atotal
populationsize of . The set assigned to each processor,
, is its subpopulation, . The processors are connected by

an interconnection network with a torus topology. Thus, each
processor (subpopulation) has exactly fourneighbors.

1This form of PGA has also come to be called “the island model.”
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Fig. 3. Neighborhood structure of nine subpopulations. The subpopulations
are arranged in a torus.

The genetic algorithm used by each processor and the main
process that steers the parallel execution are presented in
Fig. 4. First, the main process creates an initial subpopu-
lation at each processor. This initial subpopulation consists
of randomly constructed (i.e., not optimized) routing so-
lutions. They are designed by a random routing strategy
which connects net points in an arbitrary order with randomly
placed interconnections (see [24] for a detailed description of
our random routing strategy). The main process consists of

iterations, called . During an epoch, each
processor, disjointly and in parallel, executes the sequential
genetic algorithm on its subpopulation for a certain number
of generations ( ). Afterwards, each subpopula-
tion exchanges a specific number of individuals (migrants)
with its four neighbors. Please note that we exchange the
individuals themselves, i.e., the migrants are removed from
one subpopulation and added to another. Hence, the size
of the subpopulations remains the same after migration and
the assimilation of migrants is simply a fitness recalculation
( ).

The process continues with the separate evolution of each
subpopulation during the next epoch. At the end of the process,
the best individual that exists (or has existed) constitutes our
final routing solution.

The following section briefly describes some specific char-
acteristics of the sequential genetic algorithm used by each
processor to evolve its subpopulation.

B. Characteristics of GAP

1) Genetic Representation:The genetic encoding of the
routing problem is based on the problem-specific represen-
tation scheme presented in [24]. Here the layout is coded
in a 3-D lattice-like chromosome with the cells representing
different coordinate points of the routing solution. The value
of a cell indicates which net is routed at this coordinate point
in the routing solution. A negative cell value indicates a
fixed assignment (e.g., a pin) and zero indicates that the area
is unused (see [24] for a more detailed description of our
representation scheme).

We chose this 3-D encoding scheme with integer represen-
tation after numerous experiments with other genetic encoding
schemes. For example, parts of the routing structure with
near-optimal routing paths (termed as good “routing islands”)

are often scattered over the chromosome instead of being
represented in one compact building block when binary or
integer string representations are used. Our 3-D encoding
scheme ensures that good “routing islands” in the routing
structure are preserved as compact high-fitness building blocks
in the chromosome. Consequently, these building blocks have
a high probability of being transferred intact and recombined
with other high-quality building blocks in offspring solutions.
Furthermore, this encoding scheme enables a simple monitor-
ing of the routing constraints directly in the chromosome.

2) Fitness Calculation:The fitness of each individ-
ual is calculated to assess the quality of its routing
relative to the rest of the subpopulation. The selection of the
parents for crossover and the selection of individuals which are
transferred into the next generation are based on these fitness
values.

A raw fitness function is calculated for each indi-
vidual according to

(1)

where

netlength as the sum of a quadratic function of the
length of each net of ;
number of vias of ;
length of adjacent net segments, summarized over all
nets, of (“crosstalk”).

It is important to note that the variable weight factors
enable us to easily adjust routing quality objec-

tives, including the tolerance of crosstalk, to the requirements
of a given VLSI technology.

The final fitness values for all individuals of the
subpopulation are determined by linearly scaling ,
as described in [19], in order to control the relative range
of fitness in the subpopulation. Fitness scaling is performed
local to the specific subpopulation with the scaled fitness

( average raw fitness) [19].
3) Selection: Our selection strategy, which is responsible

for choosing the parents for the crossover procedure, is sto-
chastic sampling with replacement (“roulette-wheel selection”)
[19]. That means any individual is selected with a
probability given by

Prob is selected (2)

4) Crossover: During a crossover, two individuals are com-
bined to create a descendant. Our crossover operator is a
1-point operator [19] that gives high-quality routing parts of
the parents an increased probability of being transferred intact
to their descendant. At the same time it guarantees enough
randomness to explore new regions of the search space.

Crossover is performed in terms of wire segments. A
randomly positioned line (“crossline”) perpendicular to the
edges of the routing area divides this area into two sections,
playing the role of the crosspoint. This line can be either
horizontally or vertically placed. For example, interconnection
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Fig. 4. Overview of our algorithm. See text for details.

Fig. 5. Crossover of parentsp� and p� to create a descendantp
 .

segmentsexclusivelyon the upper side of the crossline are
inherited from the first parent, and segmentsexclusivelyon
the lower side of the crossline are inherited from the second
parent. Segments intersecting the crossline are newly created
within the descendant by means of our random routing strategy
[24].

A simple example of a crossover procedure is shown in
Fig. 5.

5) Reduction: We use a deterministic reduction strategy
which guarantees that high-quality individuals survive in as
many generations as they are superior. Our reduction strategy
simply chooses the fittest individuals of ( ) to
survive as into the next generation. This strategy, which
is the same as the strategy often applied in evolution

strategies and evolutionary programming [3], is derived from
the characteristic of our crossover operator that a high-quality
parent does not necessarily produce a high-quality descendant,
and in such a case, the parent should survive rather than the
descendant.

6) Mutation: Mutation operators perform random modifi-
cations on an individual. The purpose is to overcome local
optima and to exploit new regions of the search space.

Our mutation operator works as follows. A surrounding
rectangle with random sizes ( ) around a random center
position ( ) is defined. All interconnections inside this
rectangle are deleted. The remaining net points on the edges
of this rectangle are now connected again in a random order
with our random routing strategy [24].
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V. IMPLEMENTATION AND RESULTS

The algorithm has been implemented on a network of (up to)
eight SPARC workstations (SunOS and Solaris systems). The
parallel computation environment is provided by the Mentat
system, an object-oriented parallel processing system [21],
[27]. The program, written in C and Fortran, comprises
approximately 10 000 lines of source code. The experimental
results have been achieved with the machines running their
normal daily loads in addition to our algorithm.

A. Comparison of GAP to Other Routing Algorithms

Any application of a genetic algorithm should focus on a
comparison to solution techniques that have been acknowl-
edged as effective by that application’s community. Here we
compare the results of GAP with the best-known results of
other algorithms for channel and switchbox routing bench-
marks (see Table I). The other routing algorithms do not
consider crosstalk and thus can only be compared with our
routing results regarding netlength and number of vias. Hence,
we kept the weight factor for crosstalk, , at a low level
(0.01). The other weight factors in (1) are set to
and .

GAP was executed 120 times per benchmark with varying
parameters (presented later). Table I presents the best-ever-
seen results for all algorithms. The results from GAP are
qualitatively similar to or better than the best-known results
from popular channel and switchbox routers published for
these benchmarks. The layout of Burstein’s Difficult Switch-
box achieved with our algorithm is depicted in Fig. 6.

All executions of GAP were based on arbitrary initializa-
tions of the random number generator. Due to the stochastic
nature of a genetic algorithm, the best-ever-seen results of
GAP were not achieved in all executions. However, we should
note that solutions equal to the best-ever-seen results were
obtained in at least 50% of the individual GAP executions. The
specific “success rates” for some benchmarks are: Burstein’s
Difficult Channel: 82%, Joo613 Channel 76%, Joo616 Chan-
nel 57%, Joo617 Switchbox 68%, and Pedagogical Switchbox
54%.

Please note that these “success rates” were achieved with
different (including unfavorable) parameter settings (see Sec-
tion VI) and thus, can be considered as lower bound in the
individual variability of the results.

B. Crosstalk Reduction

By adjusting the value of the weight , our algorithm can
optimize the interconnections regarding crosstalk. Hence, our
router can construct solutions that contain a minimal number
of parallel, adjacent interconnections.

The length of all adjacent net segments of net(i.e., the
length of the segments that are routed adjacent to) is denoted
by the parameter . The parameter
symbolizes the maximal tolerable crosstalk for netby ex-
pressing the maximal tolerable length of adjacent segments of
. Thus, represents a violation of

the crosstalk constraint of net and can be easily detected

TABLE I
COMPARISON OFGAP WITH SOME WELL-KNOWN ALGORITHMS FORBENCHMARK

CHANNELS (UPPERHALF) AND SWITCHBOXES (LOWER HALF). THE RUNTIME OF

GAP IS AVERAGED OVER THE RUNS THAT LED TO THEPRESENTEDRESULTS. BEST

RESULTS (ACCORDING TONUMBER OF VIAS AND NETLENGTH) ARE IN BOLDFACE

already during the routing process. The parameter
denotes the sum of over all nets.

Table II presents the routing results that have been achieved
by varying . Since no maximum tolerable crosstalks in
the nets were specified for the four benchmarks we used,

was set to a value which was considered ap-
propriate. The results show that an increase of leads
to significantly fewer parallel routed net segments (“ ”)
and fewer violations (denoted with “”) of the net-specific
crosstalk requirement ( ). How-
ever, as can be seen in Table II, the minimization of crosstalk
leads in general to an increase in both the netlength and the
number of vias.
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Fig. 6. Our routing solution of Burstein’s Difficult Switchbox. Black lines
represent interconnections on one layer (metal 1), and grey lines denote
interconnections on the other layer (metal 2).

TABLE II
REDUCTION OF CROSSTALK ACHIEVED BY INCREASING THE WEIGHT FACTOR FOR

CROSSTALK, w3, FOR THREE CHANNELS AND ONE SWITCHBOX (w1 = 1:0,
w2 = 2:0). cross REPRESENTS THEOVERALL LENGTH OF ALL ADJACENT,

PARALLEL ROUTED NET SEGMENTS PERBENCHMARK. V DENOTES THENUMBER

OF NETS FORWHICH THEIR UPPERBOUND OF PARALLEL ROUTED SEGMENTSIS

EXCEEDED, I.E., THAT REPORT A VIOLATION OF THEIR INDIVIDUAL CROSSTALK

CONSTRAINT. THE RESULTS PERBENCHMARK ARE AVERAGED OVER FIVE RUNS

Practical applications of this multi-objective optimization
problem require the designer to specify the weights according
to his/her optimization priorities. Practical approaches might
include the generation of alternative solutions with emphasis
on different optimization goals. From the output solution set,
the designer then chooses a specific solution representing the
preferred tradeoff.

VI. I NVESTIGATION OF GAP PARAMETERS

As mentioned earlier, a PGA with punctuated equilibria
alternates the maintenance of subpopulations isolated in dif-
ferent environments (to allow the development of individuals)
with the introduction of individuals to new environments
(to motivate further development of the individuals). We
create different environments by defining the fitness of an
individual relative to the quality of the other individuals in
its current subpopulation (fitness scaling [19]). Exchanging
individuals between subpopulations, i.e., migration, will alter
the fitness values of the individuals within the subpopulation
and introduce new competitors. Migration, of course, is based
on various parameters, such as how often, how much, who,
size and number of subpopulations, among others beyond the
scope of this paper. We have performed several experiments to
understand the specific effects of these parameters in order to
guide further applications of PGA’s with punctuated equilibria.

TABLE III
THE FIVE BENCHMARKS CHOSEN FORSUBSEQUENT EXPERIMENTS AND

THEIR SPECIFIC PARAMETERS. “BEST-KNOWN SCORE” REPRESENTS

THE BEST-EVER-SEEN RESULT OF EACH BENCHMARK (SEE TABLE I)

A. Measurement Conditions

In Table III, we show the five problem instances (three
channel benchmarks and two switchbox benchmarks) cho-
sen for our experiments. These benchmarks were selected
because of their diversity and the availability of numerous
published routing results. We compare the results of GAP in
the following experiments with the best-known scores for these
benchmarks (the rightmost column of Table III). These scores
reflect the netlength and the number of vias as presented in
Table I. All results presented in Tables IV–VIII are normalized
as the percentage exceeding this best-known score, with the
percentage averaged over five runs.

For comparison purposes, we also applied a sequential ge-
netic algorithm (SGA) on thetotal population size (combined
set of all subpopulations). This sequential genetic algorithm
has been shown to produce the best results of any genetic
algorithm for the considered benchmarks to date [24], [25].

To ensure a fair comparison, the following characteristics
were considered. 1) Experimental results showed that the
combined set of all subpopulations is not an “unfavorable
setting” for the sequential genetic algorithm; on the contrary,
the results are consistently better than the ones achieved with
any smaller population size. 2) The sequential algorithm is
operationally equivalent to the genetic algorithm that evolves
each subpopulation in GAP. 3) In the experiments, the sequen-
tial genetic algorithm was set to perform the same number of
recombinations per generation as GAP does over all subpopu-
lations, namely,number of subpopulations descendants per
subpopulation. 4) The sequential genetic algorithm and GAP
were run the same total number of generations (see Table III).
The number of generations is in accordance with the “optimal”
values of the sequential genetic algorithm achieved in previous
experiments [24], [25].

To demonstrate the importance of migration, we also report
the results achieved with GAP when the subpopulations evolve
in isolation (“0 Migrants”).

B. Number of Migrants and Epoch Lengths

We investigated the influence of different epoch lengths
(number of generations between migration) for different num-
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(a) (b)

Fig. 7. Comparison of the convergence of the best individuals in the individual, parallel evolving subpopulations. Plotted are five runs with nine subpopulations
each, i.e., 45 curves, in (a) isolation and (b) with two migrants. The “lower” curves and the smaller envelope of the right-hand plot indicate better
results and less variation throughout the subpopulations.

bers of migrants (number of individuals sent to each of the four
neighbors). The migrants were chosen randomly, with each
migrant allowed to be sent only once. (As described earlier,
the migrants are removed from one subpopulation and added
to another.) Table IV shows that the sequential approach is
outperformed by all parallel variations, including the version
without any migration, when averaged over all considered
benchmarks. Thus, the splitting of the total population size
into parallel evolving subpopulations already increases the
probability that at least one of these subpopulations will evolve
toward a better result.2

Table IV also shows that a limited migration between the
subpopulations further enhances the advantage of the PGA.
Two migrants to each neighbor with an epoch length of 50
generations resulted in the best parameters when averaged
over all problem instances. On the one hand, more migrants
or too short epoch lengths are counterproductive to the idea of
disjointly and parallel evolving subpopulations. They diminish
the genetic diversity between the subpopulations by “pulling”
them all into the same part of the search space, thereby
approaching the behavior of a single-population genetic al-
gorithm. On the other hand, insufficient migration (epoch
length 75 generations) simulates the isolated parallel approach
(zero migrants)—the genetic richness of the neighboring sub-
populations does not have enough chance to spread out.
Increasing the number of migrants can help in this case,
although doing so does not achieve the good results of a
“moderate” epoch length combined with a low number of
migrants.

2Later, we will see that this conclusion requires that the number of
individuals per subpopulation, depending on the problem size, is sufficiently
large. Obviously, 50 individuals per subpopulation as in our case fulfills this
requirement.

TABLE IV
OBTAINED CHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT NUMBERS OF

MIGRANTS AND EPOCH LENGTHS. FOR COMPARISON REASONS, THERESULTS OF

A SEQUENTIAL GENETIC ALGORITHM (SGA) ARE ALSO GIVEN. ALL RESULTS

ARE AVERAGED OVER FIVE RUNS AND NORMALIZED AS PERCENT EXCEEDING

THE BEST-KNOWN SCORE IN TABLE III. T HUS, THE SMALLER THE VALUE, THE

BETTER THE AVERAGE RESULT OF THE PARTICULAR CONFIGURATION

Fig. 7 shows this behavior in the context of all subpopu-
lations, that is, it presents the convergence behavior of the
best individuals in each of the parallel evolving subpopu-
lations. It indicates the importance of migration to avoid
premature stagnation by implementing new genetic material
into a stagnating subpopulation. Furthermore, the plot points
out the “stabilizing” effect of migration as expressed in the
limited variation among the best subpopulations gained in five
independent runs [see Fig. 7(b)].

C. Variable Epoch Lengths

The ideas surrounding punctuated equilibria might be used
to suggest: 1) a population in a constant environment will sta-
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TABLE V
COMPARISON OFCHANNEL AND SWITCHBOX RESULTS BETWEEN A FIXED (50

GENERATIONS) AND A VARIABLE EPOCH LENGTH. THE VARIABLE EPOCH

LENGTH WAS TERMINATED INDIVIDUALLY IN EACH SUBPOPULATION AFTER

25 GENERATIONS WITH NO IMPROVEMENT OF THEBEST INDIVIDUAL .
ALL RESULTS ARE AVERAGED OVER FIVE RUNS AND NORMALIZED AS

PERCENT EXCEEDING THE BEST KNOWN SCORE IN TABLE III

bilize over time with little motivation for further development
(“stasis” [12]), and 2) bursts of rapid evolution are often caused
by small sets of individuals migrating to a new environment
(“allopatric speciation” [12]). We, however, are interested in
evolutionary systems for optimization, so we have used these
ideas to design a model in which the evolutionary system has
several subpopulations. These subpopulations are considered
to be usefully evolving until they reach a stasis condition, at
which point the model calls for migration in order to instigate
further useful evolution. Most published computation models
that are based on punctuated equilibria use a fixed number
of generations between migration. Thus, they do not exactly
duplicate the model that migration occurs only after a stage of
equilibrium has been reached within a subpopulation.

We modified the algorithm to investigate the importance
of this characteristic. Rather than having a fixed number of
generations between migrations, we introduced a stop criterion
that takes effect when stagnation in the convergence behavior
within a subpopulation has been reached. We defined a suitable
stop criterion to be 25 generations with no improvement in the
best individual within a subpopulation.

Again, to ensure a fair comparison, we kept the overall
number of generations the same as in all other experiments.
This led to varying numbers of epochs between the parallel
evolving subpopulations (due to different epoch lengths) and
resulted in longer overall completion time.

Our results, presented in Table V, suggest that a slight
improvement compared with a fixed epoch length can be
achieved by this method. However, it is important to note
that this comparison is made with a fixed epoch length that has
been shown to be (nearly) optimal after numerous experiments
(see Table IV). Thus, a variable epoch length based on the
convergence behavior within the subpopulations can be useful
when 1) a time effective usage of computational resources
does not have highest priority, and/or 2) no prior experiences
with an appropriate epoch length exist.

TABLE VI
COMPARISON OFCHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT

MIGRANT SELECTION STRATEGIES (NO RESTRICTION ON MIGRANTS,
MIGRANTS WITH FITNESS ABOVE MEDIAN FITNESS, BEST INDIVIDUALS

AS MIGRANTS). ALL RESULTS ARE AVERAGED OVER FIVE RUNS AND

NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN SCORE IN TABLE III

D. Different Migrant Selection Strategies

We investigated the influence of the quality of the migrants
on the routing results. Three migrant selection strategies were
compared: “Random” (migrants were chosen randomly among
the entire subpopulation), “Top 50%” (migrants were chosen
randomly among the individuals with a fitness above the
median fitness of the subpopulation), and “Best” (only the
best individuals of the subpopulation migrated). The migrants
were sent in a random order to the four neighbors.

As Table VI indicates, we cannot find any improvement
in the obtained results by using migrants with better quality.
On the contrary, selecting better (or the best) individuals to
migrate led to a faster convergence—the final results were not
as good as those achieved with a less elitist selection strategy.
According to our observations, this is due to the dominance
of the migrants having their (locally good) genetic material
reach all the subpopulations, thus leading the subpopulation
searches into the same part of the search space concurrently.

E. Different Number of Subpopulations

To compare the influence of the number of subpopula-
tions, we first kept the size of the subpopulations constant
and increased the number of subpopulations to 16 and 25.
Accordingly, we increased the population size and the num-
ber of recombinations of the sequential genetic algorithm to
maintain a fair comparison. As expected, the sequential genetic
algorithm improves its performance due to the larger number
of solutions evaluated (see Table VII). The same is true for
the parallel approach. The larger total population size and thus
higher overall number of recombinations led to better results.

An interesting variation on this experiment is the division
into different numbers of subpopulations while keeping the
total population size constant. Thus, with 16 subpopulations,
the subpopulation size is reduced to 28 individuals; with 25
subpopulations, the size decreases to only 18 individuals.
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TABLE VII
COMPARISON OFCHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT

NUMBERS OF SUBPOPULATIONS. THE SIZE OF THE SUBPOPULATIONS IS KEPT

CONSTANT AT 50 INDIVIDUALS . THE RESULTS OF THESEQUENTIAL GENETIC

ALGORITHM FOR THE RESULTING DIFFERENT OVERALL POPULATION SIZES ARE

ALSO GIVEN. ALL RESULTS ARE AVERAGED OVER FIVE RUNS AND

NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN SCORE IN TABLE III

The results presented in Table VIII show the relation-
ship between the problem size and the minimal number of
individuals per subpopulation necessary to prevent prema-
ture convergence. Relatively small problem sizes (Burstein,
Joo613) benefit from a further splitting into more (but smaller)
subpopulations. The advantage of more varied evolving sub-
populations outperforms the drawback of a smaller subpop-
ulation size up to a certain level. This level seems to be
reached shortly below 50 individuals per subpopulation for
the switchbox Joo617 and the Pedagogical Switchbox—their
results suffer significantly from the loss of genetic diversity
due to smaller subpopulations.

VII. CONCLUSIONS

We presented a PGA for two detailed routing problems
in VLSI circuits. The approach includes a new measure of
the netlength to better reflect the electrical delay in submi-
cron regimes. Importantly, the approach also optimizes the
interconnections involving crosstalk by introducing crosstalk
as a constraint in the fitness calculation. Hence, our router
can construct solutions which contain a minimal number of
parallel, adjacent interconnections—an increasingly significant
consideration in submicron VLSI design.

The results also showed that, when applied to our routing
problem, the PGA—based on concepts of punctuated equi-
libria—consistently performs better than a sequential genetic
algorithm.

In investigating the parameters of the algorithm, the follow-
ing conclusions have been reached.

• A small number of migrants (1–3 per neighbor) combined
with a “moderate” epoch length (approximately 5–10% of
the total number of generations) leads heuristically to the
best results.

• Variable epoch lengths determined via equilibrium mea-
sures within subpopulations achieve overall results that

TABLE VIII
COMPARISON OFCHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT NUMBERS

OF SUBPOPULATIONS. THE SIZE OF THE TOTAL POPULATION IS KEPT CONSTANT

AT 450 INDIVIDUALS . ALL RESULTS ARE AVERAGED OVER FIVE RUNS AND

NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN SCORE IN TABLE III

are slightly better than those obtained with (near-) opti-
mized fixed epoch lengths. Practical applications of this
“strict punctuated equilibria method” require the user to
weigh the advantage of this “self-adjustment” against its
main drawback, decreased time efficiency.

• Quality constraints on the migrants (e.g., to be above
median fitness) do not improve the overall behavior of
the algorithm, on the contrary, quality requirements on
the selection of migrants led to premature stagnation.

• Given a sufficient number of individuals per subpopula-
tion, a larger number of parallel evolving subpopulations
will produce better routing results (for a fixed number
of total evaluations). The size of the problem and the
minimal subpopulation size have a direct correlation that
must be taken into account when dividing a population
into subpopulations.

Our algorithm can be easily implemented on any distributed
network of conventional workstations. We believe this ap-
proach promises to be a useful tool in VLSI design.
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