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Performance-Driven VLSI Routing
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Abstract—This paper presents a novel approach to solve the VLSI circuit
VLSI (very large scale integration) channel and switchbox routing
problems. The approach is based on a parallel genetic algorithm
(PGA) that runs on a distributed network of workstations. The
algorithm optimizes both physical constraints (length of nets,
number of vias) and crosstalk (delay due to coupled capacitance).
The parallel approach is shown to consistently perform better
than a sequential genetic algorithm when applied to these routing
problems. An extensive investigation of the parameters of the
algorithm yields routing results that are qualitatively better or as
good as the best published results. In addition, the algorithm is
able to significantly reduce the occurrence of crosstalk.

Index Terms—Channel routing, crosstalk, parallel computa-

tion, parallel genetic algorithm, punctuated equilibria, switchbox
routing, VLSI physical design. o 3
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I NTERCQNNECTION routing is one of the maJ'OT tasks iIﬂ':ig. 1. The VLSI channel (left) and switchbox (right) routing problem and
the physical design of very large scale integration (VLSHRossible routing solutions.
circuits. Pins that belong to the same net are connected together

subject to a set of routing constraints. With new perfOi a4 res decrease, electrical delay is increasingly governed by
mance requirements for the design, routing constraints SUCh@$ o, ting delay (rather than delay within the logic cells) and
cros;talk t?et""ee” Interconnections are becoming mcreqsmg&a consequence needs to be considered in the routing process.
dominant in submicron regimes [4]. He_nce, new algquthms Our motivations to present an evolution-based algorithm
are 'needed to meet the severe tqpol'oglcal. and electrical CQl}- the detailed routing problem are threefold. First, many
straints posed by current VLSI circuit desigRerformance- o\iously published detailed routing strategies only consider
driven routing addresses these performance-related routidgy «ica| constraints, such as the netlength and the number of
_constralnts. In light Of,th's trend, perfqrmance-dnven roUGias (defined in Section II). However, with further minimiza-
Ny f:as been thr? rlnam fOClIJS c;f routing-related  algorithigy, i, v s design, new electrical constraints are becoming
development in the last couple of years (€.g., [5], [10], [13}jgminant and need to be addressed. Second, today’s typical
[14], [15]). . i computer-aided design environment consists of a number of
Channel and switchbox routing are the two most comy, ystations connected together by a high-speed local net-
mon routing problems in VLSI circuits. Examples of channgl, - Aithough many VLSI routing systems make use of the
routing ar;d EW'tChpOX rhouliunQ problfemhs are shown in Fig. Tnenyork to share files or design databases, none of the known
One of the main chal elrllges 0 tlke r01|1t|ng prlocfess Pbuting programs (evolution-based or deterministic algorithms)
submicron regimes isrosstalk Crosstalk results mainly from ,se this distributed computer resource to parallelize and speed
coupled capacitance between adjacent (parallel routed) intgl- their work. Third, all published genetic algorithms that
connections. Wlth further _m|n|m|zat|on in dg3|gn, and t_huﬁddress the routing problem are sequential approachesyiee.,
further reduction of the distance between mterconnectlo%pulaﬂon evolves by means of genetic operators. However
crosstalk is becoming an.lmEor;ant electrical constraint apdeant puplications indicate that parallel genetic algorithms
it is going to be more so in the future [4], [28]. PGA’s) with isolated evolving subpopulations (that exchange

Another electrical constraint which is increasinglyimporta%dividuals from time to time) may offer advantages over
is electrical delay This is defined as the time it takes forsequential approaches [2], [7], [9], [20], [23].

signals to propagate through the circuit. As integrated circunWe present a PGA for detailed routing, called GAP (genetic
Manuscript received September 16, 1996; revised January 29, 1997. Talgorithm with punctuated equilibria), that runs on a distributed
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addresses the increased importance of the relationship betwekthe lengths of the nets. Under many technologies, a first-
electrical delay and netlength by minimizing a nonlineasrder approximation to the electrical delay is the product of
function of the lengths of the nets. the resistance and capacitance of the interconnection [10].
We show that our parallel approach performs better tharMéth a fixed width for the interconnection, this product is
sequential genetic algorithm when applied to the channel aadquadratic function of the length of the interconnection.
switchbox routing problem. Furthermore, on many benchmailus, in most cases the electrical delay of an interconnection
examples, the router produces better results than the bestsoproportional to a quadratic function of its length. Hence,
those previously published. We examine the performance rather than minimizing the sum of the lengths of the nets, we
GAP while varying important parameters of a PGA. minimize a quadratic function of their individual lengths.
The contributions of this paper are: Crosstalk between two interconnections is proportional to
« a formulation of a PGA that is capable of handling théheir coupling capacitance. The coupling capacitance is pro-
VLSI routing problem with both topologicaindelectrical Portional to the coupling length of the two interconnections
constraints, in particular, a consideration of crosstalfthe total length of their overlapping segments) and inversely

minimization directly during the routing process; proportional to their separation. (Crosstalk between two inter-
« comparisons of the performance of our algorithm witGonnections also depends on the frequency of the signals in
previous routing Strategies; these wires. In order to Slmpllfy our presentation, we assume

- comparisons of the solution quality of our parallel apthat the circuit operates at a fixed frequency.)
proach based on the punctuated equilibria model with Crosstalk between two parallel routed net segments de-
a sequential genetic algorithm running under the sarfiEeases as their separating distance increases. Since it can be

constraints; assumed that crosstalk between two nonadjacent net segments
« an investigation of the influence of various parallelizatioWill be shielded by other nets between them, we simplify the
parameters on the routing results. computation by considering crosstalk only between adjacent

Throughout this work, we will use the term PGA to describBet segments..We note that the algorithm can be easily ex-
a genetic algorithm with multiple populations (populatioﬁended to consider crosstalk between nonadjacent net segments

structures). Accordingly, “sequential genetic algorithm” indi@S_Well

cates a genetic algorithm with a single population (panmictic). Résulting from these considerations, three objectives are

This usage is consistent with many previous papers. Howevkfed in this work to assess the quality of the routing.

it is important to note that “parallel” and “sequential” refer * Netlength: We minimize a function that considers the

to population structures, not the hardware on which the al- length of each net with a quadratic growth. Thus, an

gorithms are implemented. In particular, the PGA could be increased “pressure” is placed on the longest nets to be
simulated on a single processor platform (as any discrete Minimized, because these nets are mainly responsible for
parallel process can) and the sequential genetic algorithm the delay in the routing.

could be executed on a multiprocessor platform. ¢ Number of Vias: The number of vias should be as small
as possible.

« Parallel Routed Net Segments: Crosstalk is expressed as
the sum of the crosstalks in all nets which, in turn, is
The VLSI routing problem is defined as follows. Consider  proportional to the length of parallel segments adjacent to

a rectangular routing region withins located on two parallel each net. Thus, we minimize the overall sum of parallel,

boundaries ¢hanne) or four boundaries switchboX (see adjacent net segments for each net.

Fig. 1). The pins that belong to the samet need to be  Hence, as common in VLSI layout design, the routing
connected subject to certain constraints and quality factopgoblem belongs to the domain of multi-objective optimization
The interconnections need to be made inside the boundariése [13] for a good introduction in this topic including
of the routing region on a symbolic routing area consisting efifferent solution strategies with evolutionary algorithms). We
horizontalrowsand verticalcolumns Two layersare available yse an objective function that is composed of terms which
for routing in our model. _ _ represent our three objectives combined with weight factors.
We define asegmentio be an uninterrupted horizontal orQur goal is to minimize the sum of these terms by measuring

vertical part of a net. Thus, any connection between two pifige cost of the solution with respect to user-defined weights
will consist of one or more net segments and is referred to &% each of the objectives.

an interconnection A connection between two net segments
on different layers is called sia. The overall length of all
segments of one net used to connect its pins is defined as its
netlength o .
With the advances in VLSI technology, the relationshif: Minimum Crosstalk Routing
between electrical delay and netlength becomes more imporAlgorithms for minimized crosstalk routing have been pre-
tant [4]. Thus, new measures of netlength are needed thahted in [5], [11], [14], [15], and [28]. The solutions in [5],
reflect the electrical delay better than the commonly usétil], and [28] are based on variable grid spacings to satisfy
minimization of the sum of the lengths of all nets. One sudhe crosstalk constraints. However, these solutions are difficult
measure is accomplished by minimizing a nonlinear functidn implement on gridded VLSI routing problems.

Il. PROBLEM FORMULATION

Il. PREVIOUS WORK
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In [14] and [15], a conventional routing algorithm is first

used to generate an initial routing solution with conventional | Isotated

objectives (e.g., channel height). The wire segments in the | .  iuion
initial routing solution are then reassigned to satisfy the L
crosstalk constraints and to minimize the total crosstalk in

the nets.

The above-mentioned strategies lead to routing solutions Y . _
with significantly less crosstalk in the nets. However, it is Migration -
important to note that the crosstalk minimization takes place ’7 | g//
afterthe routing procedure and thus is limited to a modificatio —
of the conventional routing solution. |

}rlsolatcd \ /
B. Genetic Algorithms for the Routing Problem ' Evolution |

Several papers have been published in which genetic- ‘
algorithm-derived strategies are applied to the routing problem !
of VLSI circuits [16], [17], [24]-[26], [29]-[32]. Result

In [26], a rip-up-and-rerouter is presented which is based 6fy. 2. Punctuated equilibria model with four subpopulations. Subpopula-
a probabilistic rerouting of nets of one routing structure. HOW_‘-Or_‘S evolve in isolati'on_(‘flsolated Eyolu_tion"), periodically interrupted by a
. . . L . limited exchange of individuals (“Migration”).
ever, the routing is accomplished by a deterministic routing
algorithm, and main components of genetic algorithms, such as
the crossover of different individuals, are not applied. Resubsilts are equal to the ones in [24] while obtaining shorter
are presented for channel and switchbox routing benchmarkstimes.

No runtimes for these examples are given. Please note that the mentioned genetic algorithms for VLSI
The router in [16] combines the steepest-descent methaaiting have two characteristics. First, they are sequential
with features of genetic algorithms. The crossover operatapproaches despite the fact that PGA’s have been shown to

is restricted to the exchange of entire nets and the mutati@ad generally to better results (e.g., in [9], [20], and [23]).

procedure performs only the creation of new individuals. THgecond, they consider only netlength and the number of vias

presented results are limited to simple VLSI problems, and ms optimization goals but not electrical constraints such as

runtime figures are shown. crosstalk.
The proposed algorithms in [29]-[32] are limited to the

restrictive channel routing problem. Here, all vertical net

segments are located on one layer, and all horizontal segments

are placed on a second layer. This and other restrictions

make these approaches unusable for real VLSI channel routiygOutline

problems. Different ways exist to parallelize a genetic algorithm [2].

The genetic algorithm for channel routing published in [24}jowever, most of these methods result only in a speed-up of
is based on a problem-specific representation scheme, ilge algorithm without qualitative improvements to the problem
individuals are coded in three-dimensional (3-D) chromosomesiutions. To gain better problem solutions, we designed a
with integer representation. The genetic operators are alsgA inspired by concepts from the theory pfinctuated
specifically developed for the channel routing problem. Theyuilibria [7], [12]. A genetic algorithm with punctuated
results are either qualitatively similar to or better than the begguilibria is a PGA in which independestbpopulationsf
published results for channel routing benchmarks. The runtinigiividuals with their owrfitness functionsvolve in isolation,
of the algorithm is not as competitive. except for an exchange of individualwigration) when a state

A genetic algorithm for switchbox routing is presented igf equilibrium throughout all the subpopulations has been
[25]. Similar to [24], the genotype is essentially a lattice corrgeached (see Fig. 3)Previous research has shown genetic
sponding to the coordinate points of the layout. Crossover aggyorithms with such punctuated equilibria to often have better
mutation are performed in terms of interconnection segmengarformance when compared to sequential genetic approaches
The algorithm assumes that the switchbox is expandablegpplied to the same domain [7], [9], [23].
both directions. Subsequently, these extensions are reducethhe parallel structure of our algorithm for the case of nine
with the goal to reach the fixed size of the switchbox. Oﬁrocessors is shown in F|g 3. We assign a set widividuals
numerous benchmark examples, the router produces resgi®blem solutions) to each of th¥ processors, for #otal
equal to or better than the previously best published resuli®pulationsize ofn x N. The set assigned to each processor,
while not being runtime competitive. ¢, is its subpopulationP.. The processors are connected by

In [17], a genetic algorithm for the channel routing probleran interconnection network with a torus topology. Thus, each

is presented that includes a rip-up-and-reroute strategy. Th®cessor (subpopulation) has exactly foeighbors
initial population is created with a shortest-path algorithm

combined with random decision making. The published re-1This form of PGA has also come to be called “the island model.”

IV. DESCRIPTION OFGAP
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are often scattered over the chromosome instead of being
R represented in one compact building block when binary or
integer string representations are used. Our 3-D encoding
scheme ensures that good “routing islands” in the routing
structure are preserved as compact high-fitness building blocks
in the chromosome. Consequently, these building blocks have
a high probability of being transferred intact and recombined
with other high-quality building blocks in offspring solutions.
Furthermore, this encoding scheme enables a simple monitor-
ing of the routing constraints directly in the chromosome.
2) Fitness Calculation: The fitness#'(p;) of each individ-
ual p; € P. is calculated to assess the quality of its routing
Fig. 3. Neigh_borhood structure of nine subpopulations. The subpopulatiqs gtive to the rest of the subpopulati@@. The selection of the
are arranged in a torus. . . P .
parents for crossover and the selection of individuals which are
transferred into the next generation are based on these fithess
The genetic algorithm used by each processor and the mgifjyes.
process that steers the parallel execution are presented ip raw fitness function”’(p;) is calculated for each indi-
Fig. 4. First, the main process creates an initial subpopydual p; € P, according to
lation at each processor. This initial subpopulation consists
of randomly constructed (i.e., not optimized) routing so- Fl(p;) = 1
lutions. They are designed by a random routing strategy wy X lp +we X vy +ws X py
which connects net points in an arbitrary order with random{x ere
placed interconnections (see [24] for a detailed description oP
our random routing strategy). The main process consists of»
max_epoch iterations, callettpochs. During an epoch, each
processor, disjointly and in parallel, executes the sequential’r ; .
genetic algorithm on its subpopulation for a certain number?r length of adjacent net segments, summarized over all
of generations dpoch_length). Afterwards, each subpopula- nets, ofp; (“crosstalk”).
tion exchanges a Speciﬁc number of individuaﬂgig{rantg It is important to note that the variable weight factors
with its four neighbors. Please note that we exchange the, -+, ws enable us to easily adjust routing quality objec-
individuals themselves, i.e., the migrants are removed frdiies, including the tolerance of crosstalk, to the requirements
one subpopulation and added to another. Hence, the spfed given VLSI technology.
of the subpopulations remains the same after migration andrhe final fitness valued’(p;) for all individuals of the
the assimilation of migrants is simply a fitness recalculatic¥/bpopulation. are determined by linearly scaling’(p;),
(fitness_caleulation(P, U migrants)). as described in [19], in order to control the relative range
The process continues with the separate evolution of eg@hfitness in the subpopulation. Fitness scaling is performed
subpopulation during the next epoch. At the end of the procelf£al to the specific subpopulation with the scaled fitness
the best individual that exists (or has existed) constitutes olimax = 2 X Iy, (£, = average raw fitness) [19].
final routing solution. 3) Selection: Our selection strategy, which is responsible
The following section briefly describes some specific chafor choosing the parents for the crossover procedure, is sto-
acteristics of the sequential genetic algorithm used by ea@fastic sampling with replacement (“roulette-wheel selection”)
processor to evolve its Subpopulation. [19] That means any |nd|V|duin € P. is selected with a
probability given by
B. Characteristics of GAP (pi)
Prob {p; is selectedl = :

1)

netlength as the sum of a quadratic function of the
length of each net of;;
number of vias ofp;;

()

1) Genetic RepresentatioritThe genetic encoding of the
routing problem is based on the problem-specific represen-
tation scheme presented in [24]. Here the layout is coded
in a 3-D lattice-like chromosome with the cells representing 4) Crossover: During a crossover, two individuals are com-
different coordinate points of the routing solution. The valukined to create a descendant. Our crossover operator is a
of a cell indicates which net is routed at this coordinate poidtpoint operator [19] that gives high-quality routing parts of
in the routing solution. A negative cell value indicates e parents an increased probability of being transferred intact
fixed assignment (e.g., a pin) and zero indicates that the ateaheir descendant. At the same time it guarantees enough
is unused (see [24] for a more detailed description of omndomness to explore new regions of the search space.
representation scheme). Crossover is performed in terms of wire segments. A

We chose this 3-D encoding scheme with integer represeandomly positioned line (“crossline”) perpendicular to the
tation after numerous experiments with other genetic encodiadges of the routing area divides this area into two sections,
schemes. For example, parts of the routing structure withaying the role of the crosspoint. This line can be either
near-optimal routing paths (termed as good “routing islanddiprizontally or vertically placed. For example, interconnection
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Atprocessor ¢ .
on subpopulation P

fitness_calculation (P U migranls)
for each generation
Pn(,u} = W
for each descendant
Pespy = selection (Py)
Prciw = Ppew U crossover (po. py)
endfor
fitness_calculation (P, UP,)
P, — reduction (P. U Ppei)
mutation (P.)

. endfor
Main process:

create initial subpopulations
for each epoch
do genetic_algorithm (subpopululions) @y
do migration (neighboring_subpopuiations) e
endfor
return best seen individual

¢
W
i
G\l
i

i
|
i
J

Fig. 4. Overview of our algorithm. See text for details.
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Fig. 5. Crossover of parentg, and ps to create a descendapt,.

segmentsexclusivelyon the upper side of the crossline aretrategies and evolutionary programming [3], is derived from
inherited from the first parent, and segmestclusivelyon the characteristic of our crossover operator that a high-quality
the lower side of the crossline are inherited from the secopdrent does not necessarily produce a high-quality descendant,
parent. Segments intersecting the crossline are newly creaded in such a case, the parent should survive rather than the
within the descendant by means of our random routing strateggscendant.

[24]. 6) Mutation: Mutation operators perform random modifi-
A simple example of a crossover procedure is shown @ations on an individual. The purpose is to overcome local
Fig. 5. optima and to exploit new regions of the search space.

5) Reduction: We use a deterministic reduction strategy Our mutation operator works as follows. A surrounding
which guarantees that high-quality individuals survive in agctangle with random sizes,(, ¢.) around a random center
many generations as they are superior. Our reduction strat@ggition ¢, v, z) is defined. All interconnections inside this
simply chooses th¢P,| fittest individuals of P, U P,.,) to rectangle are deleted. The remaining net points on the edges
survive asP, into the next generation. This strategy, whiclof this rectangle are now connected again in a random order
is the same as thg: + \) strategy often applied in evolutionwith our random routing strategy [24].
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TABLE |
. . CSMPARISON OFGAP wiTH SoME WELL-KNOWN ALGORITHMS FORBENCHMARK
The algorithm has been implemented on a network of (Up t8}anneLs (UpPERHALF) AND SWiTCHBOXES (LOWER HALF). THE RUNTIME OF

eight SPARC workstations (SunOS and Solaris systems). T®&P Is AVERAGED OVER THE RUNS THAT LED TO THE PRESENTEDRESULTS BEST
para||e| computation environment is provided by the Ment&zsuus (AccorpiNG TONUMBER OF VIAs AND NETLENGTH) ARE IN BOLDFACE

V. IMPLEMENTATION AND RESULTS

system, an object-oriented parallel processing system [21], §ench:

L , Algorithm Col- Net- = yjgq | Time
[27]. The program, written in &+ and Fortran, compriseS  mark g umns length (sec)
approximately 10000 lines of source code. The experimental Yoshimura- || Yosh-Kuh[33] | 12 5 75 21 |2
results have been achieved with the machines running their g}l:h 1 ﬁEAVI;iR[%] :; : 32 }if }’26
H H et H anne onrecale K
normal daily loads in addition to our algorithm. GAP P 4 0 1 ls
Burstein’s || PACKER[18] | 12 4 82 10 |87

. . . Difficult Monreale[ 16 12 4 ?

A. Comparison of GAP to Other Routing Algorithms Channel GAP 16l 1 4 gg lé) 6

Any application of a genetic algorithm should focus on a “Joo6_12 WEAVER[22] | 12 4 79 14 | 134
comparison to solution techniques that have been acknowl- PACKER] 18] 12 4 82 18 16
edged as effective by that application’s community. Here we “G/Iz‘lfea‘e“(’] g Y 33 i: ;3
compare the results of GAP with the best-known results of ——

. : . Joo6_13 WEAVER[22] | 18 7 167 29 [312
other algorithms for channel and switchbox routing bench- Silk[26) 18 6 168 28 |2
marks (see Table 1). The other routing algorithms do not PACKER[ 18] 18 6 167 25 | 710
consider crosstalk and thus can only be compared with our SAR[T] 18 6 166 25 170
routing results regarding netlength and number of vias. Hence, GAP 18 6 164 22 |17
we kept the weight factor for crosstalkys, at a low level Jo06-16 xgizggl?é]ﬂ H f; };: ;? ;?2
(0.01). The other weight factors in (1) are setwe = 1.0 Mo},rea]e“é] 11 7 120 19 |2
and w, = 2.0. GAP 1 6 115 15 |207

GAP was executed 120 times per benchmark with varying 5 -+ WEAVER(22] | 1T 9 166 19 |325
parameters (presented later). Table | presents the best-ever- Silk|26] 11 9 166 18 |2
seen results for all algorithms. The results from GAP are GAP 11 9 165 16 | 217
qualitatively similar to or better than the best-known results Pedagogical || BEAVER"[8] 15 16 3% 38 |1
from popular channel and switchbox routers published for Switchbox || PACKER[IS] | 15 16 406 45 |91
these benchmarks. The layout of Burstein’s Difficult Switch- éf/\\l;[l] :; }2 ggi ;1, égg
box achieved with our algorithm is depicted in Fig. 6. Burstein's || WEAVER[22] | 33 15 531 41 | 1508

All executions of GAP were based on arbitrary initializa-  Dpifficult BEAVER?(8] 23 15 547 44 |1
tions of the random number generator. Due to the stochastic Switchbox || PACKER[18] 2315 546 45 |56
nature of a genetic algorithm, the best-ever-seen results of E‘ZiAI‘I*EXm ;2 i: ;;z gz ?;ﬂ
GAP were not achieved in all executions. However, we should o~ WEAVERA23) 1’6 1‘7 R 10;%7
note that solutions equal to the best-ever-seen results wereg, ;i hbox || silk[26] 6 17 516 29 |»
obtained in at least 50% of the individual GAP executions. The SAR[1] 16 17 519 31 150
specific “success rates” for some benchmarks are: Burstein’s GAP 16 17 516 29 | 2330
Difficult Channel: 82%, Joaf.3 Channel 76%, Joa&6 Chan- Augmented || BEAVER’[8] 6 18 529 31 1
nel 57%, Joo6L7 Switchbox 68%, and Pedagogical Switchbox Des PACKER[I8] | 16 18 529 32 131
54%. Switchbox || SAR(1] 16 18 529 31 |205

GAP 16 18 529 29 |2281

Please note that these “success rates” were achieved with
different (including unfavorable) parameter settings (see Sec-® Interactive.
tion VI) and thus, can be considered as lower bound in the
individual variability of the results.

® BEAVER’s number of vias has been adjusted.

already during the routing process. The parametarss

B. Crosstalk Reduction

denotes the sum oafetcross(i) over all nets.

Table Il presents the routing results that have been achieved
&m varying ws. Since no maximum tolerable crosstalks in
pile nets were specified for the four benchmarks we used,
mazxcross(i) was set to a value which was considered ap-
propriate. The results show that an increaseugf leads
to significantly fewer parallel routed net segmentsr{ss”)

By adjusting the value of the weights, our algorithm can
optimize the interconnections regarding crosstalk. Hence,
router can construct solutions that contain a minimal num
of parallel, adjacent interconnections.

The length of all adjacent net segments of ndt.e., the
length of the segments that are routed adjace# i®denoted
by the parametenctcross(i). The parametemazcross(i) and fewer violations (denoted withy™) of the net-specific
symbolizes the maximal tolerable crosstalk for adiy ex- crosstalk requirementngtcross(i) < maxcross(i)). How-
pressing the maximal tolerable length of adjacent segmentsewgr, as can be seen in Table I, the minimization of crosstalk
i. Thus,neteross(i) > mazcross(i) represents a violation of leads in general to an increase in both the netlength and the
the crosstalk constraint of nétand can be easily detectednumber of vias.
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TABLE I
THE FIVE BENCHMARKS CHOSEN FOR SUBSEQUENT EXPERIMENTS AND
THEIR SPECIFIC PARAMETERS. “BEST-KNOWN SCORE’ REPRESENTS
THE BEST-EVER-SEEN RESULT OF EACH BENCHMARK (SEE TABLE )
Sub- Descendants
. . . Best
Bench- population | per Generation Number of
K
mark Size per Subpopulation | Generations nown
Score
PC Pncw
Burstein® 50 20 100 74
Joo6_13 50 20 500 177
Joo6_16 50 20 500 123
Joo6_17 50 20 500 168
Ped. SB! 50 20 500 395

Fig. 6. Our routing solution of Burstein’s Difficult Switchbox. Black lines
represent interconnections on one layer (metal 1), and grey lines denote « g, .in’s Difficult Channel.

interconnections on the other layer (metal 2). ¥ pedagogical Switchbox.

TABLE 1
RebuCTION OF CROSSTALK ACHIEVED BY INCREASING THEWEIGHT FACTORFOR A, Measurement Conditions
CROSSTALK, w3, FOR THREE CHANNELS AND ONE SwiTcHBOX (w; = 1.0,
wy = 2.0). cross REPRESENTS THEOVERALL LENGTH OF ALL ADJACENT, In Table Ill, we show the five problem instances (three
PARALLEL RoUTED NET SEGMENTS PERBENCHMARK. V' DENOTES THENUMBER  channel benchmarks and two switchbox benchmarks) cho-

OF NETS FORWHICH THEIR UPPERBOUND OF PARALLEL ROUTED SEGMENTSIS f . ts. Th b h K lected
EXCEEDED, I.E., THAT REPORT A VIOLATION OF THEIR INDIVIDUAL CROSSTALK Sen Tor our experiments. €se benchmarks were selecte

CoNSTRAINT. THE RESULTS PERBENCHMARK ARE AVERAGED OVER FIVE Runs  because of their diversity and the availability of numerous
published routing results. We compare the results of GAP in

Bench- w3=0.01 wz=1.0 w3=4.0 . . .

mark NL/Vias® cross V| NL/Vias' cross V| NLjVias aross v Lh€ following experiments with the best-known scores for these
Bustin® | 82/10 52 3| s/l 46 2| 9415 42 0 benchmarks (the rightmost column of Table Ill). These scores
Joo13 | 167/25 141 3| 17226 13s 3| 1sija0 s o reflect the netlength and the number of vias as presented in
Joo6_16 120/19 132 41 12220 130 3| 128/21 125 0 Table I. All results presented in Tables IV-VIII are normalized
Joo6_17 || 165/16 190 4 } 167/19 187 4| 181724 177 I as the percentage exceeding this best-known score, with the

percentage averaged over five runs.

For comparison purposes, we also applied a sequential ge-
netic algorithm (SGA) on théotal population size (combined
set of all subpopulations). This sequential genetic algorithm

Practical applications of this multi—objective optimizatiorhas been shown to produce the best results of any genetic
problem require the designer to specify the weights accordig@jorithm for the considered benchmarks to date [24], [25].
to his/her optimization priorities. Practical approaches might To ensure a fair comparison, the following characteristics
include the generation of alternative solutions with emphas,l%re considered. ]_) Experimenta| results showed that the
on different optimization goals. From the output solution segombined set of all subpopulations is not an “unfavorable
the designer then chooses a specific solution representing §bgting” for the sequential genetic algorithm; on the contrary,

“ Netlength/number of vias.
¥ Burstein’s Difficult Channel.

preferred tradeoff. the results are consistently better than the ones achieved with
any smaller population size. 2) The sequential algorithm is
VI. INVESTIGATION OF GAP PARAMETERS operationally equivalent to the genetic algorithm that evolves

As mentioned earlier, a PGA with punctuated equilibriﬁaCh subpopulation in GAP. 3) In the experiments, the sequen-

alternates the maintenance of subpopulations isolated in &ﬁi-l genetic algorithm was set to perform the same number of

ferent environments (to allow the development of individualj (_:omblnat|or:s per genefratuz)n as ?AP dogs overdall subpopu-
with the introduction of individuals to new environment tions, namelynumber ot subpopulations descendants per

(to motivate further development of the individuals). Wéubpopulation4) The sequential genetic algorithm and GAP

create different environments by defining the fitness of ere run the same “"?' numper of generatlon§ (see Tab!e ).

individual relative to the quality of the other individuals in' e number of gener:?mons IS In accordance W'th th? optlmal

its current subpopulation (fitness scaling [19]). Exchangin lues of the sequential genetic algorithm achieved in previous
periments [24], [25].

individuals between subpopulations, i.e., migration, will alte : o
To demonstrate the importance of migration, we also report

the fitness values of the individuals within the subpopulatio . ) .
and introduce new competitors. Migration, of course, is baSIEEJE results achieved with GAP when the subpopulations evolve
’ ’ “0 Migrants”).

on various parameters, such as how often, how much, wIJfE),ISOIatlon (
size and number of subpopulations, among others beyond the )
scope of this paper. We have performed several experimentStdumber of Migrants and Epoch Lengths

understand the specific effects of these parameters in order tdVe investigated the influence of different epoch lengths
guide further applications of PGA’s with punctuated equilibrignumber of generations between migration) for different num-
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Fig. 7. Comparison of the convergence of the best individuals in the individual, parallel evolving subpopulations. Plotted are five runs witiopiniatsois
each, i.e., 45 curves, in (a) isolation and (b) with two migrants. The “lower” curves and the smaller envelope of the right-hand plot indicate better
results and less variation throughout the subpopulations.

bers of migrants (number of individuals sent to each of the four TABLE IV
nelghbors) The mlgrants were Chosen randomly, W|th ea&FTAINED CHANNEL AND SwWITCHBOX RESULTS WITH DIFFERENT NUMBERS OF

. I d b | As d ibed l MIGRANTS AND EPOCH LENGTHS FOR COMPARISON REASONS, THERESULTS OF
migrant allowed to be sent only once. ( S described earliey, SEQUENTIAL GENETIC ALGORITHM (SGA) ARE ALso GIVEN. ALL ResuLTs

the migrants are removed from one subpopulation and add@@e AveraceD oVER FivE RUNS AND NORMALIZED AS PERCENT EXCEEDING
to another.) Table IV shows that the sequential approach T4E BESKNOWN ScoRE IN TABLE . THUS, THE SMALLER THE VALUE, THE

- . . . BETTER THE AVERAGE RESULT OF THE PARTICULAR CONFIGURATION
outperformed by all parallel variations, including the version

without any migration, when averaged over all considered Epoch Length
benchmarks. Thus, the splitting of the total population Sizeench- 25 Gen. 50 Gen. 75 Gen.
into parallel evolving subpopulations already increases theark SO Mig. | Migrants Migrants Migrants
probability that at least one of these subpopulations will evolve 02 4 6,2 4 6]2 4 6
toward a better resuft. Burstein || 432 | 1.08 [2.16 216 324[1.08 108 108 n/a na n/a

Table IV also shows that a limited migration between theloo613 || 132 || 226 [ 1.13 245 24510.19 245 1691226 188 226
subpopulations further enhances the advantage of the PG/&Re6-16 || 596 || 352|434 569 412|406 488 488 406 4.18 371
Two mlgrants to each ne|ghbor W|th an epoch |ength Of 50006,17 278 |13.17 1223 193 3.02|208 223 298|164 179 2.23
generations resulted in the best parameters when averagkt S8 | 819 | 6:60 | 551 708 805|738 846 852|701 668 668
over all problem instances. On the one hand, more migrantyerage [ 451 [333[307 386 4181300 382 383[374 363 3.72
or too short epoch lengths are counterproductive to the idea ofsca [ 100 || 74 [ 68 86 93 [ 66 85 85|83 81 82
disjointly and parallel evolving subpopulations. They diminish ) )

. . . . “ ., Number of subpopulations : 9
the genetic diversity between the subpopulations by “pulling”,,. - . i

A igrant sclection strategy : random
them all into the same part of the search space, thereby
approaching the behavior of a single-population genetic al-
gorithm. On the other hand, insufficient migration (epoc
length 75 generations) simulates the isolated parallel appro

Fig. 7 shows this behavior in the context of all subpopu-
%ﬁj]ons, that is, it presents the convergence behavior of the

(zero migrants)—the genetic richness of the neighboring s £t |nd|V|<_jua_Is in_each .Of the parallel e_von_ng subpop_u-
populations does not have enough chance to spread ttl_ons. It |nd|cate§ the |_mportance_ of mlgratlon_to avou_j
Increasing the number of migrants can help in this Cas_%remature sta_gnat|on by |mplementlng new genetic mate_rlal
although doing so does not achieve the good results oimetlo a stagnating subpopulation. Furthermore, the plot points

“moderate” epoch length combined with a low number cﬁm the st.aplllzmg effect of migration as gxpresged n the
migrants. imited variation among the best subpopulations gained in five

independent runs [see Fig. 7(b)].

2 ater, we will see that this conclusion requires that the number &. Variable Epoch Lengths

individuals per subpopulation, depending on the problem size, is sufficiently . . A .
large. Obviously, 50 individuals per subpopulation as in our case fulfills this The ideas surroundlng punctuated equ'l'b”a mlght be used

requirement. to suggest: 1) a population in a constant environment will sta-
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TABLE V TABLE VI
CoMPARISON OF CHANNEL AND SwITCHBOX RESULTS BETWEEN A FIxep (50 COMPARISON OF CHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT
GENERATIONS) AND A VARIABLE EPOCH LENGTH. THE VARIABLE EPOCH MIGRANT SELECTION STRATEGIES (NO RESTRICTION ON MIGRANTS,
LENGTH WAS TERMINATED INDIVIDUALLY IN EACH SUBPOPULATION AFTER MIGRANTS WITH FITNESS ABOVE MEDIAN FITNESS BEST INDIVIDUALS
25 GENERATIONS WITH NO IMPROVEMENT OF THE BEST INDIVIDUAL . As MIGRANTS). ALL REsuLTS ARE AVERAGED OVER FIVE RUNS AND
ALL ResuLTs ARE AVERAGED OVER FIVE RUNS AND NORMALIZED AS NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN SCORE IN TABLE I

PERCENT EXCEEDING THE BEST KNOWN SCORE IN TABLE 11

Migrant Selection Strategy

Epoch Length Bench- Random Top 50% Best
Bench- SGA 50 Gen. Variable mark SGA Migr. | Migrants | Migrants | Migrants
mark Migr. | Migrants | Migrants 0 2 4 ) 4 9 4
012 412 1 Burstein || 432 || 1.08 [1.08 1.08]1.08 1.08]1.08 1.08
Burstein || 432 || 1.08 | 1.08 1.08] 1.08 1.08 too613 | 132 | 226 lo1o 245|188 358|132 282
Joo613 || 1.32 1 2.26 | 0.19 2.45 1 2.07 1.88 Joo6.16 || 5.96 || 3.52 | 4.06 4.88|2.44 379|488 3.79
Joo6.16 || 5.96 || 3.52 | 406 4.88 271 244 Joo6.17 || 278 || 3.17 [ 208 223|198 2.183.17 1.59
Joo617 || 2.78 || 3.17 1 2.08 2.23 | 2.18 2.58 Ped. SB || 8.19 || 6.60 | 7.58 846|794 710|551 7.77
Ped SB || 8:19 || 660 | 758 846 |6.68 6.77 Average || 4.51 [ 333 [3.00 382[306 355[3.19 341

Average [ 451 | 3.33 [3.00 3.82[294 295
%SGA [ 100 [ 74 [ 66 85 [ 65 65

%sGA || 100 | 74 | 66 85 [es 7971 76

Number of subpopulations : 9
Number of subpopulations : 9 Epoch length : 50 generations

Migrant selection strategy : random

bilize over time with little motivation for further developmentP- Different Migrant Selection Strategies
(“stasis” [12]), and 2) bursts of rapid evolution are often caused We investigated the influence of the quality of the migrants
by small sets of individuals migrating to a new environmerin the routing results. Three migrant selection strategies were
(“allopatric speciation” [12]). We, however, are interested inompared: “Random” (migrants were chosen randomly among
evolutionary systems for optimization, so we have used thetbe entire subpopulation), “Top 50%” (migrants were chosen
ideas to design a model in which the evolutionary system handomly among the individuals with a fitness above the
several subpopulations. These subpopulations are considerediian fithess of the subpopulation), and “Best” (only the
to be usefully evolving until they reach a stasis condition, &test individuals of the subpopulation migrated). The migrants
which point the model calls for migration in order to instigatevere sent in a random order to the four neighbors.
further useful evolution. Most published computation models As Table VI indicates, we cannot find any improvement
that are based on punctuated equilibria use a fixed numlierthe obtained results by using migrants with better quality.
of generations between migration. Thus, they do not exacfBn the contrary, selecting better (or the best) individuals to
duplicate the model that migration occurs only after a stage wiigrate led to a faster convergence—the final results were not
equilibrium has been reached within a subpopulation. as good as those achieved with a less elitist selection strategy.

We modified the algorithm to investigate the importancdccording to our observations, this is due to the dominance
of this characteristic. Rather than having a fixed number of the migrants having their (locally good) genetic material
generations between migrations, we introduced a stop criteri@ach all the subpopulations, thus leading the subpopulation
that takes effect when stagnation in the convergence behaviearches into the same part of the search space concurrently.
within a subpopulation has been reached. We defined a suitable
stop criterion to be 25 generations with no improvement in the )
best individual within a subpopulation. E. Different Number of Subpopulations

Again, to ensure a fair comparison, we kept the overall To compare the influence of the number of subpopula-
number of generations the same as in all other experimenisns, we first kept the size of the subpopulations constant
This led to varying numbers of epochs between the paralleid increased the number of subpopulations to 16 and 25.
evolving subpopulations (due to different epoch lengths) am¢cordingly, we increased the population size and the num-
resulted in longer overall completion time. ber of recombinations of the sequential genetic algorithm to

Our results, presented in Table V, suggest that a sligiaintain a fair comparison. As expected, the sequential genetic
improvement compared with a fixed epoch length can lkgorithm improves its performance due to the larger number
achieved by this method. However, it is important to notef solutions evaluated (see Table VII). The same is true for
that this comparison is made with a fixed epoch length that hée parallel approach. The larger total population size and thus
been shown to be (nearly) optimal after numerous experimenigher overall number of recombinations led to better results.
(see Table IV). Thus, a variable epoch length based on theAn interesting variation on this experiment is the division
convergence behavior within the subpopulations can be useftb different numbers of subpopulations while keeping the
when 1) a time effective usage of computational resourctesal population size constant. Thus, with 16 subpopulations,
does not have highest priority, and/or 2) no prior experienctéise subpopulation size is reduced to 28 individuals; with 25
with an appropriate epoch length exist. subpopulations, the size decreases to only 18 individuals.
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TABLE VII TABLE VIII
COMPARISON OF CHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT COMPARISON OF CHANNEL AND SWITCHBOX RESULTS WITH DIFFERENT NUMBERS
NUMBERS OF SUBPOPULATIONS THE SIZE OF THE SUBPOPULATIONS |s KEPT OF SUBPOPULATIONS THE SiZE OF THE TOTAL POPULATION |s KEPT CONSTANT
CONSTANT AT 50 INDIVIDUALS. THE RESULTS OF THE SEQUENTIAL GENETIC AT 450 INDIVIDUALS . ALL ResuLTs ARE AVERAGED OVER FIVE RUNS AND
ALGORITHM FOR THE RESULTING DIFFERENT OVERALL POPULATION SiZES ARE NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN SCORE IN TABLE |lI
ALso GIVEN. ALL ResuLTs ARE AVERAGED OVER FIVE RUNS AND
NORMALIZED AS PERCENT EXCEEDING THE BEST-KNOWN ScoORE IN TABLE Il Number of Subpopulations
- - Bench- 9 16 25
Nuinber of Subpopulations SGA - - -
Bench- 9 16 25 mark Migrants Migrants | Migrants
; : ; 0 2 0 2 0 2
mark Migrants Migrants Migrants
SGA = 5 I1SGA L 184y 2 Burstein || 432 || 1.08 1.08 | 1.08 0.00|0.00 0.00

Joo6_13 || 1.32 || 226 0.19|2.12 0.00|1.80 0.00
Joo6_16 || 596 || 3.52 4.06|3.52 381 |7.10 6.00
Joo6 17 || 2.78 | 3.17 2.08 | 4.18 3.12 | 140 9.81
Ped. SB || 8.19 || 6.60 7.58 1 13.1 11.8|42.0 372

Burstein || 432 | 1.08 1.08 || 2.16 { 1.08 0.00 | 0.00 | 0.00 0.00
Joo6_13 || 1.32 1226 0.19 | 2.07 {2.18 0.18 | 0.94 | 0.00 0.00
Joo6_16 || 596 | 352 4.06( 3.79 1 1.87 1.72 | 2.44 | 1.87 1.01
Joo6_17 || 2.78 | 3.17 2.08 || 3.57 | 3.10 1.08| 198 | 151 0.10
Ped. SB' || 8.19 | 6.60 7.58 || 827 | 6.00 5.21| 7.69 598 518

Average || 4.51 [[333 3.00[4.80 375[130 106

T

%sGa [ 100 ] 74 66 | 106 83 | 288 235

Average || 451 [333 3.00 397 [2.85 164 [ 2.61 [ 1.87 126

%sGA [ 100 | 74 66 [ 100 71 41 [ 100 | 85 48

Migrant selection strategy : random

Epochlength : 50 generations
Migrant sclection strategy : random

Epoch length : 50 generations
are slightly better than those obtained with (near-) opti-
mized fixed epoch lengths. Practical applications of this
The results presented in Table VIII show the relation-  «strict punctuated equilibria method” require the user to
ship between the problem size and the minimal number of \eigh the advantage of this “self-adjustment” against its
individuals per subpopulation necessary to prevent prema- main drawback, decreased time efficiency.
ture convergence. Relatively small problem sizes (Burstein,. Quality constraints on the migrants (e.g., to be above
\]006_13) benefit from a further Spllttlng into more (but Sma”er) median fitness) do not improve the overall behavior of
subpopulations. The advantage of more varied evolving sub- the algorithm, on the contrary, quality requirements on
populations outperforms the drawback of a smaller subpop-  the selection of migrants led to premature stagnation.
ulation size up to a certain level. This level seems to be. Gijven a sufficient number of individuals per subpopula-
reached shortly below 50 individuals per subpopulation for tjon, a larger number of parallel evolving subpopulations
the switchbox Joo@.7 and the Pedagogical Switchbox—their il produce better routing results (for a fixed number

results suffer significantly from the loss of genetic diversity  of total evaluations). The size of the problem and the

due to smaller subpopulations. minimal subpopulation size have a direct correlation that
must be taken into account when dividing a population
VII. CONCLUSIONS into subpopulations.

We presented a PGA for two detailed routing problems Our algorithm can be easily implemented on any distributed
in VLSI circuits. The approach includes a new measure 8etwork of conventional workstations. We believe this ap-
the netlength to better reflect the electrical delay in subnfiroach promises to be a useful tool in VLSI design.
cron regimes. Importantly, the approach also optimizes the
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